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Abstract

There is a growing demand for methods to determine the effects that chemical mixtures have 

on human health. One statistical challenge is identifying true “bad actors” from a mixture of 

highly correlated predictors, a setting in which standard approaches such as linear regression 

become highly variable. Weighted Quantile Sum (WQS) regression has been proposed to address 

this problem, through a two-step process where mixture component weights are estimated using 

bootstrap aggregation in a training dataset and inference on the overall mixture effect occurs in a 

held-out test set. WQS is popular in applied papers, but the reliance on data splitting is suboptimal, 

and analysts who use the same data for both steps risk inflation of the nominal Type I error rate. 

We therefore propose a modification of WQS that uses a permutation test for inference, which 

allows for weight estimation using the entire dataset and preserves Type I error. To minimize 

computational burden, we propose replacing the bootstrap with L1 or L2 penalization and describe 

how to choose the appropriate penalty given expert knowledge about a mixture of interest. We 

apply our method to a national pregnancy cohort study of prenatal phthalate exposure and child 

health outcomes.
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Introduction

A growing number of U.S. federal agencies have called for research on chemical 

mixtures and how they affect human health1–3. Such mixtures have applications throughout 

environmental epidemiology, from air pollution to phthalates, a family of endocrine-

disrupting chemicals found in plastics4. The concept of a multi-pollutant approach is 

relatively new5, as is the idea of an exposome, a complement to the genome that is defined 

as the totality of a person’s environmental and lifestyle exposures from the prenatal period 

onward6. Thus, there is a need for novel statistical methods to evaluate the health impacts of 

mixtures of individual exposures. An additional goal of mixture analysis is to identify “bad 

actors,” that is, the most harmful components, which can inform regulatory decisions, as it 

may be impractical to ban an entire class of compounds.

Statistical difficulties arise because environmental exposures are often highly correlated. 

We have observed this problem firsthand in data from The Infant Development and 

Environment Study (TIDES), a national, multicenter pregnancy cohort study focused on 

prenatal phthalate exposure and child health outcomes. In TIDES, pairwise correlations 

between log-transformed urinary phthalate metabolites range from 0.04 to 0.98. Previous 

analyses with the TIDES data have dealt with this by fitting separate models for each 

phthalate metabolite, a common approach in the phthalate literature 7,8. This method avoids 

the problem of unexpected sign changes in coefficients due to collinearity, but clearly, 

considering chemicals one at a time cannot lead to conclusions about simultaneous exposure 

or potential interactions, and results could still be spurious if one chemical is serving as 

a proxy for another. More sophisticated variable selection methods are also challenged in 

the presence of collinearity. The least absolute shrinkage and selection operator (lasso), for 

example, tends to select one representative component at random from a correlated mixture, 

while the elastic net will select all or none of the correlated components9.

Several methods have been proposed for variable selection and effect estimation in the 

context of multiple chemical exposures10,11. One popular choice in applied papers is 

Weighted Quantile Sum (WQS) regression, which has been cited more than 150 times since 

its publication in 201412, in journals such as Nature13 and JAMA14. In WQS, the linear 

predictor is reformulated as a weighted sum of exposures, where a variable is selected if its 

estimated weight surpasses a pre-determined threshold. To prevent over-fitting, weights are 

estimated repeatedly via maximum likelihood in bootstrap datasets, then averaged in such a 

way that the bootstrap datasets with higher signal have more influence on the final estimates. 

Ideally, this occurs in a training dataset, and significance testing of the overall mixture effect 

is performed on a held-out test set. The WQS framework is appealing and flexible, but this 

reliance on data splitting can be suboptimal as it necessarily reduces the sample size for both 

estimation and testing. This is why, in practice, analysts often perform both estimation and 

testing on a single dataset14,15, which inflates the Type I error rate. Clearly, analysts working 

with chemical mixtures could benefit from a method that is similar to WQS in form but does 

not require data to be split for valid inference.

In this paper, we introduce a modified version of WQS regression that allows for the entire 

dataset to be used both when estimating mixture component weights and when testing the 
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overall mixture effect. We show via simulation studies that, by replacing the standard t-test 

for the overall mixture coefficient with a permutation test, one can preserve Type I error 

across a variety of predictor correlation settings. To offset the added computational burden 

of a permutation test, we replace the WQS bootstrap with optional L1 or L2 penalization 

and leave the choice of penalty (L1 versus L2) in the hands of the researcher, who can 

use her expert knowledge about a particular chemical mixture to decide. The L1 penalty 

is generally optimal when only a few of the mixture components are bad actors, while L2 

penalization performs better when many or all of the mixture components are associated 

with the outcome. We conduct extensive simulation studies to compare our method with 

WQS and standard linear regression on metrics such as sensitivity and specificity of variable 

selection, empirical Type I error rates, estimation bias, and precision. We apply our method 

to the TIDES dataset in an analysis of first-trimester maternal phthalate concentrations and 

anogenital distance in male infants.

Methods

Notation and preliminaries

For i = 1, …, n, let yi be a continuous outcome, xi a p × 1 vector of chemical exposures from 

a mixture of interest, and zi an m × 1 vector of non-mixture covariates. Our mean model, 

which comes from Weighted Quantile Sum (WQS) regression12, is

μi = β0 + β1 ∑
j = 1

p
wjxij + ∑

k = 1

m
ψkzik, (1)

where μi = E(yi|xi, zi), β0 is the intercept, β1 is the overall mixture effect, and wj is 

the weight of component j in the mixture, such that 0 ≤ wj ≤ 1, j = 1, …, p, and 

∑j = 1
p wj = 1. For the covariate vector zi, ψ is the vector of corresponding coefficients, 

which are unconstrained. Parameters in this model can be estimated using constrained 

least-squares or constrained maximum likelihood, provided one is willing to make a 

distributional assumption for yi|xi, zi. Note that this model is a reformulation of the 

multivariable linear regression model, E yi ∣ xi, zi = β0 + ∑j = 1
p βj

⋆xij + ∑k = 1
m ψkzik, where 

β1 = ∑j = 1
p βj

⋆, wj = βj
⋆/∑j = 1

p βj
⋆, and the βj

⋆ are constrained to all be either nonnegative or 

nonpositive, for j = 1, …, p. In chemical mixtures analysis, this sign is generally assumed to 

be that of harmful effect, i.e., all components are either toxic or harmless, but not beneficial.

If mixture component distributions are skewed, xij may be recoded to represent quantiles 

of the measured exposures. For example, in WQS12, if quartiles are desired, xij is set to 

0, 1, 2, or 3 to indicate that the jth mixture component of the ith individual is in the 

first, second, third, or fourth quartile, respectively, of that component’s distribution, so that 

β1 represents the change in average outcome for a one-quartile increase in all mixture 

components. If influential points are less of a concern, the components are standardized, 

e.g., by their standard deviation, so that β1 represents the change in average outcome for a 

one-standard-deviation increase in all mixture components.
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Our method relies heavily on the fitting approaches of WQS regression, the lasso, and ridge 

regression. Therefore, these methods are briefly outlined here.

For WQS12, data are first split into training and test sets. B bootstrap samples are 

drawn from the training set, and for each bootstrap dataset, parameters are estimated via 

constrained maximum likelihood. WQS requires that a sign for β1 be pre-specified, and 

in practice, researchers applying WQS will either fit the unidirectional model that is of 

interest a priori16 or fit the model with both signs and present both sets of results17. In 

a process similar to bootstrap aggregation (referred to as bagging), the estimate for wj 

is wj = 1
B ∑b = 1

B wj(b)f β1(b) , where wj(b) is the weight for the jth component using the 

bth bootstrap sample and f β1(b)  is a pre-specified signal function that assigns greater 

importance to bootstrap samples with stronger signals. The default signal function in version 

3.0.0 of the gWQS R package is a scaled t-statistic for β1 from bootstrap dataset b; in earlier 

applications, f β1(b)  was set to 118. Once weights are determined, a linear regression is 

fit to data from the held-out test set that includes the weighted sum, i.e., ∑j = 1
p wjxij, as a 

predictor. However, in practice, analysts will often do significance testing with the same data 

used to estimate the weights14,15.

The lasso and ridge regression are shrinkage estimators, meaning coefficients are reduced 

by imposing a penalty on their size. For the lasso, this penalty is an upper bound on the L1 

norm of the coefficients, i.e., the sum of their absolute values:

β lasso  = argmin
β

1
2 ∑

i = 1

n
yi − β0 − ∑

j = 1

p
βjxij

2
+ λ ∑

j = 1

p
βj (2)

For ridge regression, this penalty is an upper bound on the squared L2 norm of the 

coefficients, i.e., the sum of squares:

β ridge  = argmin
β

1
2 ∑

i = 1

n
yi − β0 − ∑

j = 1

p
βjxij

2
+ λ ∑

j = 1

p
βj

2
(3)

For both the lasso and ridge regression, a growing number of coefficients are shrunk toward 

zero as the tuning parameter, λ, increases, and coefficients are generally not constrained to 

be either nonnegative or nonpositive. The λ parameter is generally chosen to minimize or 

nearly minimize mean squared prediction error, which is estimated via cross-validation19. A 

hallmark of the lasso is that for sufficiently large λ, coefficients can be shrunk to exactly 

zero.

All three methods promote regularization, but through different mechanisms. In WQS, 

weights can be estimated at exactly zero in a single bootstrap dataset, but the bagging 

process necessarily pushes weights away from zero and toward equality as nonnegative 

estimates are averaged across bootstrap datasets. That is, WQS works to avoid overfitting 

by limiting sparsity in the weights. In contrast, the lasso shrinks coefficients toward zero 

to offset λ and works to avoid overfitting by increasing parsimony. Ridge regression 
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does a little of both, as coefficients are shrunk toward zero and toward each other with 

increasing λ19. If, however, coefficients are constrained to be nonnegative or nonpositive, L2 

penalization can also result in sparsity, as we will subsequently see.

Model fitting

Our method involves a two-step fitting process. First, component weights are estimated 

through optimization of a loss function that involves either L1 or L2 penalization, depending 

on the analyst’s knowledge and assumptions about the mixture of interest. Second, we refit 

the model via ordinary least squares (OLS), where one of the predictors is a weighted sum 

of mixture components using the estimated weights, as in WQS. The use of penalization 

instead of the bootstrap for regularization makes hypothesis testing with a permutation test 

computationally feasible, and the permutation test in turn allows the analyst to use the 

complete data to estimate the weights, if desired.

Step 1: Weight estimation—For the first step of model fitting, mixture variables are 

centered and scaled. We then minimize a modified lasso/ridge loss function, excluding non-

mixture covariates from the penalization and adding the constraint that mixture component 

coefficients are either all nonnegative or all nonpositive. That is,

β⋆ψ = argmin
β⋆, ψ

1
2 ∑i = 1

n yi − β0
⋆ − ∑j = 1

p βj
⋆xij − ∑k = 1

m ψkzik
2

+ λ∑j = 1
p L1βj

⋆ + L2 βj
⋆ 2

 s . t . βj
⋆ ≥ 0, j = 1, …, p

1
2 ∑i = 1

n yi − β0
⋆ − ∑j = 1

p βj
⋆xij − ∑k = 1

m ψkzik
2

− λ∑j = 1
p L1βj

⋆ − L2 βj
⋆ 2

 s . t . βj
⋆ ≤ 0, j = 1, …, p

(4)

where L1 is an indicator of choosing to apply the L1 penalty and L2 is an indicator of 

choosing the L2. A researcher should choose the penalty that best fits the chemical mixture 

and research question of interest. L1 penalization is well-suited to identifying a few bad 

actors when many mixture components have little to no association with the outcome (i.e., 

true weights of zero), while L2 penalization is better when many components are similarly 

associated with the outcome (i.e., true weights closer to equality). The reasons and intuition 

for this are detailed in the next section.

Given the chosen penalty, we minimize each version of Equation 4 — once with the positive 

constraint and once with the negative — and select the sign that yields a smaller sum of 

squared errors.
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The minimizer β⋆ depends on the choice of λ, which is tuned through 10-fold cross-

validation, where the model is repeatedly fit along a log-scale path of 100 possible values 

of λ and the mean cross-validated error, given the chosen sign constraint, is computed for 

each. We implement minimization efficiently with the cyclical coordinate descent algorithm 

of the R package glmnet20. λMAX is set to the smallest value of λ such that all β j
⋆, j = 1, …, 

p, are set to zero; the path begins with λMIN = 0.001 × λMAX. For optimal sensitivity, we 

recommend choosing the λ that minimizes mean cross-validated error, i.e., “lambda.min” in 

glmnet, and use this λ for all simulation studies and our applied example.

Once λ is selected, β⋆ is fully determined, and wj = β j
⋆/∑j = 1

p β j
⋆, j = 1, …, p. If using 

L1 penalization and the chosen λ sets all coefficients to zero, β1 becomes unidentifiable in 

the second step, so we instead tune λ to the next lowest value on the path. This adjustment 

results in the selection of at least one mixture component.

Step 2: Hypothesis testing—In the second step of model fitting, the outcome yi is 

regressed on the estimated weighted sum, ∑j = 1
p wjxij, in a linear regression controlling for 

desired non-mixture covariates. This regression could use data from a held-out test set, in 

which case the usual least-squares inference applies, with β1 − β1 /SE β1 t(df = n − m − 2). 
If data splitting is not desirable, the same data can be used for weight estimation and the 

subsequent linear regression, but significance testing requires an alternative approach to 

avoid inflation of the Type I error rate.

We propose a permutation test as an alternative approach. To generate the distribution of 

β1 under H0 : β1 = 0 in a model lacking non-mixture covariates (i.e., zi does not exist), 

our two-step method is repeatedly fit on the outcome vector y = (y1…yn) and a random 

permutation of xi, i = 1, …, n. The subsequent β1s form a null distribution because the 

random pairing of yi and xi ensures no remaining association between the outcome and 

predictors. Data are not split into training and test sets for any iteration. In each iteration, 

λ is adaptively chosen in the same manner as in the original fitting (e.g., always set to 

“lambda.min”), and the same penalty (L1 or L2) is always used. At the conclusion of a 

large number of iterations, such as 1000, an empirical two-sided p-value is computed with 

the formula (r+1)/(N+1), where r is the number of test statistics β1s  with absolute values 

greater than or equal to the absolute value of the original test statistic, and N is the number 

of iterations performed21. In this paper, N is always set to 1000.

When the model includes non-mixture covariates zi, i = 1, …, n, the permutation test follows 

a slightly different procedure. First, the outcome and mixture variables are each regressed on 

the set of non-mixture covariates in separate linear regressions to obtain the n × 1 residual 

vector yz and n × p residual matrix Xz. We note here that given λ, the βj
⋆ estimates for 

j = 1, …, p are equivalent whether our method is fit to (1) the original outcome variable, 

mixture variables, and non-mixture covariates, or (2) yz and Xz. The appendix contains a 

detailed proof of this property, known as the Frisch-Waugh-Lovell theorem22,23. Therefore, 

we can conduct the permutation test as before, with yz as the outcome vector and random 
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permutations of the rows of Xz. This breaks the association between the outcome and 

the mixture without breaking the association between the outcome and the non-mixture 

covariates, simulating the desired null distribution. In simulation studies, we show that this 

test preserves Type I error across a range of signals and predictor correlation settings.

Implications of L1 versus L2 penalization

In this section, we discuss the intuitive differences between L1 and L2 penalization, and we 

prove, under certain assumptions, the properties discussed earlier: As the tuning parameter, 

λ, increases, L1 penalization shrinks some weights toward zero and others toward 1, while 

L2 penalization pushes weights closer to each other. Without loss of generality, we consider 

the case when the estimators of β⋆ are constrained to be nonnegative.

Figure 1 illustrates the impact of choosing the L1 versus the L2 penalty when the 

nonnegativity constraint is applied to two parameters. The contours of the log likelihood, 

centered at the ordinary least squares solution, are shown for a normally distributed 

outcome with two positively correlated predictors. The solutions to Equation 4 occur at the 

intersections of this log likelihood with the shaded feasibility regions for the two possible 

penalties, and we can see that the L2-penalized solution is nearer to the line β1
⋆ = β2

⋆. In 

other words, the L2 penalty pushes coefficients, and therefore weights, closer to equality. 

Note that, unlike with unconstrained lasso and ridge regression, either penalty could result 

in coefficients estimated at exactly zero, because the feasibility regions created by the 

nonnegativity constraints have hard edges. That is, if the OLS solution were in the second 

quadrant and the intersection of the log likelihood with the L2 feasibility region was along 

the y axis, β1
⋆ would be estimated at exactly zero.

We now briefly outline the proofs of these properties. For this paragraph and the subsequent 

paragraph only, restrict xi and β⋆ to the subsets of xi and β⋆ that correspond to the k nonzero 

components of the nonnegative least-squares solution, βNNLS
⋆ . For λ close to zero, the L1-

penalized solution is βL1
⋆ = ∑i = 1

n xixiT
−1 ∑i = 1

n yixi − λ1k = βNNLS
⋆ − ∑i = 1

n xixiT
−1λ1k, 

where 1k is a k × 1 vector of 1s. For centered and standardized xi, 

∑i = 1
n xixiT = (n − 1)R, where R is the sample predictor correlation matrix, which we 

assume to be positive exchangeable for illustrative purposes. Therefore, ∑i = 1
n xixiT

and ∑i = 1
n xixiT

−1
 are both compound symmetric, implying ∑i = 1

n xixiT
−1λ1k = c1k. 

That is, βL1
⋆  equals the nonnegative least-squares solution with every element 

reduced by the constant c, an increasing function of λ. As λ increases, weights 

corresponding to least-squares coefficients of larger magnitude (i.e., l such that 

βNNLS, l
⋆ > 1

k ∑j = 1
k βNNLS, j

⋆ ) move toward 1 and weights corresponding to smaller 

coefficients (i.e., s such that βNNLS, s
⋆ < 1

k ∑j = 1
k βNNLS, j

⋆ ) shrink toward zero, because 

βNNLS, l
⋆ − c

∑j = 1
k βNNLS, j

⋆ − kc
>

βNNLS, l
⋆

∑j = 1
k βNNLS, j

⋆  and 
βNNLS, s

⋆ − c

∑j = 1
k βNNLS, j

⋆ − kc
<

βNNLS, s
⋆

∑j = 1
k βNNLS, j

⋆ .
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To show that the L2-penalized solution pushes weights 

toward equality under the same conditions, first note 

that βNNLS, j
⋆ = (n − 1)−1Rj

−1∑i = 1
n yixi = 1 + ak − 2a

(1 − a)(1 + ak − a) βSLR, j
⋆ − a

1 + ak − 2a ∑l ≠ jβSLR, l
⋆ , 

where Rj
−1 is the jth row of R−1, a is the off-diagonal correlation in R, and βSLR, j

⋆  is 

the estimated slope from the simple linear regression of centered y on the jth mixture 

component (details in the appendix). For λ close to zero, the L2-penalized solution 

is βL2
⋆ = ∑i = 1

n xixiT + λIk
−1∑i = 1

n yixi = (n − 1)R + λIk
−1∑i = 1

n yixi

= 1 + λ
n − 1

−1
(n − 1)−1B−1∑i = 1

n yixi

, where Ik is the k × 

k identity matrix and B is also an exchangeable correlation matrix with off-diagonals 

b = a
1 + λ

n − 1
. Then, similar to βNNLS, j

⋆ , we can write

βL2, j
⋆ = 1 + λ

n − 1
−1 1 + bk − 2b

(1 − b)(1 + bk − b) βSLR, j
⋆ − b

1 + bk − 2b ∑l ≠ jβSLR, l
⋆ ∝ βNNLS, j

⋆

+ 1 + ak − 2a
(1 − a)(1 + ak − a)

a
1 + ak − 2a − b

1 + bk − 2b ∑l ≠ jβSLR, l
⋆ .

The L2-penalized weights are therefore:

wL2, j = βL2, j
⋆

∑m = 1
k βL2,  m

⋆

=
βNNLS, j

⋆ + 1 + ak − 2a
(1 − a)(1 + ak − a)

a
1 + ak − 2a − b

1 + bk − 2b ∑l ≠ jβSLR, l
⋆

∑m = 1
k βNNLS, m

⋆ + 1 + ak − 2a
(1 − a)(1 + ak − a)

a
1 + ak − 2a − b

1 + bk − 2b ∑l ≠ mβSLR, l
⋆

(5)

It is straightforward to show a
1 + ak − 2a  is increasing in a and βNNLS, j

⋆ > 0 βSLR, j
⋆ > 0; 

therefore, the second term in the numerator of (5) is positive. It is also straightforward 

to show that the rank order of βNNLS
⋆  matches the rank order of βSLR, j

⋆ , j = 1, …, k , so 

that this term is larger for the least-squares coefficients of smaller magnitude and smaller 

for coefficients of larger magnitude. Thus, as λ increases, b decreases and the k nonzero 

weights are increasingly moved toward 1/k.

Although for ease of exposition we showed these results assuming a positive exchangeable 

correlation between mixture components, we would expect the general conclusions to hold 

for correlated mixtures such as those encountered in environmental epidemiology. In our 

simulation studies, we apply our method both to positive exchangeable predictor correlation 

matrices and to the predictor correlation matrix observed in the TIDES dataset.

Simulation studies

We assessed the properties of our method in four simulation studies across a range of 

predictor correlation matrices and degrees of mixture-outcome association. In the first 

simulation study, the outcome was random noise to assess empirical Type I error rates. 
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We generated a mixture of nine predictors for four cases: three with exchangeable predictor 

correlation ρ (0.2, 0.5, or 0.8) and one with observed predictor correlation matrix Σ from 

the log-transformed phthalate metabolite concentrations in TIDES (Supplemental Material 

1); the outcome was sampled from a N(10, 2) distribution. In the three remaining studies 

(Scenarios 1 to 3), the outcome was a linear combination of mixture variables with normally 

distributed error ϵi. Scenario 1 involved a mixture of 20 components, 10 of which were 

true predictors, with yi = 10 + ∑j = 1
10 3xij + ϵi. In Scenario 2, the mixture had 10 components, 

two of which were true predictors, with yi = 10 + 5xi1 + 3xi2 +ϵi. In both Scenarios 1 

and 2, we considered four cases, with two values of R2 (0.1 [“low signal”], 0.6 [“high 

signal”]), which determined the error variance, and two values of pairwise correlation ρ (0.2 

[“low correlation”], 0.8 [“high correlation”]). Scenario 3 involved nine mixture components 

generated with the TIDES correlation matrix Σ, all of which were true predictors, with 

yi = 10 + ∑j = 1
9 3xij + ϵi and the two possible values of R2. In all cases, predictors were 

distributed N(10, 1), the sample size was 300, and 1000 datasets were simulated.

Eight methods were fit to each simulated dataset. We applied our method with both 

penalties (L1 and L2) and two approaches to significance testing: (1) estimating weights 

with a training dataset and using a separate test set for inference (“data splitting”) and 

(2) estimating weights with the entire dataset and doing a permutation test for inference 

(“permutation test”). We also fit two versions of WQS, one in which weights were estimated 

using training data and a test set was used for inference (“data splitting”) and one in which 

the same data were used to estimate the weights and test the overall mixture effect (“no 

data splitting”). For a given simulated dataset, data-splitting methods used the same training 

and test sets, with 60% of observations in the test set. Finally, we considered a single linear 

regression model (“all in one”) and separate linear regressions for each mixture component 

(“one at a time”). For all methods, predictors were divided by their standard deviation, and 

quantiles were not used, given that a well-trained analyst would likely be able to identify 

the predictors as normally distributed. For tables on sensitivity and specificity, selection 

was defined as weights ≥ 0.05 (the threshold set in the original WQS paper for similar 

data-generating mechanisms) or p-values < 0.05. All analyses were completed in R version 

3.6.0.

Empirical Type I error rates were estimated as the proportion of times the null hypothesis of 

no association between mixture and outcome was rejected, with nominal α = 0.05. For “all 

in one”, we performed an F-test comparing the full model to an intercept-only model; for 

“one at a time”, we took the minimum p-value from coefficient t-tests, as this is the result 

that, in practice, might be used to identify a chemical mixture as potentially harmful. All 

of our methods preserved the nominal Type I error rate, as did “all in one” and WQS with 

data splitting (Table 1). However, the Type I error rate was inflated for WQS without data 

splitting, with the greatest violations occurring for lower predictor pairwise correlations. The 

“one at a time” minimum p-value approach also inflated Type I error rates, due to multiple 

testing.

Selection accuracy is summarized in Tables 2 and 3. In general, all of the weighted sum 

regressions were improved by use of the complete dataset instead of a training set for weight 
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estimation; these implementations had better sensitivity (more variables correctly selected) 

and better specificity (fewer variables incorrectly selected). Among methods with the same 

approach to data splitting, the optimal implementation was highly dependent on the scenario 

and case. In Scenario 1 (10 true predictors out of 20), our L2-penalized methods had better 

sensitivity than WQS, while the L1 methods had better specificity. In Scenario 2 (two 

true predictors out of 10), the L1 methods had the best specificity again and equally good 

sensitivity in all but the low-signal, high-correlation case. In Scenario 3, the L2 methods 

were consistently the most sensitive. Clearly, the choice of penalty should reflect the true 

data-generating mechanism, as well as the importance to the researcher of sensitivity versus 

specificity. The “one at a time” linear regressions had good sensitivity but poor specificity, 

generally selecting all variables, and the “all in one” regression had the opposite, with poor 

sensitivity except in Scenario 2 or in cases with high signal and low correlation.

In practice, a researcher using these methods will probably be more interested in the 

magnitude of the weights than their relation to an arbitrary cutoff. Therefore, Figures 2 

and 3 illustrate the estimated weight distributions for three of the methods fit to Scenarios 

1 and 2: WQS with training data, as this is the version that preserves Type I error, and 

our method with full data and either an L1 or L2 penalty. We show results only for the 

low-signal settings, as the differences between the methods are more obvious in these more 

challenging cases. In Figure 2, the L1-penalized method displays near-perfect specificity, 

almost always setting weights of incorrect variables to zero. But, this method can also 

underestimate weights for true predictors, especially in a high-correlation setting. The L2-

penalized method, on the other hand, estimates weights that are more similar to those of 

WQS and is evidently better than WQS at distinguishing between correct and incorrect 

predictors in the high-correlation setting. In Figure 3, both WQS and the L2-penalized 

method assign too much weight to irrelevant predictors and therefore underestimate the 

weights of the two true predictors. The L1-penalized method, on the other hand, generally 

sets irrelevant weights to zero and is therefore much more accurate in weight estimation for 

the two true predictors.

We also considered bias, variance, and power in estimation of the overall mixture effect, 

with results for the low-signal settings shown in Tables 4 and 5 (bias was minimal for all 

methods in the high-signal settings, and power was perfect). In general, the methods that 

used data splitting were slightly biased downward, and those that used the full data were 

slightly biased upward. Of the full-data methods, ours was less biased than WQS, and the 

bias was smaller in high-correlation or observed-correlation settings. In Scenario 1 with ρ = 

0.2, the “L1 - data splitting” version of our method underestimated the overall mixture effect 

more than other methods and had the lowest observed power (0.826), indicating a different 

method may be preferable in this case. Variance was comparable between all methods that 

used the same sample size for inference, and power to identify the overall mixture effect as 

significant (p < 0.05) was always higher in the methods that used a larger sample size. Of the 

methods that preserved Type I error, the permutation-test versions of our method had higher 

power than WQS in all cases.
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Applied example

Phthalates are a family of chemicals used to increase flexibility of plastics, including food 

and beverage containers, hygiene and beauty products, and plastic packaging. Exposure to 

phthalates can occur through ingestion, inhalation, or skin absorption, after which phthalates 

are metabolized and leave the body primarily through urine4,24. Two phthalates, DEHP and 

DBP, can cause birth defects in male rats in what is known as the “phthalate syndrome”25, 

and in human cohort studies, these and other phthalates have been linked to adverse 

reproductive, neurodevelopmental, metabolic, and respiratory outcomes26–31.

The Infant Development and Environment Study (TIDES) is a prospective pregnancy cohort 

study focused on prenatal phthalate exposure and child development. In each trimester, 

participants gave urine samples for measurement of phthalate metabolite concentrations. 

Swan et al.7 analyzed associations between the first-trimester concentrations and infant 

anogenital distance (AGD), a sensitive marker of prenatal disruption in the genital tract. 

Short male AGD has been associated with poorer semen quality, reduced testosterone, and 

infertility32. In separate multivariable linear regressions for each first-trimester metabolite 

(the “one at a time” approach), Swan et al.7 observed significant inverse relations between 

infant anoscrotal distance (AGDAS) and three of four metabolites of DEHP: MEHP, 

MEOHP, and MEHHP, adjusting for infant age at birth exam, weight-for-length Z-score, 

gestational age at birth, study center, time of day of urine collection, and maternal age. The 

fourth metabolite of DEHP, MECPP, was not significantly associated with AGDAS. Five 

other metabolites, each pertaining to one parent phthalate, were also examined: MEP, MBzP, 

MBP, MiBP, and MCPP. In separate covariate-adjusted models, none were associated with 

AGDAS.

We were interested in assessing the relation between first-trimester phthalate metabolites 

and infant AGDAS with both WQS (with data splitting) and our method (with data splitting 

or a permutation test) and comparing the results with the original Swan, et al.7 analysis. 

We also fit a linear regression including all nine metabolites and tested overall mixture 

significance with an F-test (“all in one”). Phthalate concentrations were adjusted for urinary 

specific gravity33, log10-transformed, and divided by their sample standard deviations, so 

that β1 is the expected change in AGDAS, measured in mm, when all metabolites increase by 

one standard deviation. All methods adjusted for the same non-mixture covariates that were 

included in Swan et al.7; when fitting our method, these terms were not penalized. Given the 

existing research on DEHP and DBP, which correspond to five of the nine metabolites, we 

chose an L2 penalty for our method. WQS was applied with negative β1, 100 bootstraps, and 

t-statistic bootstrap weights (the default in the gWQS package). As there was no evidence of 

influential points in the metabolite distributions, quantiles were not used. The same training 

and test sets were used for WQS and our method, with 60% of data in the test set. AGDAS 

was available for 366 male infants.

Estimated weights and coefficients are shown in Table 6. We include the most significant 

“one at a time” result for comparison with the tests of overall mixture effect, as this is the 

finding that, in practice, could flag a mixture as potentially harmful. No metabolites were 

selected in the “all in one” approach, and coefficients that had been similar in the original 
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analysis took on opposing signs, likely due to collinearity. In terms of weight estimation, 

WQS placed 66 percent of the weight on the DEHP metabolites, 20 percent on MBP, and 

5 percent or less on each of the other metabolites. Our method placed more weight on the 

DEHP metabolites: 81 percent when training data were used to estimate the weights and 74 

percent when the complete data were used. Our method also allocated about 15 percent of 

the weight to MBP. The overall mixture effect was stronger for our method, with β1 = − 0.80
and −0.71 compared to −0.52 for WQS; this was significant only for our method with data 

splitting.

In summary, our method was able to detect a stronger signal from the mixture overall than 

WQS, perhaps due to the larger amount of weight placed on the DEHP metabolites. Multiple 

weights were set to zero or near zero for our method, while WQS distributed weight more 

equally, possibly to spurious predictors. Ultimately, our method with data splitting was the 

only one to find a significant overall mixture effect, which was somewhat surprising, as 

the permutation test uses a larger sample size and had slightly higher power in simulation 

studies. One takeaway from this result may be the importance of applying our method both 

with data splitting and with the permutation test for comparison. Evidently, our method has 

potential benefits beyond enabling analysts to use the same data in weight estimation and 

inference.

Conclusion

The identification of bad actors is an important and challenging aspect of chemical mixtures 

analysis. Our simulations imply that two common approaches in this field — separate “one 

at a time” regressions and WQS without data splitting — can be suboptimal, due to inflation 

of Type I error rates to unacceptable levels (up to 0.25 for a nominal α of 0.05). We have 

also shown that data splitting can increase the variance of estimated overall mixture effects, 

reduce power, increase bias, and harm sensitivity and specificity of variable selection. These 

challenges motivate our modified weighted sum regression in which a permutation test is 

used to perform inference on the same data used to estimate the weights. To offset the 

computational burden of a permutation test, we propose that weights be regularized using 

L1 or L2 penalization instead of bootstrap aggregation. Our method allows for all data 

to be used in all steps of the analysis, while preserving the desired Type I error rate. 

Although this paper focuses primarily on hypothesis testing to characterize variability of the 

overall mixture effect, a confidence interval could also be computed, for example using the 

nonparametric bootstrap. Code to fit our method and run the simulation studies is available 

at https://github.com/glyden/Modified-WQS.

Our method is sensitive to the choice of L1 versus L2 penalization, and we recommend that 

researchers use their underlying philosophy about or experience with the chemical mixture 

in question to decide. For example, if a mixture has many chemicals that are all known to be 

somewhat associated with the outcome, i.e., the true weights are not sparse, the L2 penalty 

will be more sensitive and more powerful than the L1. If, on the other hand, a mixture 

has only one or two bad actors that a researcher wishes to identify, the L1 penalty will be 

more accurate in weight estimation and less likely to assign weight to spurious predictors. 

In simulation studies, our method with a permutation test was able to match or beat the 
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selection accuracy of WQS with data splitting in all but one case, given the appropriate 

choice of penalty. Even in that case (Scenario 1, R2 = 0.1, ρ = 0.8), the L1 version of 

our method had better specificity than WQS and the L2 version had better sensitivity. The 

choice of penalty matters less when there is a strong association between the mixture and the 

outcome. In high-signal simulations, both versions of our method (L1 and L2) had superior 

sensitivity and specificity compared to WQS with data splitting, across all cases.

One limitation of our method is the slight upward bias that results from using the same data 

twice: first to estimate the weights and then to estimate and test the overall mixture effect. 

This is a fundamental problem in machine learning and data-adaptive methods, which is 

often addressed by using methods of cross-validation or data splitting, as in WQS. WQS 

with data splitting, however, suffered from downward bias in our simulations, which may be 

less acceptable to analysts working with chemical mixtures than upward bias, as there may 

be greater ramifications to underestimating a truly harmful effect. The bias of our method 

was small to negligible in clinically relevant settings (i.e., those with higher predictor 

correlation) and consistently smaller than the bias of WQS without data splitting, which also 

fails to preserve Type I error. In exchange for a small amount of upward bias, our method 

allows analysts to use their full study dataset for both estimation and testing, increasing 

power and selection accuracy while preserving Type I error.

In conclusion, we have introduced a new approach to weight estimation and inference 

modeled on Weighted Quantile Sum regression that does not require data splitting for valid 

inference on the overall mixture effect. We have observed that shrinkage methods can be 

tailored for chemical mixtures analysis by adding nonnegativity or nonpositivity constraints, 

and we encourage the use of a priori knowledge about specific chemical mixtures and their 

potential effects on human health to select between L1 or L2 penalization. Our method is 

a new option for researchers who wish to evaluate the overall health impact of a chemical 

mixture while simultaneously identifying bad actors for policy and regulatory purposes.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of the Frisch-Waugh-Lovell theorem for constrained penalized 

regression

Let Z be the n × m matrix of non-mixture covariates, X be the n × p matrix of mixture 

variables, and xj be the jth column of X. Assume a vector of 1s corresponding to an intercept 

is included in Z. Let HZ be the hat matrix for Z, i.e., Z(ZTZ)−1ZT, and let QZ = In − HZ, 

so that QZy represents the residual vector from a linear regression of y on Z and QZX 
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represents the matrix of residuals from linear regressions of the columns of X on Z. Note 

that both HZ and QZ are orthogonal projections and therefore by definition symmetric and 

idempotent.

Consider two minimization problems:

(βψ) = argmin
β ∈ ℝp, ψ ∈ ℝm

1
2 y − Zψ − Xβ

2

2
+ λ β

1
, βj ≥ 0, j = 1, …, p (6)

β = argmin
β ∈ ℝp, α ∈ ℝ

1
2 QZy − α1n − QZXβ 2

2 + λ β
1
, βj ≥ 0, j = 1, …, p (7)

We wish to show β = β. Without loss of generality, we consider the case when β is 

constrained to be nonnegative and the L1 penalty is used; the proof for nonpositive β or 

with L2 penalization is similar.

Components of ψ are not constrained. Therefore, the following will always hold:

d
dψ

1
2 y − Zψ − Xβ 2

2
+ λ β 1 = − ZT(y − Zψ − Xβ) ZT(y − Zψ − Xβ

) = 0
(8)

ψ = ZTZ −1ZT(y − Xβ ) (9)

Meanwhile, the derivative of the minimand in 6 w.r.t. βj will equal zero at the minimizer for 

all j such that β j > 0, i.e.:

d
dβj

1
2 y − Zψ − Xβ 2

2
+ λ β 1 = − xjT(y − Zψ − Xβ) + λ (10)

xjT(y − Zψ − Xβ ) − λ = 0 ∀j s . t . β j > 0;  else, β j = 0 (11)

Continuing to 7, the same holds for all j such that βj > 0:

d
dβj

1
2 QZy − α1n − QZXβ 2

2 + λ β 1 = − xjTQZ
T QZy − α1n − QZXβ + λ (12)

xjT QZy − QZXβ − λ = 0 ∀j s . t . βj > 0; else, βj = 0,  (13)

where we have used the facts QZ
T = QZ, QZQZ = QZ, and αQZ

T 1n = 0 because 1n ∈ R(Z) and 

QZ is the projection matrix onto the space orthogonal to R(Z).
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Substituting 9 into 11, we find:

xjT(y − Zψ − Xβ ) − λ = xjT y − Z ZTZ −1ZT(y − Xβ ) − Xβ − λ (14)

= xjT y − HZy + HZXβ − Xβ − λ (15)

= xjT In − HZ y − In − HZ Xβ − λ (16)

= xjT QZy − QZXβ − λ = 0 ∀j s . t . β j > 0;  else, β j = 0,  (17)

which matches 13. Therefore, the minimization problems are equivalent, and β = β.

Implications of L1 versus L2 penalization, continued: Technical details

We now provide the details that justify the following result 

from the Implications of L1 versus L2 penalization section: 

βNNLS, j
⋆ = (n − 1)−1Rj

−1∑i = 1
n yixi = 1 + ak − 2a

(1 − a)(1 + ak − a) βSLR, j
⋆ − a

1 + ak − 2a ∑l ≠ jβSLR, l
⋆ .

First, note that βSLR, j
⋆ =

∑i = 1
n xijyi

∑i = 1
n xij2

=
∑i = 1

n xijyi
n − 1 , because xj is centered and standardized. 

Therefore, βNNLS, j
⋆ = (n − 1)−1Rj

−1∑i = 1
n yixi = Rj

−1βSLR
⋆ , where βSLR

⋆  is the vector of slopes 

from the k simple linear regressions.

Second, recall that R is a compound symmetric matrix, such that the diagonals of 

R are 1 and the off-diagonals are a. Thus, R = (1 − a)Ik + a1k1k
T , which implies 

R−1 = 1
1 − aIk −

a
(1 − a)2

1k1k
T

1 + a
1 − a1k

T1k
 by the Sherman-Morrison formula. It is then straightforward 

to show that the diagonals of R−1 are 1 + ak − 2a
(1 − a)(1 + ak − a)  and the off-diagonals are 

−a
(1 − a)(1 + ak − a) , proving the desired result.
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Figure 1. 
Illustration of how the L2 penalty moves coefficients and therefore weights closer to 

equality, in a simulated setting with two positive coefficients for two positively correlated 

predictors. The intersection of the contours of the normal log likelihood with the shaded 

feasibility region for an L2-penalized regression with nonnegativity constraints (right) is 

closer to the dotted line of equality than the intersection with the L1 feasibility region 

(left). The ordinary least squares (OLS) estimator is also shown, as the minimizer of the log 

likelihood. Lambda was chosen by the one-standard-error rule.
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Figure 2. 
Scenario 1, R2 = 0.1: Median estimated weights with bars from the 25th to the 75th 

percentile. Weights were estimated using training data for WQS and full data for our 

method. True weights are shown in red.
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Figure 3. 
Scenario 2, R2 = 0.1: Median estimated weights with bars from the 25th to the 75th 

percentile. Weights were estimated using training data for WQS and full data for our 

method. True weights are shown in red.

Lyden et al. Page 20

Stat Methods Med Res. Author manuscript; available in PMC 2023 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lyden et al. Page 21

Table 1.

Empirical Type I error rates (95% CI) in hypothesis tests of overall mixture effect, for three exchangeable 

predictor correlations ρ and observed correlation Σ in TIDES phthalate metabolites

Method ρ = 0.2 ρ = 0.5 ρ = 0.8 Observed Σ

Nominal α 0.05 0.05 0.05 0.05

Preserved Type I error

 All in one 0.05 (0.04, 0.06) 0.05 (0.04, 0.07) 0.05 (0.04, 0.07) 0.05 (0.03, 0.06)

 WQS - data splitting 0.05 (0.03, 0.06) 0.04 (0.03, 0.05) 0.05 (0.04, 0.07) 0.04 (0.03, 0.05)

 Modified WQS

  L1 - data splitting 0.05 (0.03, 0.06) 0.05 (0.04, 0.07) 0.06 (0.04, 0.07) 0.04 (0.03, 0.06)

  L1 - permutation test 0.06 (0.04, 0.07) 0.04 (0.03, 0.05) 0.05 (0.03, 0.06) 0.04 (0.02, 0.05)

  L2 - data splitting 0.05 (0.04, 0.07) 0.05 (0.03, 0.06) 0.05 (0.04, 0.07) 0.04 (0.03, 0.05)

  L2 - permutation test 0.05 (0.03, 0.06) 0.04 (0.03, 0.05) 0.05 (0.04, 0.06) 0.04 (0.03, 0.06)

Inflated Type I error

 WQS - no data splitting 0.25 (0.22, 0.27) 0.15 (0.13, 0.17) 0.10 (0.08, 0.12) 0.15 (0.12, 0.17)

 One at a time - min p 0.37 (0.34, 0.40) 0.27 (0.24, 0.30) 0.19 (0.16, 0.21) 0.24 (0.21, 0.27)
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Table 4.

Mean (SD) of overall mixture effect estimators in simulation scenarios with low signal (R2 = 0.1)

Method

Scenario 1 Scenario 2 Scenario 3

ρ = 0.2 ρ = 0.8 ρ = 0.2 p = 0.8 Observed Σ

TRUTH 30 30 8 8 27

Preserved Type I error

 WQS - data splitting 25.9 (6.7) 29.1 (6.8) 8.6 (2.4) 7.9 (1.9) 24.7 (6.4)

 Modified WQS

  L1 - data splitting 17.6 (7.9) 27.2 (6.7) 7.0 (2.5) 7.5 (1.9) 20.8 (6.6)

  L1 - permutation test 32.0 (5.9) 32.0 (5.2) 9.0 (1.8) 8.5 (1.5) 27.2 (5.4)

  L2 - data splitting 26.3 (7.0) 29.0 (6.9) 8.3 (2.4) 7.9 (1.9) 24.2 (6.3)

  L2 - permutation test 34.5 (5.0) 32.0 (5.2) 9.8 (1.7) 8.6 (1.5) 27.7 (4.9)

Inflated Type I error

 WQS - no data splitting 34.5 (5.0) 32.3 (5.2) 10.0 (1.7) 8.6 (1.5) 28.6 (4.8)
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Table 5.

Estimated power to identify overall mixture effect as significant (p < 0.05) in simulation scenarios with low 

signal (R2 = 0.1)

Method

Scenario 1 Scenario 2 Scenario 3

ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8 Observed Σ

Preserved Type I error

 WQS - data splitting 0.968 0.989 0.954 0.981 0.976

 Modified WQS

  L1 - data splitting 0.826 0.983 0.919 0.978 0.952

  L1 - permutation test 0.989 1 0.985 1 0.998

  L2 - data splitting 0.970 0.991 0.942 0.983 0.98

  L2 - permutation test 1 1 0.988 1 1

Inflated Type I error

 WQS - no data splitting 1 1 1 1 1

Note: Scenario 1 had 20 mixture components, 10 of which were equally associated with the outcome. Scenario 2 had 10 mixture components, two 
of which were associated with the outcome, one more than the other. Scenario 3 had nine components, all equally associated with the outcome and 
generated using the observed correlation matrix from the applied example.
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