Skip to main content
. 2023 Jan 27. Online ahead of print. doi: 10.1016/j.imed.2023.01.001

Algorithm 3.

Weight optimization fitness function.

input the individual x
begin
1. partition the training data T into 4 equal
   partitions Tj, j = 1 . . . 4
2. S = 0
3. forj = 1 4 do
   begin
4.  train the base learners with T − Tj
5.  test the base learners with Tj
6.  use the weights in x to aggregate the base learners
   and store the number of correctly classifified cases in s
7.  S = S + s
   end
8. returnS
end