Skip to main content
. 2022 Nov 7;41(2):187–198. doi: 10.1007/s40273-022-01157-3

Table 4.

Ranking the performance of models

Models GMAE Rank in GMAE GMSE Rank in GMSE Predicted mean Rank in predicting mean Predicted minimum Rank in predicting minimum Predicted maximum Rank in predicting maximum Average ranking
Direct mapping (using explanatory variable set 5)
 OLS 0.0889 4 0.0242 3 0.8280 4 −0.2914 5 1 1 3.4
 Tobit 0.0897 6 0.0245 4 0.8201 5 −0.1071 8 0.9532 8 6.2
 GLM 0.0883 2 0.0240 2 0.8279 1 −0.3335 1 0.9971 5 2.2
 CLAD 0.0911 7 0.0251 6 0.8371 7 −0.2941 4 1 1 5.0
 Betamix 0.0888 3 0.0245 5 0.8279 1 −0.2911 6 0.9970 6 4.2
 ALDVMM-2 part 0.0882 1 0.0229 1 0.8279 1 −0.3246 2 0.9972 4 1.8
 ALDVMM-3 part 0.0893 5 0.0256 7 0.8301 6 −0.2954 3 0.9958 7 5.6
Indirect mapping
 GLOGIT 0.1010 8 0.0346 8 0.8413 8 −0.2520 7 1 1 6.4

All the reported statistics are after truncation

Explanatory variables for set 5: the PROMIS-29 (as categorical variables), age, age squared and sex

ALDVMM Adjusted Limited Dependent Variable Mixture Model, ALDVMM-2 part ALDVMM model with two components, ALDVMM-3: part ALDVMM model with three components, Betamix Mixture beta regression model, CLAD censored least absolute deviation, GLM generalised linear model, GLOGIT generalised logistic regression, GMAE geometric mean absolute error, GMSE geometric mean squared error, OLS ordinary least square