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Abstract. The prevalence of machine learning in biomedical research is
rapidly growing, yet the trustworthiness of such research is often over-
looked. While some previous works have investigated the ability of ad-
versarial attacks to degrade model performance in medical imaging, the
ability to falsely improve performance via recently-developed “enhance-
ment attacks” may be a greater threat to biomedical machine learn-
ing. In the spirit of developing attacks to better understand trustwor-
thiness, we developed three techniques to drastically enhance prediction
performance of classifiers with minimal changes to features, including
the enhancement of 1) within-dataset predictions, 2) a particular method
over another, and 3) cross-dataset generalization. Our within-dataset en-
hancement framework falsely improved classifiers’ accuracy from 50% to
almost 100% while maintaining high feature similarities between origi-
nal and enhanced data (Pearson’s 7’s > 0.99). Similarly, the method-
specific enhancement framework was effective in falsely improving the
performance of one method over another. For example, a simple neural
network outperformed LR by 50% on our enhanced dataset, although no
performance differences were present in the original dataset. Crucially,
the original and enhanced data were still similar (r = 0.95). Finally, we
demonstrated that enhancement is not specific to within-dataset predic-
tions but can also be adapted to enhance the generalization accuracy of
one dataset to another by up to 38%. Overall, our results suggest that
more robust data sharing and provenance tracking pipelines are neces-
sary to maintain data integrity in biomedical machine learning research.

Keywords: machine learning - adversarial attacks - neuroimaging

1 Introduction

Machine learning has demonstrated great real-world success across numerous
fields. However, adversarial attacks, or data manipulations designed to alter the
prediction [2], present a threat to real-world machine learning applications. Ad-
versarial attacks include evasion attacks, where only test data are manipulated,
or poisoning attacks, where the attacker may contribute manipulated test and/or
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training data [3]. Understanding adversarial attacks and developing correspond-
ing defenses is crucial to the integrity of machine learning applications.

Machine learning is also becoming increasingly prevalent in biomedical re-
search, including biomedical imaging. Previous studies of adversarial attacks in
medical imaging have focused on clinical applications where a malicious party
would be interested in altering the prediction outcomes for financial or other pur-
poses. Most of these studies implemented evasion attacks [IT/I0], while a smaller
subset used poisoning attacks [I9/9]. An equally relevant yet understudied mo-
tivation in scientific machine learning is the feasibility of manipulating data to
improve model performance falsely. For example, a malicious party might ma-
nipulate their data to improve model performance and thus make a paper more
publishable or increase the valuation of a start-up. These data manipulations
could waste grant money, misdirect future research directions of a given field,
and potentially cause harmful public effects. One recent work showed that the
performance of regression models using neuroimaging data could be falsely en-
hanced by injecting subtle associations into the data, labeled as “enhancement
attacks” [23]. However, this enhancement framework is unsuitable for classifica-
tion problems with discrete classes. Given the prevalence of classification prob-
lems in biomedical machine learning, understanding the potential to improve
classification results through enhancement attacks is needed.

In this work, we first extend the enhancement attack framework to classifica-
tion models|[(GOAL #1) | Then, we present two other ways in which data can be
enhanced with only subtle manipulations: falsely demonstrating that a particular
method (e.g., type of machine learning model) outperforms another [GOAL #2)|
and falsely improving cross-dataset predictions [(GOAL #3)| Finally, we discuss
the implications of enhancement in biomedical machine learning.

2 Methods

The enhancement attacks described in the remainder of this paper are heavily
motivated by poisoning attacks, but they are distinct in both intention and at-
tack capabilities. In poisoning attacks, particularly indiscriminate poisoning at-
tacks, the attacker’s goal is to decrease the accuracy of all test samples by adding
a small number of crafted training examples [6]. Despite the critical implications
of poisoning attacks to real-world applications of machine learning, their impor-
tance in research-based machine learning is limited. A researcher would never
want to manipulate data to make their model perform poorly. Enhancement at-
tacks are based on a much more likely motivation behind manipulating data in
research, which is to improve the performance of a model falsely.

Along with differences in motivation, the capabilities of the attackers in en-
hancement attacks are much greater than in poisoning attacks. In most studies
of poisoning attacks, attackers are assumed to be capable of adding a small sub-
set of points to the training data. In contrast, enhancement attackers can modify
existing points. Moreover, poisoning attackers may have complete (“white-box”)
or limited (“black-box” or “gray-box”) knowledge of the dataset and/or model
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[3]. In the research setting of enhancement attacks, the attacker has even greater
knowledge than the traditional “white-box” setting, as they can modify the en-
tire dataset, which may include both training and test data in the case of most
within-dataset predictions. They can then publicly release this dataset such that
the highly-performing model is computationally reproduced by others.

In the following sections, we considered three separate attacker goals: falsely
enhancing 1) within-dataset classifier performance, 2) performance of one method
over another, and 3) generalization of a model to an external dataset.

GOAL #1: Within-dataset enhancement Falsely enhancing within-dataset
performance is the primary situation in which enhancement may occur. The mo-
tivation for studying the feasibility of within-dataset enhancement of machine
learning comes from data manipulations in non-machine learning biomedical re-
search. For instance, about 2% of papers investigated by [4] contained evidence
of deliberate manipulations in biological images (e.g., western blots). However,
possibilities of manipulations have not been studied for machine learning. In a
hypothetical scenario, a biomedical researcher may enhance their dataset to im-
prove prediction performance, thus leading to results that seem more impressive
and interesting. The same researcher may then share this enhanced dataset, and
others would computationally reproduce similar results, without any knowledge
of the data manipulations that occurred.

The key idea behind within-dataset enhancement is to “push” the samples in
the direction of a learned model to make the decision boundaries clearer and more
consistent across all samples, thus improving performance. For a single held-out
point, one may optimally change the classification by perturbing the point in
the direction of VA, where A can be a decision function or loss function. For
example, in the case of linear support vector machine (SVM) or logistic regression
(LR):

Xheld—out,y:—l — Xheld—out,y:—l —€E€*xw (1)

Xheldfout,yzl — Xheldfout,yzl +exw (2)

where w is a vector of model coefficients and € is a scaling factor. Equations
would move the corresponding held-out points toward the correct side of the
decision boundary. As summarized in Algorithm [1] first a model f is trained by
holding one or numerous points out with K-fold partitioning. Then, the held-out
point(s) are updated with VA such that the model will predict them correctly,
and this process repeats until all points are held out. Since learned model coef-
ficients should be similar when only holding out a small fraction of the points,
this method should push all points of a given class in a consistent direction.
Eventually, when the enhanced dataset is released, an independent researcher
would not notice any perturbations in the dataset but would falsely find higher
performance.

GOAL #2: Enhancement of a particular method The motivation behind
method enhancement would be to release a dataset and corresponding paper for
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Algorithm 1 Within-dataset enhancement attacks

D e {X,y}: dataset
f: model
Nfoids: folds for K-fold partitioning
A: enhancement step size
for k=1: N folds do
Establish Dy, Dheid—out
Train f
Xhetd—out < Xheld—out — AVz A where A = L(f,z) or DF(f,x)
end for

which a neural network, for example, outperforms a simpler linear method. A
second motivation could be for a company to demonstrate how their method
(falsely) outperforms other methods to increase the valuation of a startup. Since
a significant portion of biomedical machine learning research focuses on methods
development, understanding the extent to which performance of one method can
be enhanced over another is crucial.

A roadblock to method-specific enhancement is that the gradients used in
Equations generally transfer well across model types [7], which would make
this process ineffective in enhancing performance of a specific method over an-
other. Transferability of attacks from a base classifier fi to another classifier f,
is defined by [7] as how well an attack designed for f; works on f5. In this case,
we do not wish for the attacks to transfer between models. We want to find a
new direction gj that enhances performance of f; but does not affect fo. We
achieve this by taking the component of g; that is orthogonal to go:

g1 = projgs (g1) 3)

Furthermore, Equation [3] may not be sufficient to limit the performance of fa,
since fo can learn a new decision boundary after retraining. As such, we propose
to include a term g5 to suppress performance of f:

95 = Projgi (g2) (4)

Then, for a held-out sample, we can update it as follows to attempt to improve
performance of f; but not fs:

o' =z — Ngi —n95) (5)

where A and the suppression coefficient 1 control the influence of g; and gj.

Similar to the model-based data enhancement, we split the data into k folds.
For each partitioning, we train two models: 1) A model that we want to enhance
(i.e., f1), and 2) a second model that we do not want to enhance (i.e., f3).
Subsequently, Equations are applied to update the held-out data, and the
process is repeated until each sample is held out once.
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Algorithm 2 Method enhancement
D e {X,y}: dataset
D.: enhanced dataset
f1: model to enhance
f2: model to avoid enhancement
Nfolds: Number of folds for K-fold partitioning
A: enhancement step size
for k =1:njso4s do
Establish Dtrahu Dhetd—out
Train fl, fg
g1 + Vo A(f1, Xnetd—out)
92 < Vo A(f2, Xnetd—out)
Xheld—out <~ Xheld—out - )\(projgj (gl) -n pTOjg% (92))
Update D. with new Xpeid—out
end for

GOAL #3: Cross-dataset enhancement As previous sections on enhance-
ment attacks were designed only to work for within-dataset predictions, requiring
generalization of models to external datasets before deeming them “trustworthy”
could be a potential defense against enhancement. Not only does generaliza-
tion act as a defense against within-dataset enhancements, but it is also widely
seen as the “gold-standard” for predictive models in science, as previous studies
have highlighted that many within-dataset findings fail to generalize [17]. Con-
sequently, we explored whether a dataset could be enhanced to falsely improve
generalization performance.

In a hypothetical scenario, a researcher could plan to release a paper and
dataset demonstrating prediction of a particular phenotype or outcome from
imaging data. To make their results more impactful, the malicious researcher
could download an external dataset (“generalization dataset”) and make minor
changes to their dataset to falsely improve accuracy in the generalization dataset.
Notably, no changes would be made to the generalization dataset. After publish-
ing these seemingly favorable results and releasing the dataset, other researchers
would computationally reproduce the good generalization performance.

Following previous works that used bilevel optimization in poisoning prob-
lems [6UI8/7], we here use bilevel optimization for cross-dataset enhancement:

min L(Dy, f(w)") (6)
st w* e argufninf(De,f(w)) (7)

where L is the generalization loss, £ is the training loss, Dy is the generalization
dataset, D, is the enhanced training dataset, f is the model with parameters
w, and ¢ is the perturbation applied to enhance the data. Notably, unlike previ-
ous poisoning problems, we seek to minimize the loss in the outer optimization
problem (Equation @ Since the training set is being altered, the loss function
depends on the training point of interest. We can apply chain rule to compute
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the gradient of interest V A [7]:

owT
Ve A=V, L+ — V,L 8
+ o (8)
To solve this problem, one can replace the inner optimization of Equation [7] with
the stationarity Karush-Kuhn-Tucker conditions and ultimately solve it as [7]:
VoA =V,L—(V,V2L)V2L) VL (9)
Instead of adding these gradients to poison, we will instead subtract them to
enhance. For SVM, the formulation of the gradient in [2] is repeated below:

Vi A= Z(Mk 822;6 + 8221:“)0[6 (10)
k=1
My = %(QM@Q;S — o) + ") (11)

where @ is the label-annotated kernel matrix (i.e., @ = yy? o K), s indexes
support vectors, e indexes the enhancement point, £ includes all generalization
points, v = Q 'y, ¢ = yTQ:lys, u is the iteratively-updated enhancement
direction, and «. is the dual coefficient for the enhancement point.

For LR, the gradient described by [7] is repeated below for convenience:

Vo Ve llT V2.2 X0 17 [X(yoo —vy)
c w o Y c (12
Czew CzX CY .z y (o —1)

where C is the regularization coefficient and z = (1 — o) is the derivative of the
logistic decision function.

For FFN, the bilevel optimization problem cannot be easily solved the same
way as SVM and LR due to the complexity of the FFN. However, following the
procedure of [I8], we use back-gradient optimization [8[I6] to more easily cal-
culate the gradients for bilevel optimization. Essentially, back-gradient descent
replaces the inner optimization problem (Equation and is used to compute the
gradient direction of the enhancement point V,_ A. In Algorithm 3| V, V.2
and V,,V,.Z(z,,w;) are estimated with Hessian-vector products [I8)20]. The
sign of the resulting gradient in Algorithm [3|is then reversed for enhancement.

vzeAz—[

Algorithm 3 Back-gradient descent [I8]
Dy, € {Xtr, yir }: training data
fort=T:1do
dze + dze — ndwV 4,V L (T, W)
dw « ndwV VL (zh, we)
gt—1Vuw, L (e, we)
Wi—1 = Wt + Qgt—1

end for
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Algorithm 4 Cross-dataset enhancement
Initialization
Dy € {Xir, yer }: training data
D, € {Xg4,yq}: generalization data
f: model
ne: number of enhancement points
A: enhancement step size
Selection of enhancement points
e: all training points to enhance
Evaluate decision functions DF' of X, using K-fold cross-validation
e <argsort(abs(DF'), ascending)
e + e[: ne
Enhancement
for e; in e do
for iter = 1 : iteraz do
Dy incorr. + arg(f(Xy) # yg)
Calculate V., A, where A = L(f, Dg,incorr.)
Update enhanced point: Xy e, < Xire; — A * vl"i A
Train updated f
end for
Keep Xy, for which f has highest Acc(X,)
end for

Unlike previous poisoning attacks, which only add new samples to the dataset,
this cross-dataset enhancement attack alters existing samples. Our full imple-
mentation of cross-dataset enhancement is described in Algorithm [4] In brief,
we altered training samples one-by-one, choosing the points on which the model
was most “unsure” to alter first [I5]. After training the initial model f on the
unaltered data, we iteratively perturbed a point to minimize the loss on the
generalization dataset. Notably, we only accounted for points which the model
failed or had low confidence (i.e. close to decision boundary) when minimizing
generalization loss. Unlike poisoning attacks where both a surrogate validation
dataset and a test dataset are used to optimize model performance, the attacker
has access to the full generalization dataset and thus a surrogate dataset is not
necessary. After every enhancement point, the iteration with the highest accu-
racy is saved as the new “enhanced dataset” D..

3 Experiments

Datasets Resting-state functional MRI data were obtained from the Adoles-
cent Brain Cognitive Development (ABCD) [5], Human Connectome Project
(HCP) [24], and UCLA Consortium for Neuropsychiatric Phenomics (CNP) [22]
datasets. For all data, we performed motion correction, registration to common
space, regression of covariates of no interest, temporal smoothing, and gray mat-
ter masking. Participants were excluded for excessive motion, missing behavioral
data, missing task data (HCP only), or lack of full-brain coverage. Ultimately,
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3251 participants remained in ABCD, 506 in HCP, and 245 in CNP. CNP was
used for experiments in within-dataset enhancement and enhancement of a par-
ticular method, while HCP and ABCD were used in cross-dataset enhancement.
For CNP, we classified participants based on their diagnoses, including no di-
agnosis (n=117), schizophrenia (n=46), bipolar disorder (n=44), and ADHD
(n=38). For ABCD and HCP, we classified participants by self-reported sex,
which was selected due to its availability across datasets and relative ease of
prediction in fMRI data. All plots below were made with seaborn [I325].

GOAL #1: Within-dataset enhancement We enhanced the CNP dataset
for a classification problem with the following four classes: participants with 1)
no diagnosis, 2) bipolar disorder, 3) schizophrenia, and 4) ADHD. We used linear
SVM, LR [21], and a FFN as models. Our FFN consisted of three fully connected
layers with the ReLU activation function. It was trained with the cross entropy
loss and the Adam [I4] optimizer, with a learning rate of 0.001 and batch size
of 10 for 10 epochs.
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Fig.1. a) Model-based enhancement of SVM, LR, and FFN models for various en-
hancement scales. The enhancement scale is multiplied by the unit norm direction of
the perturbation for each sample, where an enhancement scale of 0 reflects the original
dataset. b-d) Transferability of enhancement between the three models. All accura-
cies were evaluated with 10-fold cross-validation, with error bars showing standard
deviation across 10 random seeds.

Gradients were computed as the model coefficients in SVM and LR (linear
models), while Pytorch’s autograd feature was used for the FFN. All gradients
(i.e., VoA In Equation were normalized to have a Frobenius norm of 1 and then
multiplied by the corresponding enhancement scale in Figure [l Enhancement
brought prediction performance from ~50% to ~100% in all three models (Fig
1h), even though the feature values of the original and enhanced datasets are
similar (r = 0.99). In addition to being effective for a particular model, the
enhancement attacks transferred between each of the three models (Fig [Lp-d).
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Fig. 2. Enhancement of a FFN over a,c) SVM and b,d) LR in CNP. In a,b), data
are enhanced with increasing A (see Algorithm . Solid lines represent the accuracy
for fi (FFN), while dashed lines show the accuracy for fo (SVM in a and LR in b).
Error bars reflect standard deviation across 10 random seeds of K-fold cross-validation
initialization seeds for FFN. Line color shows the suppression coefficient for fs, . In
c,d), the correlation between original and enhanced features is shown with increasing
A. The original and enhanced features are still highly correlated (r's > 0.9).

GOAL #2: Enhancement of a particular method Since the enhancement
attacks above transferred between models, we next investigated how enhance-
ment may be targeted to a specific model. Because there are countless numbers
of possible machine learning models, we selected three models to perform a case
study: linear SVM, LR, and a FFN. We demonstrated the hypothetical scenario
in which one may wish to perturb a dataset such that a FFN outperforms simpler
methods like linear SVM and LR.

For four-way classification in CNP, data were manipulated following Algo-
rithm [2]to promote the performance of a particular method over another. We con-
sider different enhancement scales A for the classifier of interest (i.e., fi=FFN)
and different suppression values 7 for the classifier which we do not wish to per-
form well (i.e., fa=SVM or LR). Despite no differences in the original dataset,
FFN outperformed SVM and LR (Fig[2h-b), while maintaining high feature sim-
ilarities (Fig —d). The performance on f> did generally increase, though less,
as performance on f; increased, but increasing the suppression coefficient 7 lim-
ited performance improvements of fo. Furthermore, attacks transferred between
SVM and LR. For f,=SVM, A\=0.5, and n=1, accuracies for SVM and LR were
36.9% and 43.1% vs. 81.3% for FFN. For f,=LR, A=0.5, and n=1, accuracies
for SVM and LR were 25.8% and 28.4% vs. 79.3% for FFN.

GOAL #3: Cross-dataset enhancement For cross-dataset enhancement, we
used binary classifiers of self-reported sex. Self-reported sex is suitable for cross-
dataset evaluations because it is widely available in many datasets. HCP was the
training dataset, and for our generalization dataset, we selected a random subset
of 100 participants from ABCD. Feature selection was performed to select the
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Fig. 3. a) Cross-dataset enhancement of LR, SVM, and FFN models for prediction of
self-reported sex, generalizing from HCP to ABCD. Up to 50 points were enhanced to
improve cross-dataset prediction accuracy with iterm,q.=20 and A=0.15 (Alg . Solid
lines show cross-dataset accuracy, and dashed lines show within-dataset accuracy. b-d)
Transferability of enhancement in SVM, LR, and FFN models to the other models.
Error bars show standard deviation across 10 random seeds to initialize the FFN.

top 10% most significantly different feature values in the training set. The FFN
used sigmoidal activations and had one hidden layer with 100 neurons. It was
trained with cross-entropy loss and a learning rate of 0.1. Both the model and the
back-gradient descent procedure ran for 400 iterations. The 50 training points
for which the model was least confident were perturbed sequentially. Average
correlations between original and enhanced data were 0.991, 0.996, and 0.985
for SVM, LR, and FFN. Generalization accuracy increased by at least 18% after
enhancement (Figure[3)), and enhancement was most effective for SVM. Although
accuracy should be monotonically increasing based on Algorithm[4] there was not
a monotonic increase due to the re-selection of the 10% most significant features
when evaluating the accuracy, which avoids leakage (i.e., different features may
be selected in the original and enhanced data). In addition, enhancement of cross-
dataset predictions did not affect within-dataset performance (dashed lines in
Figure [3)), making cross-dataset enhancement even more inconspicuous.

Furthermore, we investigated how cross-dataset enhancement attacks may
transfer to other models. Enhancement points were optimized on SVM (Figure
[BR), LR (Figure [3b), and FFN (Figure [3¢) and then evaluated with the other
two models. SVM and LR exhibited a moderate degree of transferability between
each other, but neither had strong transferability to FFN. However, the FFN-
optimized enhancement points did transfer to SVM and LR. Finally, using SVM
models as an example, we tested the sensitivity of cross-dataset enhancement
to the number of generalization samples. We randomly selected a subset of 100,
200, 400, or 800 generalization samples and repeated this ten times. The best
cross-dataset accuracies (standard deviations across random seeds in parenthe-
ses) after enhancing up to 100 training points were 0.983 (0.015), 0.961 (0.020),
0.896 (0.023), and 0.815 (0.016) for 100, 200, 400, and 800 generalization points,
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respectively. These ranged from 17% to 31% better than baseline values, and
enhancement effectiveness decreased with more generalization points.

4 Discussion

In this work, we first adapted enhancement attacks for classifiers, demonstrat-
ing that a four-way classification task went from near-chance performance to
over 99% accuracy while the original and enhanced data remained highly similar
(r > 0.99). We then enhanced the performance of a specific model over another.
In the best case, a FFN outperformed LR by up to 50% in the enhanced dataset,
despite no differences in original performance and high similarity between origi-
nal and enhanced data (r = 0.95). Finally, while cross-dataset generalization was
previously suggested as a possible way to mitigate data enhancement, we showed
that generalization accuracies could be enhanced from ~60% to ~80-100% while
changing at most 50 points in the training dataset.

Although our analysis was restricted to functional neuroimaging, these prob-
lems extend to the greater biomedical machine learning communities, where
many view data and code sharing as the panacea for trustworthiness. In ad-
versarial attacks, the attacker has only limited access to the model and data.
However, given the unrestricted access of the attacker in enhancement attacks,
the most reasonable defense is data provenance tracking, such as DataLad [12].
We recognize that most researchers would be ethically opposed to enhancing
their data. Yet, plenty of fraud occurs in scientific journals and clinical trials
[14], suggesting that enhancement attacks could become a problem in scientific
machine learning. Due to the feasibility of enhancement attacks, better data
provenance is necessary to ensure trustworthy biomedical machine learning.

Limitations We investigated enhancement only in functional neuroimaging.
Future work should expand these concepts to other disciplines. These other dis-
ciplines may have important differences, such as sample sizes or data dimension-
ality. In addition, future work should evaluate within-dataset enhancement of
more complex architectures. Finally, whether one complex architecture can be
enhanced over another with subtle differences (i.e., using method enhancement)
remains to be seen.
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