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Abstract 21 

Background: Emerging evidence suggests the potential mediating role of microbiome in health 22 

disparities. However, no analytic framework is available to analyze microbiome as a mediator between 23 

health disparity and clinical outcome, due to the unique structure of microbiome data, including high 24 

dimensionality, sparsity, and compositionality. 25 

Methods: Considering the modifiable and quantitative features of microbiome, we propose a microbial 26 

causal mediation model framework, SparseMCMM_HD, to uncover the mediating role of microbiome in 27 

health disparities, by depicting a plausible path from a non-manipulable exposure (e.g. race or region) to a 28 

continuous outcome through microbiome. The proposed SparseMCMM_HD rigorously defines and 29 

quantifies the manipulable disparity measure that would be eliminated by equalizing microbiome profiles 30 

between comparison and reference groups. Moreover, two tests checking the impact of microbiome on 31 

health disparity are proposed. 32 

Results: Through three body mass index (BMI) studies selected from the curatedMetagenomicData 3.4.2 33 

package and the American gut project: China vs. USA, China vs. UK, and Asian or Pacific Islander (API) 34 

vs. Caucasian, we exhibit the utility of the proposed SparseMCMM_HD framework for investigating  35 

microbiome’s contributions in health disparities. Specifically, BMI exhibits disparities and microbial 36 

community diversities are significantly distinctive between the reference and comparison groups in all 37 

three applications. By employing SparseMCMM_HD, we illustrate that microbiome plays a crucial role 38 

in explaining the disparities in BMI between races or regions. 11.99%, 12.90%, and 7.4% of the overall 39 

disparity in BMI in China-USA, China-UK, and API-Caucasian comparisons, respectively, would be 40 

eliminated if the between-group microbiome profiles were equalized; and 15, 21, and 12 species are 41 

identified to play the mediating role respectively. 42 



Conclusions: The proposed SparseMCMM_HD is an effective and validated tool to elucidate the 43 

mediating role of microbiome in health disparity. Three BMI applications shed light on the utility of 44 

microbiome in reducing BMI disparity by manipulating microbial profiles. 45 

Keywords: Casual mediation model; Health disparity; Manipulable disparity measure; Microbiome 46 

mediator; Non-manipulable exposure 47 

 48 

Background 49 

Health disparities refer to the inequalities in the quality of health, health care, and health outcomes 50 

experienced by groups that are usually classified by race, ethnicity, and region. Many factors, including 51 

genetics, social-economic status, culture, dietary habits, and geographical conditions, contribute to health 52 

disparities between groups. Researchers have long been interested in identifying the modifiable 53 

environmental determinants of health disparity to pave the way to improve health equity. However, 54 

environmental exposures are often numerous, ubiquitous, descriptive, or hard to measure, which makes 55 

this task difficult. 56 

Gut microbiome is the aggregate of all genomes harbored by gut microbiota, which is the collection of all 57 

microbes that reside in human gut. Benefiting from the advent of high throughput sequencing 58 

technologies, a great number of microbiome studies have been conducted to quantitatively characterize 59 

the microbiome profiling and understand its role in human health [1-4]. Gut microbiome has been closely 60 

linked with host metabolic, immune, and neuroendocrine functions [5-12]. On the other hand, many 61 

environmental and social factors, such as diet, drugs, lifestyle, psychological state and behavior, aid in 62 

shaping gut microbial profiles [13-16]. Recently, the mediating role of microbiome between these 63 

environmental exposures and various human diseases, including obesity, type 2 diabetes, inflammatory 64 

bowel disease, depression, and different cancers, has been investigated and recognized [17-22]. Given the 65 

modifiable and quantitative features of microbiome, we here aim to disentangle health disparities by 66 



exploring the extent of the observed disparity in the outcome of interest that could be reduced if the gut 67 

microbial profile was modified. In Figure 1, we propose a mediation framework to answer such questions. 68 

Here, the disparity group, e.g., race or region, is the exposure denoted by R; the gut microbial profile is 69 

the mediator denoted by M; and the continuous study outcome, e.g., body mass index (BMI), is denoted 70 

by Y. 71 

There are several existing mediation analysis frameworks tailored for non-manipulable exposures, such as 72 

race, region, sex or socioeconomic position [27], however, due to the unique structure of microbiome 73 

data, including high dimensionality, sparsity and compositionality, these approaches are not immediately 74 

applicable for analyzing microbiome as a mediator for health disparity. Recently, we developed a rigorous 75 

Sparse Microbial Causal Mediation Model (SparseMCMM) [12] for interrogating the mediating role of 76 

microbiome in a typical three-factor (randomized treatments, microbiome as mediator, and outcome) 77 

clinical trial causal study design. SparseMCMM quantifies the overall mediation effect of microbiome 78 

community and the component-wise mediation effect for each individual microbe under the 79 

counterfactual framework, identifies the signature causal microbes with regularization strategies, and tests 80 

the mediation effects while fully acknowledging the unique structure of microbiome data. In this paper, 81 

by extending SparseMCMM to a non-manipulable exposure setting, we propose a microbial causal 82 

mediation framework for health disparity study and denote it as SparseMCMM_HD (SparseMCMM for 83 

Health Disparity). As VanderWeele and Robinson [23] discussed, causal interpretation of a non-84 

manipulable exposure, i.e., ethnicity or region, is not definable in the traditional counterfactual 85 

framework, because a hypothetical intervention on a non-manipulable exposure is not possible. Instead, 86 

one can interpret the causality of health inequality by the hypothesized intervention effect on the 87 

manipulable mediating variable. Thus, in SparseMCMM_HD, we aim to quantify the overall health 88 

inequality on the outcome (called overall disparity), the health inequality effect that would be eliminated 89 

by equalizing microbiome profiles across racial or regional groups (called manipulable disparity), and the 90 

healthy inequality effect that would remain even after microbiome profiles across racial or regional 91 



groups were equalized (called residual disparity). In addition, we equip two hypothesis tests to examine 92 

the mediating role of microbiome in health disparity and statistically identify which specific microbes 93 

contribute to it. 94 

Obesity (defined via BMI) is a global epidemic and a persistent public health problem [24]. It is well 95 

documented that the prevalence of adult obesity is distributed unevenly across racial groups and regions. 96 

Partial effect of manipulable exposures such as diet, medication, and antibiotics use [17-19] on obesity 97 

has been shown to be mediated through microbiome. In addition, accumulating evidence indicates that gut 98 

microbial profile varies across ethnicities as well as geographically [25-27]. Together, these studies 99 

suggest that microbiome may play a mediating role in the ethnic or regional disparity of obesity. It is 100 

crucial to investigate rigorously how much health inequalities in BMI can be reduced by manipulating 101 

microbiome profiles. Utilizing SparseMCMM_HD, we investigate the role of microbiome in the regional 102 

and racial disparity of BMI in curated microbiome data from the curatedMetagenomicData 3.4.2 package 103 

[28] and the American Gut Project (AGP) (www.americangut.org) respectively. Through these real data 104 

analyses, we illustrate a clear and plausible causal path analysis to understand the current racial or 105 

regional disparity in BMI and identify a comprehensive set of mediating microbial taxa. The proposed 106 

analytic pipeline is available through an interactive web app at 107 

https://chanw0.shinyapps.io/sparsemcmm_hd/. We believe that this novel pipeline will be useful for 108 

investigating the manipulable disparity through gut microbiome and understanding the causes of health 109 

disparity. 110 

Methods 111 

SparseMCMM_HD framework 112 

Casual mediation model. Suppose there are 𝐼 subjects from two categories of a non-manipulable 113 

exposure group (e.g. race or region), 𝐽 taxa, and 𝐾 covariates. Subscripts 𝑖, 𝑗, 𝑘, indicate a subject, a 114 

taxon, and a covariate respectively. For the 𝑖th subject, let 𝑅𝑖 = 1 or 0 indicate the reference or 115 

http://www.americangut.org/


comparison group, let 𝑴𝑖 = (𝑀𝑖1, … , 𝑀𝑖𝐽)𝑇 be the microbiome relative abundance vector with the 116 

constraint ∑ 𝑀𝑖𝑗𝐽𝑗=1 = 1, and let 𝑿𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝐾)𝑇 represent the covariates, and let 𝑌𝑖 be a continuous 117 

outcome of interest. 118 

To statistically describe the causal relationships shown in Figure 1, following our previous work [12], we 119 

use the linear log-contrast model to regress the continuous outcome on the non-manipulable exposure, 120 

microbiome compositions, interactions between the non-manipulable exposure and microbiome 121 

compositions, while adjusting the confounding covariates: 122 

   
𝑌𝑖 = 𝛼0 + 𝛂𝑋𝑇𝑿𝑖 + 𝛼𝑅𝑅𝑖 + 𝛂𝑀𝑇 [log(𝑴𝑖)] + 𝛂𝐶𝑇[log(𝑴𝑖)]𝑅𝑖 + 𝜖𝑖,

subject to 𝛂𝑀𝑇 𝟏 = 0,and 𝛂𝐶𝑇𝟏 = 0,           (1)        123 

where 𝛼0 is the intercept, 𝛼𝑅 is the coefficient of the non-manipulable exposure, 𝛂𝑋 = (𝛼𝑋1, … , 𝛼𝑋𝐾)𝑇, 124 𝛂𝑀 = (𝛼𝑀1, … , 𝛼𝑀𝐽)𝑇, and 𝛂𝐶 = (𝛼𝐶1, … , 𝛼𝐶𝐽)𝑇 are the vectors of coefficients of covariates, microbiome 125 

compositions, interactions between the non-manipulable exposure and microbiome compositions, 126 

respectively. Due to the compositionality of microbiome data as ∑ 𝑀𝑖𝑗𝐽𝑗=1 = 1, 𝛂𝑀 and 𝛂𝐶 are subject to 127 𝛂𝑀𝑇 𝟏 = 0 and 𝛂𝐶𝑇𝟏 = 0. 𝜖𝑖 ∼ 𝑁(0, 𝜎2) is the error term. On the other hand, the Dirichlet regression [29] 128 

is used to model the microbial relative abundance as a function of the non-manipulable exposure and 129 

covariates: 130 

𝐸[𝑀𝑖𝑗] = 𝛾𝑗(𝑅𝑖,𝑿𝑖)∑ 𝛾𝑚𝐽𝑚=1 (𝑅𝑖,𝑿𝑖) ,
log{𝛾𝑗(𝑅𝑖, 𝑿𝑖)} = 𝛽0𝑗 + 𝛽𝑅𝑗𝑅𝑖 + 𝛃𝑋𝑗𝑇 𝑿𝑖.                                                     (2) 131 

Specifically, we assume that 𝑴𝑖|(𝑅𝑖, 𝑿𝑖) ∼ Dirichlet(𝛾1(𝑅𝑖, 𝑿𝑖), … , 𝛾𝐽(𝑅𝑖 , 𝑿𝑖)), and their microbial 132 

relative means are linked with the non-manipulable exposure and covariates (𝑅𝑖, 𝑿𝑖) in the generalized 133 

linear model fashion with a log link. 𝛽0𝑗 is the intercept and 𝛽𝑅𝑗 and 𝜷𝑋𝑗 are the coefficients of the non-134 

manipulable exposure and covariates for the 𝑗th taxon, respectively. 135 



Definition of disparity measures in the counterfactual framework. As discussed in the Background, 136 

we propose to conceptualize an overall disparity measure (ODM) on the outcome that can be decomposed 137 

into manipulable disparity measure (MDM) and residual disparity measure (RDM). MDM represents the 138 

portion of disparity that would be eliminated by equalizing microbiome profiles between comparison and 139 

reference groups, and RDM represents the portion that would remain even after microbiome profiles 140 

between comparison and reference groups were equalized. With the counterfactual notation, 141 

mathematically we have: 142 

 ODM = MDM + RDM, 143 

                                                    MDM = 𝐸[𝐸[𝑌𝑴𝒙(1)|𝑅 = 1, 𝒙]] − 𝐸[𝐸[𝑌𝑴𝒙(0)|𝑅 = 1, 𝒙]], and  144 

                                                    RDM = 𝐸[𝐸[𝑌𝑴𝒙(0)|𝑅 = 1, 𝒙] − 𝐸[𝑌𝑴𝒙(0)|𝑅 = 0, 𝒙]]. 145 

Here, 𝑴𝒙(0) (𝑴𝒙(1)) is a random value from the microbiome distribution of the reference (comparison) 146 

population with given covariates 𝒙. 𝑌𝒎 denotes an individual’s potential counterfactual outcome if his or 147 

her microbial mediators were set to 𝒎, where 𝒎 can be 𝑴𝒙(0) or 𝑴𝒙(1). 𝐸[𝑌𝑴𝒙(0)|𝑅 = 0, 𝒙] 148 

(𝐸[𝑌𝑴𝒙(1)|𝑅 = 1, 𝒙]) denotes the expected outcome for a reference (comparison) individual with given 149 

covariates 𝒙,  𝐸[𝑌𝑴𝒙(0)|𝑅 = 1, 𝒙] denotes the expected outcome for a comparison individual with given 150 

covariates 𝒙 if their microbial mediators were set to a random value from that of the reference population 151 

with the same covariates 𝒙. 152 

MDM, RDM, and ODM expressions. Two assumptions must be satisfied for the identification of MDM, 153 

RDM, and ODM [23, 30]. The effect of non-manipulable exposure R on outcome Y are unconfounded 154 

conditional on all covariates 𝑿, i.e., 𝑌 ∐ 𝑅 |𝑿 and the effects of mediator M on outcome Y are 155 

unconfounded conditional on the non-manipulable exposure R and all covariates 𝑿, i.e., 𝑌 ∐ 𝑴 |𝑅, 𝑿. 156 

With these sufficient identifiability assumptions and the models (1)-(2) proposed in the 157 

SparseMCMM_HD framework, disparity measures MDM, RDM, and ODM can be further expressed, 158 

respectively, as follows (see Section S1 for the detailed derivations):  159 



MDM = ∑(𝐽
𝑗=1 𝛼𝑀𝑗 + 𝛼𝐶𝑗){𝐸[log(𝑀𝑗)|𝑅 = 1, 𝒙] − 𝐸[log(𝑀𝑗)|𝑅 = 0, 𝒙]}, 160 

RDM =  𝛼𝑅 + 𝛂𝐶𝑇𝐸[log(𝑴)|𝑅 = 0, 𝒙] = 𝛼𝑅 + ∑ 𝛼𝐶𝑗𝐽
𝑗=1 𝐸[log(𝑀𝑗) |𝑅 = 0, 𝒙], 161 

and 162 ODM = MDM + RDM= 𝛼𝑅 + ∑(𝐽
𝑗=1 𝛼𝑀𝑗 + 𝛼𝐶𝑗)𝐸[log(𝑀𝑗)|𝑅 = 1, 𝒙] − ∑ 𝛼𝑀𝑗𝐽

𝑗=1 𝐸[log(𝑀𝑗)|𝑅 = 0, 𝒙], 163 

where 𝐸[log(𝑀𝑗)|𝑅 = 𝑟, 𝒙] = ψ[𝛾𝑗(𝑅 = 𝑟, 𝒙)] − ψ[∑ 𝛾𝑚(𝑅 = 𝑟, 𝒙)𝐽𝑚=1 ], 𝛾𝑗(𝑅 = 𝑟, 𝒙) =164 exp(𝛽0𝑗 + 𝛽𝑅𝑗𝑟 + 𝛃𝑋𝑗𝑇 𝒙), 𝑟 = 0 or 1, and ψ(∙) = 𝑑𝑑𝑥 ln(Γ(𝑥)) is the digamma function, with given 165 

covariates 𝒙.  166 

Note that these mathematical expressions of RDM and MDM are the same as the formulas of causal 167 

direct effect of treatment and mediation effect through microbiome correspondingly on the outcome in the 168 

typical three-factor causal design based on the traditional causal mediation inference, developed in our 169 

SparseMCMM [12]. Analogous to ME in SparseMCMM, MDM is the summation of individual mediation 170 

effects from each taxon 𝑀𝐷𝑀𝑗:  MDM ∶= ∑ 𝑀𝐷𝑀𝑗𝐽𝑗=1  and 𝑀𝐷𝑀𝑗 = (𝛼𝑀𝑗 + 𝛼𝐶𝑗){𝐸[log(𝑀𝑗)|𝑅 = 1, 𝒙] −171 𝐸[log(𝑀𝑗)|𝑅 = 0, 𝒙]}. 𝑀𝐷𝑀𝑗 thus is non-zero only when both the jth microbial effect on the outcome and 172 

the exposure effect on the jth taxon are not zero. Therefore, SparseMCMM_HD illuminates the mediating 173 

role of microbiome in the health disparity of outcome, and quantifies the manipulable disparity for overall 174 

microbiome community and for each specific taxon, respectively. 175 

Parameter estimation. Note that in [12], we have demonstrated the excellent performance of 176 

SparseMCMM in terms of estimation by extensive simulations and real data analysis in various scenarios.  177 

Thus for SparseMCMM_HD, we directly employ the same two-step procedure to estimate the regression 178 



parameters in models (1)-(2) to obtain the estimated RDM, MDM, 𝑀𝐷𝑀𝑗 for each taxon, and ODM. 179 

Furthermore, SparseMCMM_HD has the full capability to perform variable selection to select the 180 

signature causal microbes that play mediating roles in the disparity of the continuous outcome with 181 

regularization strategies. Specifically, L1 norm and group-lasso penalties are incorporated for variable 182 

selection meanwhile addressing the heredity condition. 183 

Hypothesis tests for manipulable disparity. Similarly, we employ the hypothesis tests for mediation 184 

effects in SparseMCMM to examine whether microbiome has any mediation effect on the disparity in an 185 

outcome, at both community and taxon levels. Specifically, regarding the null hypothesis of no 186 

manipulable disparity 𝐻0: MDM = 0, the first test statistic is defined as OMD=𝑀𝐷𝑀̂, the estimator of the 187 

manipulable disparity. Meanwhile, we consider another null hypothesis, 𝐻0: 𝑀𝐷𝑀𝑗 = 0, ∀ 𝑗 ∈ {1, ⋯ , 𝐽 } 188 

and define the second test statistic as CMD=∑ 𝑀𝐷𝑀̂𝑗2𝐽𝑗=1 , the summation of the squared estimators of 189 

individual mediation effects across all taxa. Permutation procedure is employed to assess the significance 190 

of these two test statistics. This provides a mechanism to check whether microbiome has any impact on 191 

health disparity that could be potentially eliminated through microbiome. 192 

Implementation. The simulation evaluation results regarding the estimation and testing of 193 

SparseMCMM [12] are applicable to SparseMCMM_HD framework. Therefore, the proposed 194 

SparseMCMM_HD is a validated analytic tool to illuminate the mediating role of microbiome in the 195 

disparity of outcome, and quantifies the manipulable disparity for overall microbiome community and for 196 

each specific taxon, respectively. In practice, we perform both parameter estimation and hypothesis 197 

testing using the analytical procedures in the SparseMCMM package and illustrate the proposed 198 

SparseMCMM_HD pipeline through an interactive web app 199 

(https://chanw0.shinyapps.io/sparsemcmm_hd/). 200 

https://chanw0.shinyapps.io/sparsemcmm_hd/


Control for confounding covariates 201 

Due to the non-manipulable nature of the exposure in health disparity research, in principle, it is 202 

impossible to design a randomized trial on the exposure of interest to eliminate the potential confounding 203 

effect on the interested causal pathway. Many studies on health disparity are observational and usually 204 

include significant degrees of confounding, due to factors such as lifestyle, health status, and disease 205 

history. We want to emphasize that it is a necessary step to control for confounding covariates while 206 

utilizing the proposed SparseMCMM_HD to estimate RDM, MDM, and ODM in a typical observational 207 

study. Specifically, we propose to perform propensity score matching (PSM) [31], which is a commonly 208 

used method in biomedical research to create a balanced covariate distribution between two groups, to 209 

control confounding covariates in our applications (see Section S2). Standardized mean difference (SMD) 210 

is used to evaluate the balance of the covariate distributions between groups. A SMD that is less than 0.1 211 

indicates a balanced distribution [32]. The matched data will then be used to quantify RDM, MDM, and 212 

ODM, and examine whether the microbiome could reduce the health disparity between two non-213 

manipulable exposure groups. The control for confounding covariates procedure has been included as a 214 

preprocessing step in the proposed SparseMCMM_HD analytic pipeline. 215 

curatedMetagenomicDataV3.4.2  216 

The curatedMetagenomicData 3.4.2 package [28] provides a curated human microbiome meta dataset 217 

aggregated from 86 shotgun sequencing cohorts in 6 body sites. The raw sequencing data were processed 218 

using the same bioinformatics protocol and pipelines. Each sample has 6 types of data available including 219 

gene family, marker abundance, marker presence, pathway abundance, pathway coverage, and taxonomic 220 

(relative) abundance. The taxonomic abundance was calculated with MetaPhlAn3, and metabolic 221 

functional potential was calculated with HUMAnN3. The manually curated clinical and phenotypic 222 

metadata are available as well. More details can be found in the curatedMetagenomicData package 223 

document [28]. Here we focus on healthy subjects to explore the relationship among region, microbiome, 224 

and BMI. Specifically, we chose subjects from all cohorts based on the following inclusion criteria: 1) 225 



healthy status; 2) no missing values in BMI, gender, and age; 3) age ≥ 18; 4) no pregnant; 5) currently no 226 

antibiotic use; 6) currently no alcohol consumption; 7) no smoking; and 8) fecal sample with more than 227 

1,250 sample reads. In addition, when multiple samples available for a subject, we randomly selected one 228 

sample. Overall, we identified 4,868 healthy adults from different regions. Here we further focus on three 229 

regional groups which have large sample sizes:  China (n=570), United States (USA; n=350), and United 230 

Kingdom (UK; n=1019) for the analysis in the main text. Specifically, we conducted two comparison 231 

studies: China-USA and China-UK comparisons to investigate the regional difference of BMI in the 232 

China group compared to the USA and UK groups, respectively. 233 

American Gut Project  234 

The AGP project is a crowd-sourcing citizen science cohort to describe the comprehensive 235 

characterization of human gut microbiota and to identify factors being linked to human microbiota. The 236 

AGP includes 16S rRNA V4 gene sequences from more than 8,000 fecal samples using standard 237 

pipelines, and host metadata. Detailed descriptions can be found in Liu et al. and Hu et al. [1, 33]. Our 238 

primary investigation is on the disparity of BMI between Asian or Pacific Islander (API) and non-239 

Hispanic Caucasian adults. We selected a subset of the AGP data based on the following inclusion 240 

criteria: 1) USA resident; 2) Asian or Pacific Islander or Caucasian race; 3) no missing values in gender, 241 

age, and BMI; 4) age ≥ 18; 5) 80 ≥ BMI; 6) 210cm ≥ height ≥  80cm; 7) 200kg ≥ weight ≥  35kg; 8) 242 

fecal sample with more than 1,250 sample reads; 9) not duplicate sample; and 10) no self-reported history 243 

of  inflammatory bowel disease, diabetes, or antibiotic use in the past year. The subjects are filtered out 244 

when the reported BMIs are not consistent with the calculated BMI based on the reported heights and 245 

weights, i.e. (|BMIreported − BMIcalculated| BMIcalculated⁄ > 5%). A dataset with 130 API and 2,263 246 

Caucasian adults then is used in this paper (Figure S1a). 247 

Statistical Analysis 248 

Data pre-processing and PSM were conducted in three BMI studies. Specifically, for the China-USA and 249 

China-UK comparisons, we performed PSM with the parameters described in Section S2 to control for age 250 



and gender. For the API-Caucasian comparison, as the AGP includes more than 400 covariates that were 251 

collected through self-reported surveys, we first implemented several pre-processing steps to prepare the 252 

self-reported covariates for the subsequent analysis, including cleaning up the inconsistent definition of 253 

variables, and collapsing the sparse categorical variables into fewer and less sparse categories. Details are 254 

provided in Section S3. Forty-four covariates were retained for PSM. We performed univariate linear 255 

regressions to identify the potential confounding variables for the relationship among race, microbiome, 256 

and BMI. Twenty-three covariates (p-value ≤ 0.05; Figure S1b) were identified as confounders that need 257 

to be controlled further based on PSM. 258 

With the matched data, alpha (Observed, Shannon, and Simpson indices) and beta diversities (Bray–Curtis 259 

dissimilarity and Jensen–Shannon divergence) were used to estimate microbial community-level diversity. 260 

T tests were used for group comparisons of BMI and alpha diversity. Permutational multivariate analysis 261 

of variance (PERMANOVA) [34] was used to assess group difference of beta diversity. We performed the 262 

proposed SparseMCMM_HD framework at the species rank (Section S4) to quantify RDM, MDM, and 263 

ODM, and examine whether the microbiome could explain the health disparity between two non-264 

manipulable exposure groups. The proposed SparseMCMM_HD pipeline was implemented through an 265 

interactive web app (https://chanw0.shinyapps.io/sparsemcmm_hd/) for easy exploration. 266 

Results 267 

Results for curatedMetagenomicDataV3.4.2  268 

Matched datasets. With the healthy adults included in the China-USA and China-UK comparisons, we 269 

identified 328 matched Chinese-USA subject pairs, and 559 matched Chinese-UK subject pairs, 270 

separately. Figures S2 and S3 show that both matched datasets have comparable propensity scores. The 271 

SMDs decrease dramatically on the matched subjects (SMD=0.036 and 0.033), from using all subjects 272 

(SMD=0.302 and 0.470) in both China-USA and China-UK datasets. This indicates that PSM has 273 

effectively evened the distribution of confounders between two exposure groups in our studies and 274 

https://chanw0.shinyapps.io/sparsemcmm_hd/


practically eliminated or controlled the influence of the confounders. In the well-matched datasets, the 275 

China group still has significantly lower average BMIs compared to the matched USA (mean [standard 276 

deviation]: 22.64 [3.77] vs. 25.77 [4.56]) and the matched UK (22.98 [4.48] vs. 25.77 [4.79]) groups 277 

(Figure 2a and 2d). 278 

Community level results. The Chinese group has distinctive microbial community diversities, compared 279 

to the matched USA or UK group. For alpha diversity, samples from China have lower Shannon and 280 

Simpson diversities and a higher observed diversity than the matched USA or UK samples (Figure 2b and 281 

2e). For beta diversity, Bray-Curtis dissimilarity and Jensen-Shannon divergence both indicate that the 282 

Chinese group is significantly different in community structure from the matched USA or UK groups 283 

(PERMANOVA [34] all p-values < 1.0 × 10−4. Figure 2c and 2f). 284 

Taxon-level analysis. After implementing the filtering criteria described in Section S4, 25 species 285 

remained in both matched datasets (China vs. USA and China vs. UK). The testing results for OMD and 286 

CMD show that the overall and component-wise MDMs through microbiome are significant in both data 287 

sets for regional differences in BMI (all p-values<0.001 based on 1,000 permutations). Figure 3a shows 288 

that the ODM of BMI are 3.17 and 2.79, respectively, for the matched Chinese and USA subjects, and the 289 

matched Chinese and UK subjects; the corresponding MDMs due to microbiome are 0.38 and 0.36. These 290 

results suggest that 11.99% and 12.90% of the disparity in BMI between the Chinese and matched USA 291 

and UK groups, respectively, would be eliminated if the between-group microbiome profiles were 292 

equalized. 293 

Significant CMD testing results show that there is at least one species playing a mediating role in the 294 

disparity of BMI  between Chinese and USA subjects, and Chinese and UK subjects. Figure 3b reports 15 295 

species and 21 species further identified by SparseMCMM_HD, with the point and 95% confidence 296 

interval (CI) estimates for their mediation effects on the regional differences of BMI between China and 297 

USA, and between China and UK, respectively. Among the twelve overlapping species identified in both 298 

matched datasets (Figure 3b and 3c), five species— Anaerostipes hadrus, Bacteroides plebeius, 299 



Bacteroides thetaiotaomicron, Bacteroides uniformis, and Escherichia coli—play consistent positive 300 

mediating roles in regional disparity in BMI for Chinese compared to USA subjects, and for Chinese 301 

compared to UK subjects. The relative evaluation of these five species in terms of their relative 302 

abundances (Figure 4a) and their associations with BMI (Figure 4b) are quite similar between two 303 

independent studies: China-USA comparison and China-UK comparison, which validates their mediating 304 

roles in the regional disparity on BMI. Confirming with the published studies, B. plebeius, B. 305 

thetaiotaomicron, and B. uniformis belong to the same genus Bacteroides, and all play important roles in 306 

human metabolism and have been linked with diet-induced obesity, by improving whole-body glucose 307 

disposal, promoting lipid digestion and absorption, and degrading host-derived carbohydrates [35-38]. B. 308 

thetaiotaomicron also possesses glycine lipid biosynthesis pathway (Figure S4). A. hadrus, and E. coli 309 

also have been reported by multiple studies that they contribute to or are associated with the BMI or 310 

obesity [39-41]. On the other hand, 12 species play mediating roles in BMI but with the opposite 311 

directions between China-USA comparison and China-UK comparison, that reflects the distinguishing 312 

characteristics between USA and UK (Figure S5). This is not surprising considering the microbial profile 313 

is inherently dynamic and racially or geographically specific. Moreover, there are three and nine unique 314 

species identified in the China-USA and China-UK comparisons respectively (Figures S6 and S7). Most 315 

of these study-specific species have been reported being associated with BMI, obesity or metabolic 316 

disorders [41-50]. Notably, Anaerostipes hadrus, Fusicatenibacter saccharivorans, Lachnospira 317 

pectinoschiza, and Roseburia inulinivorans belong to family Lachnospiraceae (Figure 5d), which is 318 

related to metabolic syndrome and obesity and  whose controversial role has been discussed across 319 

different studies [51].  320 

Results for AGP 321 

Matched dataset. After performing PSM, as described in Section S2, 98 Caucasians and 98 APIs are 322 

matched. Figures S8 and S9 show that the matched Caucasians and APIs have very similar propensity 323 

scores (SMD=0.005 for the matched subjects vs. SMD=1.033 for the raw subjects), indicating that the 324 



confounding effects are well controlled. With this well-matched dataset, Figure 5a shows that the 325 

Caucasian group has a significantly higher BMI (23.96 [3.92]), compared to the API group (22.38 [3.59]), 326 

as observed in the other studies [52, 53]. 327 

Community level results. Caucasians and APIs have distinct microbial profiles in terms of community 328 

diversity. For alpha diversity, Caucasians have higher microbial richness and evenness as measured by 329 

Observed, Shannon, and Simpson diversities (p-value = 3.1 × 10−5, 1.5 × 10−4, and 3.9 × 10−3, 330 

respectively. Figure S10a). For Beta diversity, Bray-Curtis dissimilarity and Jensen-Shannon divergence 331 

both show that Caucasian samples have different community structures compared to API samples 332 

(PERMANOVA p-value=0.0036 and 0.0012, respectively. Figure S10b). 333 

Taxon-level analysis. The above community level results indicate that the microbiome may play a 334 

mediating role in the racial diversity of BMI. To investigate this assumption, we perform the proposed 335 

SparseMCMM_HD on this matched dataset. With the filtering criteria described in Section S4, 28 species 336 

are included in the following taxon-level analysis. 337 

We found that the ODM of BMI between Caucasians and APIs is 1.63 (Figure 5b). Microbiome plays a 338 

significant role in mediating the racial disparity of BMI indicated by the test results of both OMD (p-339 

value=0.038) and CMD (p-value=0.048). The microbial manipulable disparity measure MDM is 0.12. 340 

This suggests that the difference of microbiome profiles contributes to 7.4% of ODM, which would be 341 

eliminated if the microbiome profiles between the Caucasians and APIs were identical.  342 

We further identified 12 species playing mediating roles in the racial disparity of BMI between the 343 

Caucasians and APIs (Figure 5c). Eight species ([Ruminococcus] gnavus, Faecalibacterium prausnitzii, 344 

Bacteroides uniformis, [Eubacterium] biforme, Bacteroides fragilis, Prevotella copri, Bacteroides ovatus, 345 

Haemophilus parainfluenzae) mediate positively on the racial disparity of BMI, meanwhile, four species 346 

(Bifidobacterium adolescentis, Bacteroides plebeius, Parabacteroides distasonis, Staphylococcus aureus) 347 

play negative mediating roles. Remarkably, there are six common species B. ovatus, B. plebeius, B. 348 



uniformis, B. adolescentis, F. prausnitzii, P. distasonis, and P. copri identified by both comparisons: 349 

China-USA and China-UK illustrated in the previous subsection (Figure 5d). Literature reveals that all 350 

identified species are associated with the BMI or obesity [41-49]. 351 

Collectively, the findings in the matched China vs. USA, China vs. UK, and API vs. Caucasian datasets 352 

show that the microbiome is an important mediator in the regional or racial disparity of BMI and they 353 

substantially shed light on how to reduce the disparity of BMI. The identified microbial agents can be 354 

used as the potential therapeutic target for the treatment based on microbiota modulation in the future.   355 

Discussion   356 

The emerging evidence highlights the potential ofmicrobiome in understanding health disparity. In this 357 

paper, we proposed a mediation analytical framework, SparseMCMM_HD, to investigate the 358 

microbiome’s role in health disparity. Considering a health disparity framework with three components: 359 

non-manipulable exposure (e.g. race or region), microbiome as mediator, and outcome, the proposed 360 

SparseMCMM_HD deciphers the overall health disparity of the non-manipulable exposure on the 361 

outcome into two components: MDM that would be eliminated by equalizing microbiome profiles and 362 

RDM that would remain and could not be explained through microbiome. Remarkably, MDM paves a 363 

viable path towards reduction of health disparity with microbial modulation. Similar to SparseMCMM, 364 

SparseMCMM_HD can be used to identify the signature causal microbes and examine whether the 365 

overall or component-wise MDM is significantly non-zero. 366 

It is vital to control confounding effects beforehand in the real data analysis to satisfy the identifiability 367 

assumptions of the proposed SparseMCMM_HD. In three BMI applications, we first employed PSM to 368 

remove the confounding effects by selecting matched subsets in which the distributions of confounders 369 

were notably comparable between two exposure groups, and then performed the proposed 370 

SparseMCMM_HD framework. The utilization of SparseMCMM_HD in two datasets, the 371 

curatedMetagenomicData 3.4.2 package and the AGP dataset, depicts an explicit causal path among 372 



region or race, microbiome, and BMI. These findings confirm not only that microbiome is differentially 373 

distributed across races or regions, but also that the differential microbiome profile contributes to the 374 

disparities in BMI across races or regions. The identified microbial signatures potentially aid in 375 

developing personalized medication or nutrition to reduce obesity disparity. 376 

It is not surprising that the proportion of disparities in BMI explained by the microbiome profiles is not 377 

large (~10%) in all three applications, due to the heritable and polygenic nature of BMI [54, 55].  Further 378 

investigations to integrate the microbiome profile and genetic factors are necessary to better understand 379 

disparity in BMI. However, we here emphasize that the proposed SparseMCMM_HD is a rigorous and 380 

validated causal mediation framework and has preeminent potential to identify the microbiome’s roles in 381 

much broader health disparity studies. 382 

Recently, several other microbial mediation methods have been proposed, such as CMM [56], MedTest 383 

[57], Zhang, et al. [58],  LDM-med [59], and MarZIC [60], in a typical three-factor (manipulable 384 

exposure, microbiome as mediator, and outcome) study design. Considering distinct model assumptions 385 

and characteristics, a few recent benchmark studies [12, 56-60] show that there is no method performing 386 

consistently and accurately better than others in all circumstances. However, since the assumptions for 387 

model identification in health disparity are weaker than those for the causal mediation effects in the 388 

manipulable exposure-mediator-outcome framework [23], it is expected that the idea of how the proposed 389 

SparseMCMM_HD framework rigorously defines, quantifies, and tests health disparity measures as an 390 

extension of SparseMCMM [12] can provide insight into extending these available mediation models to 391 

investigate the microbiome’s role in health disparity. Then, a useful path forward will be to mutually 392 

employ these multiple and complimentary methods to better characterize the microbiome’s role in health 393 

disparity by capitalizing their distinct assumptions and strengths. 394 

Our study has several limitations. First, similar to discussions in SparseMCMM [12], SparseMCMM_HD 395 

takes microbiome data at a fixed time point into the proposed frame and is limited to accommodate the 396 

dynamic nature of microbiome. Second, the proposed SparseMCMM_HD currently deals with disparity 397 



in a continuous outcome. Given the fact that multiple binary or categorical outcomes are 398 

disproportionately prevalent across races or regions [61-63], it will be worthwhile to extend the current 399 

framework to handle categorical outcomes. Third, microbiome studies typically characterize both 400 

taxonomic and functional profiles of microbial communities. Functional profile is generally thought to be 401 

more closely linked with human health and disease. Identifying the role of microbiome in terms of gene 402 

function in health disparity is of high practical value [64]. 403 

Conclusions 404 

This paper elucidates the role of microbiome in health disparity by providing a causal mediation analytic 405 

framework for investigating the relationship among race or region, microbiome, and outcome under the 406 

counterfactual framework. The proposed SparseMCMM_HD framework is a useful tool to investigate the 407 

underlying biological mechanism of health disparity and disentangles the substantial contributions of 408 

microbiome to health disparity. The applications of SparseMCMM_HD in the disparity of BMI across 409 

races and regions uncover the microbial mediating roles in reducing the disparities of BMI and improving 410 

health equality. 411 
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 622 

Figure 1. Microbiome (M) may play a mediating role in the health disparity of the continuous outcome 623 

(Y) between two categories of a non-manipulable exposure group (e.g. race or region) (R). We aim to 624 

investigate how much disparity of the outcome Y can be reduced by manipulating microbiome profiles. 625 

 626 

Figure 2. Association analyses in two matched datasets from the curatedMetagenomicData package [28]. 627 

a Violin plots of BMI in matched Chinese vs. USA subjects. b Violin plots of alpha diversities (Observed, 628 

Shannon, and Simpson indices) in matched Chinese vs. USA samples. c PCoA plots using Bray–Curtis 629 

dissimilarity and Jensen–Shannon divergence in matched Chinese and USA samples. d Violin plots of 630 

BMI in matched Chinese vs. UK subjects. e Violin plots of alpha diversities (Observed, Shannon, and 631 

Simpson indices) in matched Chinese and UK samples. f PCoA plots using Bray–Curtis dissimilarity and 632 

Jensen–Shannon divergence in matched Chinese vs. UK samples. 633 

 634 

Figure 3. Health disparity analyses in two matched datasets from the curatedMetagenomicData package 635 

[28]. a Manipulable disparity measure (MDM) and residual disparity measure (RDM) of BMI in the 636 

China-USA comparison and China-UK comparison, respectively. b Component-wise point and 95% CI 637 

estimates of 𝑀𝐷𝑀𝑗 for the identified species that have mediation effects on the differences of BMI 638 

between matched Chinese vs. USA subjects and between matched Chinese vs. UK subjects, respectively. 639 

95% CI estimates of 𝑀𝐷𝑀𝑗 were calculated by bootstrapping procedure, and the number of bootstrapping 640 

is 50. c Venn diagram to show the relationship of the species playing mediation effects in the disparity of 641 

BMI among China-USA, China-UK, and API-Caucasian comparisons. API: Asian or Pacific Islander. 642 

 643 

Figure 4. Five species who play positive mediation roles in the disparity of BMI in both China-USA and 644 

China-UK comparisons. a Violin plots illustrating the relative abundances of these five identified species 645 

in the matched Chinese and USA samples, and the matched Chinese and UK samples, respectively. b 646 

Scatterplots of BMI and the relative abundances of these five identified species in the matched Chinese 647 

and USA subjects, and the matched Chinese and UK subjects, respectively. 648 

 649 

Figure 5. Health disparity analyses in the matched APIs and Caucasians from the AGP dataset. a Violin 650 

plots of BMI in the matched APIs and Caucasians from the AGP dataset. b MDM and RDM of BMI in 651 

the API- Caucasian comparison. c Component-wise point and 95% CI estimates of 𝑀𝐷𝑀𝑗 for the 652 

identified species that have mediation effects on the differences of BMI between matched APIs and 653 

Caucasians from the AGP dataset. 95% CI estimates of 𝑀𝐷𝑀𝑗 were calculated by bootstrapping 654 

procedure, and the number of bootstrapping is 50. d The taxonomic relationship of the species playing 655 

mediation effects in the disparity of BMI among China-USA, China-UK, and API-Caucasian 656 

comparisons. The tree figure was generated by Metacoder [65]. From the outer to the center, taxonomic 657 

ranks are species, genus, family, order, class, phylum, and kingdom (Bacteria), respectively. For each 658 



species, color represents the number of comparisons that identify it among China-USA, China-UK, and 659 

API-Caucasian comparisons. APIs: Asian or Pacific Islanders. 660 
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Additional file 1: Section S1 Derivations for MDM and RDM expressions. 664 

Section S2 Propensity score matching (PSM). 665 

Section S3 Metadata curation in the AGP. 666 

Section S4 Taxon-level alignment. 667 

 668 

Additional file 2: Figure S1. Flowcharts for data pre-processing in the AGP dataset. a Pre-processing for 669 

all covariates. b The sample breakdown for the disparity analysis. 670 

Figure S2. Plots of standardized mean differences before and after propensity score matching for the 671 

datasets from the curatedMetagenomicData package [28]. a Comparison between Chinese and USA 672 

subjects. b Comparison between Chinese and UK subjects. 673 

Figure S3. Histogram plots of propensity score before and after propensity score matching for the 674 

datasets from the curatedMetagenomicData package [28]. a Comparison between Chinese and USA 675 

subjects. b Comparison between Chinese and UK subjects. 676 

Figure S4. Glycine lipid biosynthesis pathway generated based on MetaCyc database 677 

(https://metacyc.org/). The gene from B.thetaiotaomicro is located in an operon together with a second 678 

gene, glsA, which encodes the second enzyme of the pathway, an O-acyltransferase that forms the 679 

diacylated compound. 680 

Figure S5. The species with opposite mediation directions in the disparity of BMI between China-USA 681 

and China-UK comparisons. a Violin plots illustrating the relative abundances of these identified species 682 

in the matched Chinese and USA samples, and the matched Chinese and UK samples, respectively. b 683 

Scatterplots of BMI and the relative abundances of these identified species in the matched Chinese and 684 

USA samples, and the matched Chinese and UK samples, respectively.  685 

Figure S6. The species playing mediation roles in the disparity of BMI in the comparison between 686 

Chinese and USA subjects only. a Violin plots illustrating the relative abundances of these identified 687 

species in the matched Chinese and USA samples. b Scatterplots of BMI and the relative abundances of 688 

these identified species in the matched Chinese and USA samples. 689 

Figure S7. The species playing mediating roles in the disparity of BMI in the comparison between 690 

Chinese and UK subjects only. a Violin plots illustrating the relative abundances of these identified 691 

species in the matched Chinese and UK samples. b Scatterplots of BMI and the relative abundances of 692 

these identified species in the matched Chinese and UK samples. 693 

Figure S8. Plots of standardized mean differences before and after propensity score matching for the 694 

comparison between the API and Caucasian samples from the AGP dataset. API: Asian or Pacific 695 

Islander. 696 

Figure S9. Histogram plots of propensity score before and after propensity score matching for the 697 

comparison between the API and Caucasian samples from the AGP dataset. API: Asian or Pacific 698 

Islander. 699 
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Figure S10. Association analyses in the AGP dataset. a Violin plots of alpha diversities including 700 

Observed, Shannon, and Simpson indices in the matched API and Caucasian samples. b PCoA plots using 701 

Bray–Curtis dissimilarity and Jensen–Shannon divergence in the matched API and Caucasian samples. 702 

API: Asian or Pacific Islander. 703 



Figures

Figure 1

Microbiome (M) may play a mediating role in the health disparity of the continuous outcome (Y) between
two categories of a non-manipulable exposure group (e.g. race or region) (R). We aim to investigate how
much disparity of the outcome Ycan be reduced by manipulating microbiome pro�les.



Figure 2

Association analyses in two matched datasets from the curatedMetagenomicData package [28]. a Violin
plots of BMI in matched Chinese vs. USA subjects. b Violin plots of alpha diversities (Observed, Shannon,
and Simpson indices) in matched Chinese vs. USA samples. c PCoA plots using Bray–Curtis dissimilarity
and Jensen–Shannon divergence in matched Chinese and USA samples. d Violin plots of BMI in
matched Chinese vs. UK subjects. e Violin plots of alpha diversities (Observed, Shannon, and Simpson
indices) in matched Chinese and UK samples. f PCoA plots using Bray–Curtis dissimilarity and Jensen–
Shannon divergence in matched Chinese vs. UK samples.



Figure 3

Health disparity analyses in two matched datasets from the curatedMetagenomicData package [28]. a
Manipulable disparity measure (MDM) and residual disparity measure (RDM) of BMI in the China-USA
comparison and China-UK comparison, respectively. b Component-wise point and 95% CI estimates of
   MDMj                  for the identi�ed species that have mediation effects on the differences of BMI between
matched Chinese vs. USA subjects and between matched Chinese vs. UK subjects, respectively. 95% CI
estimates of    were calculated by bootstrapping procedure, and the number of bootstrapping is 50. c
Venn diagram to show the relationship of the species playing mediation effects in the disparity of BMI
among China-USA, China-UK, and API-Caucasian comparisons. API: Asian or Paci�c Islander.



Figure 4

Five species who play positive mediation roles in the disparity of BMI in both China-USA and China-UK
comparisons. a Violin plots illustrating the relative abundances of these �ve identi�ed species in the
matched Chinese and USA samples, and the matched Chinese and UK samples, respectively. b
Scatterplots of BMI and the relative abundances of these �ve identi�ed species in the matched Chinese
and USA subjects, and the matched Chinese and UK subjects, respectively.

Figure 5



Health disparity analyses in the matched APIs and Caucasians from the AGP dataset. a Violin plots of
BMI in the matched APIs and Caucasians from the AGP dataset. b MDM and RDM of BMI in the API-
Caucasian comparison. c Component-wise point and 95% CI estimates of     MDMj                 for the
identi�ed species that have mediation effects on the differences of BMI between matched APIs and
Caucasians from the AGP dataset. 95% CI estimates of    were calculated by bootstrapping procedure,
and the number of bootstrapping is 50. d The taxonomic relationship of the species playing mediation
effects in the disparity of BMI among China-USA, China-UK, and API-Caucasian comparisons. The tree
�gure was generated by Metacoder [65]. From the outer to the center, taxonomic ranks are species, genus,
family, order, class, phylum, and kingdom (Bacteria), respectively. For each species, color represents the
number of comparisons that identify it among China-USA, China-UK, and API-Caucasian comparisons.
APIs: Asian or Paci�c Islanders.
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