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Abstract
Purpose Articulated hand pose tracking is an under-explored problem that carries the potential for use in an extensive number
of applications, especially in the medical domain. With a robust and accurate tracking system on surgical videos, the motion
dynamics and movement patterns of the hands can be captured and analyzed for many rich tasks.
Methods In this work, we propose a novel hand pose estimation model, CondPose, which improves detection and tracking
accuracy by incorporating a pose prior into its prediction.We show improvements over state-of-the-art methods which provide
frame-wise independent predictions, by following a temporally guided approach that effectively leverages past predictions.
Results We collect Surgical Hands, the first dataset that provides multi-instance articulated hand pose annotations for
videos. Our dataset provides over 8.1k annotated hand poses from publicly available surgical videos and bounding boxes,
pose annotations, and tracking IDs to enable multi-instance tracking.When evaluated on Surgical Hands, we show ourmethod
outperforms the state-of-the-art approach using mean Average Precision, to measure pose estimation accuracy, and Multiple
Object Tracking Accuracy, to assess pose tracking performance.
Conclusion In comparison to a frame-wise independent strategy, we show greater performance in detecting and tracking
hand poses and more substantial impact on localization accuracy. This has positive implications in generating more accurate
representations of hands in the scene to be used for targeted downstream tasks.
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Introduction

Machine learning and computer vision have become increas-
ingly integrated with healthcare in the medical community.
This is apparent in themyriad of tasks, such as tumor segmen-
tation [1], technical skill assessment [2–6], and tool detection
and tracking [7–10]. Here we study the problem of articu-
lated hand pose tracking in the surgical domain. Tracking
hand poses can facilitate other useful tasks, such as technical
skill assessment, temporal action recognition, and training
surgical residents. Pose tracking in the computer vision com-
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munity is primarily centered around human poses [11–19],
whilemedical works focus on detecting and tracking surgical
instruments [7–10]. Tracking surgical instruments is useful
but these instruments are inherent to the surgical procedures
seen during training. Instead we abstract away the emphasis
on surgical instruments where articulated hand tracking will
be more applicable to broad surgical tasks. Articulated hand
pose tracking can highlight important properties such as grip,
motion, and tension that human experts often attend to when
evaluating videos.

A challenge in pose tracking is the temporal consis-
tency of predictions between frames, the lack of which leads
to flickering and improbable changes in estimated poses.
Existing works [11,14,17–19] in articulated pose tracking
use frame-wise independent predictions along with post-
processing when tracking [12,13,15,16] to gather temporal
context. However, they do not integrate past inferences when
localizing joints. We address this by proposing CondPose, a
newmodel that performs predictions conditioned on the pose
estimates from prior frames. In Fig. 1, we show a comparison
of both approaches: the baseline using frame-wise indepen-
dent predictions and ourmodel using conditional predictions.
The initial estimate may fluctuate due to varying factors,
such as lighting, hand orientation, or motion blur. But we
find that using prior predictions as guidance, we can improve
our localization accuracy. The internal representation of this
object’s state (position, appearance, and classification) is a
function of its current state and previous states. By learning
this Markovian prior for the prediction of hand joints, we
can improve both pose estimation and consequently tracking
accuracy.

There is a lack of data and benchmarks for articulated
hand pose tracking. To address this, we collect a novel
dataset featuring intra-operative videos of real surgeries,
Surgical Hands. We annotate the articulated hand poses of
surgeons which subsumes both surgical instrument and non-
instrument actions, e.g., suturing, knot-tying, and gesturing.
We are, to the best of our knowledge, the first to introduce
a labeled dataset for both detection and tracking of multiple
articulated hand poses. We benchmark our dataset against
existing tracking baselines and demonstrate the superiority
of our proposed approach on both hand pose estimation and
tracking.

Our contributions are as follows:

• We introduceCondPose, a novel deep network that takes
advantage of confident prior predictions to improve local-
ization accuracy and tracking consistency.

• We present Surgical Hands1, a new video dataset for
multi-instance articulated hand pose estimation and
tracking in the surgical domain.

1 Both the code and dataset are available at https://github.com/
MichiganCOG/Surgical_Hands_RELEASE.

• We set new state-of-the-art benchmark performance on
Surgical Hands.

Related works

Articulated pose estimation and tracking

Surgical instruments

Data-driven methods in the medical video domain primarily
involve RAS videos. Works in this space [3–5] traditionally
use kinematic data directly, requiring an external apparatus
to capture these measurements. But full kinematic informa-
tion is only available for robotic-controlled tools, even less so
for hand-held instruments. Adding any external apparatus to
capture kinematic data can negatively impact the costs, flex-
ibility, and performance of certain operations. For detection,
pure computer vision-based approaches extract information
directly from video data to perform object detection. Many
vision works use a region proposal network to perform local-
ization [7,20,21], segmentation [9,22], and articulated pose
estimation [8,23] from images.

To incorporate tracking, existing works may use a simi-
larity function based on weighted mutual information [24]
or Bayesian filtering as part of a minimization problem [25].
Nwoye et al. [10] are the first to measure the Multiple Object
Tracking Accuracy (MOTA) [26] for surgical instruments in
this setting, using a weakly-supervised approach with coarse
binary labels indicating the presence or absence of seven sur-
gical instruments. However, their evaluation contains at most
one unique type of tool at each frame; hence, can be narrowed
down to an object detection problem. Unlike their work, we
track multiple instances of the same object in each frame.
We also use MOTA as part of our benchmark when tracking
hands in our videos.

Human pose

Pose estimation and tracking is commonly applied to images
and videos of people, grouped into top-down [12–16] and
bottom-up [17–19] strategies. Top-down methods detect
all persons from an image, then regress each human pose
independently using a pose estimation network. Bottom-up
methods detect all joints in an image, and use bipartitematch-
ing and graph minimization techniques to assign joints to
each person. As top-down approaches typically perform best
in practice, we follow this paradigm. For tracking, [12] uses
a greedy matching from IoU (intersection-over-union) over-
lap and optical flow to propagate bounding boxes between
frames, [13] use deformable convolutions towarp predictions
between frames, and [15] introduce a Graph Convolutional
Network (GCN) [27] to match learned embeddings between
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Fig. 1 On the left, a method only performing frame-wise independent predictions may miss out on properly localizing joints, while on the right,
temporally passing past predictions from previous frames improves the network’s localization

human poses. A GCN is a neural network whose input con-
sists of a set of nodes and edges, performing convolution
operations on the relations of nodes. The inherent structure
of this graph can improvequality of learned features aswell as
abstracting from limitations of a 2D space. These approaches
spatially shift pose predictions, which cannot overcome cer-
tain factors (e.g., missed detections). In contrast, we address
this problem at the detection step by integrating past pose
observation(s) into each new predicted output.

Hand pose

Current works on 2D hand pose estimation [28–30] are anal-
ogous to human pose estimation. Zhang et al. [31] performs
pose tracking, using a disparity map from stereo camera
inputs to estimate a 3D hand pose. However their data
consists of only a single subject’s hand and atmost one detec-
tion per frame. There are many image datasets [28,30–32]
for hand pose estimation, from a combination of manual,
synthetic, and predicted annotations. But none satisfy the
conditions of multiple object instances and tracking from
video, more so in a surgical setting. Therefore, we introduce
the Surgical Hands dataset for multi-instance articulated
hand pose tracking. Our dataset includes varying lighting
conditions, fast movement, and diversity in scene appear-
ances. Distinctively, we also include gloved hands, which
appear in contrasting colors such as latex and green.

Method

WeproposeCondPose, to perform articulated pose detection
and tracking by incorporating previous observations as prior
guidance. We show our model in Fig. 2. While the baseline
produces a heatmap from each hand using a pose estimation
network,we leverage past predictions to produce conditioned
hand pose outputs, improving detection performance during
inference. While we design CondPose with video data in
mind, we begin with pretraining on image data, finetuning
on our video dataset, Surgical Hands, and lastly, comparing
between different tracking methods.

Hand pose estimation in images

We first pretrain on image data, defining the input and out-
put for the pose estimation network, P , as Ĥ = P(I). The
input is an image crop I, I ∈ R

H×W×3, and the output is
a predicted heatmap Ĥ, Ĥ ∈ R

H ′×W ′×J . Here H ,W repre-
sents the input image height and width and H ′,W ′ are the
output heatmap height and widths. J represents the number
of predicted joints of each hand. Each image crop is scaled to
2.2 times the total area of the hand bounding box. We train
using the mean squared error (MSE) between the ground
truth and predicted heatmaps as L = ‖(H − Ĥ) � M‖2.
The ground truth heatmaps,H, are generated from 2D Gaus-
sians centered on each annotated keypoint.M, is included to
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Fig. 2 The baseline generates a heatmap, Ĥ′
t , for each detection using

a pose estimation network. In our model, we provide additional infor-
mation by incorporating a heatmap prior from t − δ. Concatenating
the image features at t with Ĥt−δ , we pass this through our attention

mechanism to produce a weighted heatmap prior, Ĥ′
t−δ . Both Ĥ′

t and

Ĥ′
t−δ are concatenated and passed through the fusing module, using

context from both heatmaps to produce the final articulated hand pose.
(The initial and final heatmaps represent real outputs from the network,
while the heatmap prior (during training) shows ground truth at t − δ)

mask out un-annotated joints. The output joint locations are
the max value positions in the third channel of Ĥ. After pre-
training,we finetune ourmodel on videos to learn conditional
hand pose predictions.

Hand pose estimation in videos

While image data cannot be used to learn our conditional
hand pose predictions, we can initialize weights to speed
up our training process and improve generalizability. We
finetuneCondPose on Surgical Hands, shown in the top por-
tion of Fig. 2. To incorporate a prior branch, we introduce a
heatmap prior, Ĥt−δ , a pose estimate of the same object from
t − δ. Our model performs conditional predictions, defined
as

Ĥt = Mfus(P(It ); Matt(vt ; Ĥt−δ)). (1)

In contrast to our previous definition of P , Ĥt is now condi-
tioned on predictions at a previous time step t−δ. Our model
is further composed of two branches: the attention mecha-
nism, Matt, and the fusing module, Mfus. Matt contextualizes
the prior heatmap prediction, Ĥt−δ , with image features, vt
(conv_1 in our experiments), at time t . This branch relates the
visual representation and the localized heatmap prior, ideally
learning to weight each joint prior accordingly. M f us pro-
duces a merged final heatmap from the initial prediction, Ĥ′

t ,
and weighted heatmap prior, Ĥ′

t−δ . Matt and M f us are both
composed of two convolutional layers, followed by trans-
posed convolution, with ReLU nonlinearities in-between.

During training the prior is selected from frame t − δ. If
the object does not exist at that frame, we use earlier frames
up until the first occurrence. If a corresponding object does
not exist on any previous frames, then the prior, Ĥt−δ , is
set as a zeros heatmap. This is expected behavior during
evaluation, because priors do not yet exist at frame one. Also

during evaluation, unlike training, the prior associated with
the current detection is unknown. Given n priors from time
t − 1, {Ĥ1

t−1, Ĥ2
t−1, . . . Ĥn

t−1}, and k detections at time t ,

{Î1
t−1, Î2

t−1, . . . Îk
t−1} we pass all pairs through the network

to generate candidates. The heatmapwith the highest average
confidence score is selected as the output for that detection.

Matching strategies for tracking

Following the detect-then-track paradigm, we require a
matching strategy to performing tracking. Given n hands
at time t − 1 and m hands at time t we use a similarity
function to derive similarity measures between each pair at
t − 1 and t . Common methods are intersection-over-union
(IoU) of bounding boxes, average L2-distance of the pre-
dicted joint locations, or L2-distance between the graph
pose embeddings. Similar to Ning et al. [15] we train a
GCN to output the embedding of each input hand pose,
X , defined simply as p̂ = GCN (X ). Here X ∈ R

J×C ,
where J is the number of joints and C is the number of
channels. For training, we use the contrastive loss [33],
L = 1

2

(
y ∗ d + (1 − y) ∗ max

(
0, (m − d)2

))
. The con-

trastive loss places embeddings close in perceptual distance.
For a pair of embeddings p̂1v and p̂2v , the variable d repre-
sents the L2-distance between the two, d = ‖ p̂1v − p̂2v‖2.
y is a binary label indicating the same hand, 1, or differ-
ent hands, 0. m is the margin variable, a hyperparameter
used for tuning. For each item in our minibatch, positive
pairs are selected between adjacent frames with probabil-
ity p = 0.5 and negative pairs are selected from the same
video with p = 0.4 or from a different video with p = 0.1.
We evaluate our trained GCNmodels using the classification
accuracy between pairs of selected hands, achieving classi-
fication accuracies of > 97%.
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Fig. 3 We show samples from our annotations. Each hand is labeled with a bounding box, handedness, tracking id, and visibility of joints

Dataset

We lack data for training and benchmarkingmodels onmulti-
instance hand tracking. Therefore we introduce Surgical
Hands, a novel video dataset for multi-instance articulated
hand pose estimation and tracking in the surgical domain, the
first of its kind. From publicly available data, we collect 28
videos with a view of the hands of surgical team members
during the operation. From those videos, we extract 76 clips
sampled at 8 frames per second and collect bounding box,
class label, tracking id, and pose annotations using Amazon
Mechanical Turk (AMT) and amodified version of Visipedia
Annotation Tools. 2 We show samples of our annotations in
Fig. 3. Each hand is labeled with the handedness (left/right),
21 joints, and properties for each joint: visible, occluded
or non-available. Visible implies that the joint is visibly on
screen, occludedmeans the joint is obstructed but its position
can be estimated, not-available means the joint position can-
not be inferred or it is off-screen. From our collected data,
we have a total 2, 838 annotated frames and 8, 178 unique
hand annotations from 21 unique annotators. Each annotated
frame contains a mean of 2.88 hands, median of 3 hands, and
a maximum of 7 hands.

Experiments and evaluation

Implementation details

We adopt a ResNet-152 pose estimation model [12] to first
train on hand pose image data, CMU Manual Hands and

2 https://github.com/visipedia/annotation_tools.

Synthetic Hands [28]. We use a batch size of 16, training
for 30 epochs, with an Adam optimizer and a learning rate
of 1e−3. When finetuning on Surgical Hands we use leave-
one-out cross-validation and split our data into 28 different
folds. Clips belonging to the same video are in the same val-
idation fold, and the reported metrics are averaged across all
folds. We employ a variant of curriculum learning that grad-
ually transitions to predicted priors from ground truth priors.
A predicted prior at t − δ is sampled with a probability of
p = 0.10∗epoch, until only predictions are used for training
at epoch 10 and onward. We empirically select δ = 3 dur-
ing training. For all training, we apply random rotations and
horizontal flipping as data augmentation. When training the
GCN for tracking, we using a batch size of 32 and train for
60 epochs and an initial learning rate of 1e−3. We normalize
X to 0-1, relative to keypoint positions along the bounding
box. The input dimension for each input is J × C where J
represents the number of joints and C is the number of chan-
nels. We useC = 2 for x-y coordinates andC = 3 to include
annotation state (0 = unannotated, 1 = annotated, or 0-1 for
predicted keypoints). We adopt a two-layer Spatio-Temporal
GCN [15,34] to output a 128-dimensional embedding of each
pose.

Detection performance

We evaluate detection performance usingmean Average Pre-
cision (mAP), the choice metric in human pose evaluation,
on our Surgical Hands dataset. MAP is computed using
the Probability of Correct Keypoints (PCK), measuring the
probability of correctly localizing keypoints within a normal-
ized threshold distance, σ . This threshold distance, σ=0.2, is
empirically chosen to be roughly the ratio between the length
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Table 1 Mean Average
Precision (mAP)

Model Wrist Thumb Index Middle Ring Pinky mAP

Baseline [12] 67.23 60.12 63.29 53.77 48.29 39.28 53.59

Our model 65.51 62.66 64.99 57.88 51.40 44.26 56.66

Performance is averaged across all folds
The bolded numbers represent the best performing scores, in comparison between method

Fig. 4 We show qualitative
samples of frames from the best
performing (top row) and lower
performing (bottom row)
videos. (Best viewed in color)

Table 2 We optimize for the multiple Object Tracking Accuracy (MOTA), each performance metric is averaged across all validation folds

Model MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec. Rec. F1 Score
wrist thumb index middle ring pinky total total total total total

Baseline [12] 36.7 45.83 57.35 45.53 34.63 8.49 38.27 85 78.3 59.13 67.37

Our model 30.99 44.74 58.21 48.90 36.46 10.39 39.31 85.28 77.61 62.69 69.35

The bolded numbers represent the best performing scores, in comparison between method

of a thumb joint and the enclosing bounding box. Pose predic-
tions are matched to ground truth poses based on the highest
PCK and unassigned predictions are counted as false pos-
itives. AP for each joint is computed and mAP is reported
across the entire dataset. In Table 1 we report the mAP at the
highest MOTA score (defined in the next section) for each
model. With our recursive heatmap strategy we are able to
obtain higher average precision across the different joints in
the hand. In Fig. 4 we show qualitative examples of our hand
pose estimation on various frames from our Surgical Hands
dataset. The top row clips are sampled from the best perform-
ing clips, while the bottom row are from theworst performing
clips. We see that the model suffers most in cases of heavy
occlusion, where the camera view excludes the majority of
the hand. Ambiguity in the position of the hand furthers the
localization errors, e.g., top-down view with most fingers
occluded. The best performing cases are those with balanced
lighting and an unambiguous view of the first few digits.

Tracking performance

To measure tracking performance, we use Multiple Object
Tracking Accuracy (MOTA) which also takes into account
the consistency of localized keypoints between frames.

MOTA [26] is defined as:

MOTA = 1 −
∑

t (FNt + FPt + IDSWt )∑
t Gt

(2)

This encapsulates errors that may occur during multiple
object tracking: false negatives (FN), false positives (FP),
and identity switches (IDSW). FN are joints for which no
hypothesis/prediction was given, FP are the hypothesis for
which no real joints exists, and IDSW are occurrences where
the tracking id for two joints are swapped. G represents the
total number of ground truth joints. The range of values for
the MOTA score is (−∞ to 100].

We measure perform tracking using three methods: IoU,
L2-distance, and GCN. Intersection-over-union (IoU) mea-
sures overlap of two bounding boxes using the ratio: area
of intersection over total area, between subsequent frames
in our case. L2-distance measures the average L2 distance
of regressed keypoints between frames. GCN measures the
embedding similarity between the encoded keypoints to
determine matches. We show quantitative results from our
experiments in Table 3 and the per-joint performance in
Table 2. Each row is maximized for the highest MOTA score
across all hyperparameters, shown alongwith its correspond-
ing mAP. Our method has a higher MOTA score across all
of the videos, but our corresponding mAP scores are greater
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Fig. 5 We show a qualitative
comparison between the
baseline model and our method.
We note a higher recall and
consistency between frames, as
shown for the hand to the left.
Even when the pinky finger is
not visible, the past predictions
reinforces those joint locations

Table 3 MOTA performance
between matching strategies,
averaged across all folds. Each
row is optimized for highest
MOTA performance. Matching
strategies share the same base
model, so it is possible for them
to share the same mAP score

Model Matching strategy Perfect det. Object det.

mAP MOTA mAP MOTA

Baseline [12] IoU 53.59 38.27 48.15 31.46

L2 52.65 37.78 47.44 31.14

GCN 52.65 36.78 47.44 30.03

Our model IoU 56.66 39.31 50.04 33.19

L2 56.66 38.94 50.04 32.84

GCN 56.66 38.22 50.04 32.24

The bolded numbers represent the best performing scores, in comparison between method

Table 4 Ablation analysis using IoU matching strategy (δ = 1)

Model variant Matching strategy Perfect det.

mAP MOTA

NC-NA IoU 55.23 38.31

NC IoU 56.00 38.13

NA IoU 54.70 38.45

Full model IoU 56.66 39.31

NC No convolutional feature map, NA No attention mechanism
The bolded numbers represent the best performing scores, in compari-
son between method

by a much larger margin. This points to our advantage from
temporally leveraging predictions from previous frames dur-
ing the detection step. We show an example in Fig. 5, in a
frame-by-frame comparison between the baseline and our
method, we note a higher recall and improved localization.
While the last digit is obstructed, its position can be rea-
sonably inferred. In the last two columns of Table 3 we use
an object detector to detect hands, the prior two columns
(perfect detections) use the manual annotations. Training an
object detector on 100 Days of Hands (100DOH) [35], we
see a lower localization and tracking accuracy but a consis-
tent trend from the baseline. The quality of the detections
serve as a bottleneck, but the margins of improvements are
very similar. While trained with perfect detections as priors,
they are not required to maintain performance in practice.

Table 5 Effect of δ

Model variant Matching strategy Perfect det.

mAP MOTA

δ = 1 IoU 58.64 39.03

δ = 2 IoU 54.71 38.42

δ = 3 IoU 56.66 39.31

δ = 4 IoU 56.35 38.09

Each model is trained with a separate δ value
The bolded numbers represent the best performing scores, in compari-
son between method

Ablation analysis

We perform an ablative analysis on the convolutional map
in Matt and the fusing module Mfus. We experiment with no
prior convolutional feature map (NC), no attention mech-
anism (NA), and removal of both (NC-NA), showing our
results in Table 4. Our full model has the highest scores over-
all. The attentionmechanism and convolutional feature maps
have opposing effects on themAPandMOTAscores. TheNC
model does not use a convolutional feature map from frame
t , so the fusing module is applied directly to both un-altered
heatmaps from t − δ and t . We found this increases the mAP
value, but lowers the MOTA score. The NA model directly
concatenates the convolutional features and the heatmaps,
with no attention mechanism. This has the opposite effect,
decreasing the mAP significantly but slightly increasing the
overall MOTA score. Without contextual convolutional fea-
tures (NC and NC-NA), the model can still learn to use the
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Fig. 6 Optimized for maximum
MOTA score, we show the top
performing models on
PoseTrack18. Consistent with
our earlier findings, our model
maintains a higher mAP for
comparable MOTA scores

prior prediction and improve its detection score. On the con-
trary, no attention mechanism brings a drop in mAP, which
may be attributed to an unrefined prior with noisy features.
The small increase in the MOTA score is likely from fewer
false positives produced by thatmodel, due to a slightly lower
mAP.

We also explore the value of our hyperparameter, δ, during
training. We use values δ = {1, 2, 3, 4} and show our results
in Table 5. Optimizing for highest MOTA score, we found
δ = 3 to be best with 39.31, followed by δ = 1 with a
smaller MOTA score (39.03) but a higher mAP (58.64 vs
56.66).We find a nonlinear correlation between themAP and
MOTA scores, showing a trade-off in mAP when optimizing
for the tracking performance. The best strategy is one that
maximizesMOTAaccuracywithminimal loss in localization
precision.

Evaluation on human pose

We executed additional experiments on the PoseTrack18
dataset between our model and our re-implementation of
the baseline. From Fig. 6, we show a narrowed gap in per-
formance but our findings are consistent with our earlier
experiments. Our model maintains a higher mAP score for
the highest MOTA values. Given the trade-off that occurs
between mAP and MOTA, this means our model is more
likely to retain its localization precision at higher tracking
accuracies.

Conclusion

In this work, we introduce Surgical Hands, the first articu-
lated multi-hand pose tracking dataset of its kind. Addition-
ally we introduce CondPose, a novel network that makes

conditional hand pose predictions by incorporating past
observations as priors. We show that when compared with
a frame-wise independent strategy, we have better perfor-
mance in localizing and tracking hand poses. More so, a
higher localization accuracy for comparable tracking per-
formance. While tracking drives the consistency of joints
through time, the actual shape and characteristics of the hand
is described by the localization precision.With a higher local-
ization precision and better tracking still, we can guarantee a
better representation of the hands in the scene. While not the
focus of this work a reliable hand tracking method can pro-
vide a salient signal that can be used to approximate surgical
skill or understanding actions.
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