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Abstract
Quantification of brain oxygenation and metabolism, both of which are indicators of the level of brain activity, plays a vital 
role in understanding the cerebral perfusion and the pathophysiology of brain disorders. Magnetic resonance imaging (MRI), 
a widely used clinical imaging technique, which is very sensitive to magnetic susceptibility, has the possibility of substitut-
ing positron emission tomography (PET) in measuring oxygen metabolism. This review mainly focuses on the quantitative 
blood oxygenation level-dependent (qBOLD) method for the evaluation of oxygen extraction fraction (OEF) in the brain. 
Here, we review the theoretic basis of qBOLD, as well as existing acquisition and quantification methods. Some published 
clinical studies are also presented, and the pros and cons of qBOLD method are discussed as well.

Keywords Quantitative BOLD · Oxygen extraction fraction · Static dephasing regime · Brain diseases

Abbreviations
OEF  Oxygen extraction fraction
MRI  Magnetic resonance imaging
qBOLD  Quantitative blood oxygenation 

level-dependent
MqBOLD  Multi-parametric qBOLD
Yv  Venous oxygen saturation
Ya  Arterial oxygen saturation
DBV  Deoxygenated blood volume
CBV  Cerebral blood volume
CBF  Cerebral blood flow
CaO2  Arterial oxygen content
SE  Spin echo
GRE  Gradient recalled echo

EPI  Echo-planar imaging
ASE  Asymmetric spin echo
GESSE  Gradient echo sampling of spin echo
DSC  Dynamic susceptibility contrast
FLAIR  Fluid attenuated inversion recovery
PET  Positron emission tomography
ASL  Arterial spin labeling
VSSL  Velocity-selective spin labeling
TRUST  T2-Relaxation-Under-Spin-Tagging
QSM  Quantitative susceptibility mapping
QUIXOTIC  Quantitative imaging of extraction of oxy-

gen and tissue consumption
CSF  Cerebrospinal fluid
ISF  Interstitial fluid
SCD  Sickle cell disease
AIS  Acute ischemic stroke
cSVD  Cerebral small vessel disease

Introduction

Oxygen extraction fraction (OEF), the ratio of oxygen 
consumed as it diffuses from blood to tissues through the 
capillary network, is a specific biomarker that is under 
extensive research in clinical practice for evaluating tissue 
viability, cerebral tumors (Brown and Giaccia 1998; Ito 
et al. 1982), stroke (Derdeyn et al. 2002, 1998; Gupta et al. 
2012), and the treatment of Alzheimer’s disease (Iadecola 
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2004; Ishii et al. 1996). In the absence of adequate cerebral 
blood flow (CBF), the elevation of OEF is considered to 
be a compensatory mechanism (Jordan and DeBaun 2018). 
From the 1980s onwards, quantitative research of cerebral 
blood oxygen has been carried out progressively with posi-
tron emission tomography (PET) using 15O-radiotracers, 
and the method for measuring OEF was established (Min-
tun et al. 1984). The PET results showed that the value of 
OEF ranged from 40% to 44% in the different cortical areas 
(Nakane et al. 1998; Yamauchi et al. 1996). However, due 
to the low spatial resolution and high radiation dose, the 
utility of PET-based methods was inhibited. With lower 
price and higher availability compared to PET, magnetic 
resonance blood oxygenation level-dependent (BOLD) 
contrast imaging may provide cerebral hemodynamic 
information related to oxygen metabolism, indicating that 
monitoring cerebral OEF using magnetic resonance imag-
ing (MRI) would be of great value of clinical applications 
and more flexibility for research (Yablonskiy et al. 2013).

With the advancements in magnetic resonance  (MR) 
technology and essential physiological models, several non-
invasive MRI-based methods for OEF measurements have 
been cultivated and developed rapidly. These approaches 
can be divided into three main categories including phased-
based measurement (Fan et al. 2012; Fernández-Seara et al. 
2006; Jain et al. 2010; Wehrli et al. 2017), intravascular 
T2-based quantification (Golay et al. 2001; Oja et al. 1999), 
and extravascular T2'-based measurement integrating the 
BOLD effect (An and Lin 2000, 2003; He and Yablonskiy 
2007; Xie et al. 2011; Yin et al. 2018). All three methods 
presuppose that deoxygenated blood modulates the MR sig-
nal, and thus, indirectly reflects the change of blood oxygen 
metabolizing in the brain.

The first class of method utilizes phase image to exam-
ine susceptibility difference between venous blood (i.e., 
the sagittal sinus) and the surrounding tissues (Jain et al. 
2010). Initially, the global estimation of brain oxygenation 
by targeting the draining veins is the primary concern of this 
type of technology, known as susceptibility-based oxime-
try. With the emergence of quantitative susceptibility map-
ping (QSM), it becomes possible to derive absolute value 
of susceptibility at the voxel level (de Rochefort et al. 2010; 
Liu et al. 2012), and the phase-based measurement can be 
extended to small cortical veins (Fan et al. 2019; Lu et al. 
2021; Probst et al. 2021), so as to obtain the regional values 
of OEF. However, it is still difficult to quantify the parenchy-
mal OEF and generate voxel-wise mapping based on QSM 
data, unless vasoconstrictive challenge (Zhang et al. 2015, 
2017) or time-consuming optimization methods are used 
(Cho et al. 2018, 2020a, 2021, b). But these methods are not 
conducive to clinical application and also need more tests.

The second class of method obtains intravascular T2 
relaxation time, which can be converted to venous oxygen 

saturation (Yv) with a calibration plot (van Zijl et al. 1998). 
OEF can then be calculated as,

where Ya is the arterial oxygenation close to 100% under 
normal conditions (Ross et al. 2013). In order to overcome 
the partial volume effects and obtain a completely isolated 
venous blood signal, only large veins were generally targeted 
(Golay et al. 2001; Oja et al. 1999), but this remained dif-
ficult to achieve due to the spatial resolution limitation until 
the introduced arterial spin labeling (ASL) technique (Alsop 
et al. 2015). A pulsed-ASL-based technique, T2-Relaxa-
tion-Under-Spin-Tagging (TRUST) proposed by Lu and Ge 
(2008), labels distal veins and the signal contribution from 
static tissue,  and cerebrospinal fluid (CSF) is eliminated 
via simple control-label subtraction. However, similar to 
other T2-based approaches, TRUST can only measure the 
blood oxygen saturation in large venous vessels and esti-
mate global OEF value (Lu et al. 2012). The quantitative 
imaging of extraction of oxygen and tissue consumption 
(QUIXOTIC) technique is another representative intravas-
cular T2-based approach that applies the velocity-selective 
spin labeling (VSSL) module to eliminate the signal above 
a preset cutoff velocity, leaving the voxel signal to come 
exclusively from the contribution of venous blood, enabling 
voxel-wise OEF mapping (Bolar et al. 2011). However, the 
cutoff velocity, as well as the setting of the inversion pulse 
time used to suppress the arterial signal, depends on the 
physiological blood velocity distribution and the empirical 
value of blood T1 (Bolar et al. 2011), making it challenging 
for QUIXOTIC technology to cope with the complex and 
variable clinical manifestations of cerebrovascular disease.

The third class of method generally refers to the quan-
titative BOLD (qBOLD), which is the main topic of this 
review. Ever since the analytical tissue model was proposed 
by Yablonskiy and Haacke (1994), qBOLD has been greatly 
enriched and thrived as one of the MRI-based approaches for 
the measurement of OEF. Quantitative BOLD is quite differ-
ent from the first two types of methods. As the name implies, 
the qBOLD approaches are a typical application of hemody-
namics in the brain utilizing the widely recognized BOLD 
effect in functional MRI (Bandettini et al. 1992; Frahm et al. 
1993; Kwong et al. 1992; Ogawa et al. 1992). These methods 
are based on the signal attenuation model, which is capa-
ble of describing signal changes induced by the presence of 
deoxyhemoglobin (dHb) at different echo times, and a set 
of parameters related to cerebral blood oxygen activity in 
the model would be obtained by means of fitting the experi-
mental curve to deduce the theoretical OEF value (An and 
Lin 2000, 2003; He and Yablonskiy 2007). Before the year 
of 2010, the qBOLD approaches showed more prospects 

(1)OEF =
Ya − Yv

Ya
× 100%
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compared to the phase-based and T2-based quantification 
because such techniques were independent of blood vessel 
geometry and only considered the statistical characteristics 
of blood vessel distribution in the brain. Therefore, quantita-
tive BOLD is essentially a method capable of quantifying 
the tissue OEF and thus producing a voxel-wise mapping. 
Moreover, qBOLD approaches have been put into clinical 
trials for a long time (An et al. 2001, 2009, 2015; Lee et al. 
2003; Wang et al. 2021b; Xie et al. 2011; Yu et al. 2013) 
and have been used to access OEF fluctuation during the 
functional stimulation (Yang et al. 2019; Yin et al. 2018).

Of course, the qBOLD approaches also present some 
problems. As a model-based and modified gradient recalled 
echo (GRE) technology, the estimation errors of OEF are 
attributed to two factors, one being the model’s premise 
assumptions and the other being the complex indetermi-
nate relationships between the parameters. Therefore, some 
studies have combined qBOLD with intravascular T2-based 
methods to extract information on venous hemodynamics 
using the VSSL module (Lee et al. 2018), thus removing 
the coupling between hemodynamic parameters and OEF. 
Alternatively, qBOLD can also be adapted in combination 
with phase-based methods to remove unrealistic assump-
tion such as constant non-blood tissue susceptibility in the 
whole brain, using the QSM susceptibility information for 
better dealing with the detailed tissue microstructure (Cho 
et al. 2018). It can be assumed that the quantification of 
qBOLD may be further improved if both susceptibility and 
hemodynamic information are obtained simultaneously (Lee 
and Wehrli 2022), and the fact is that the qBOLD technol-
ogy itself is constantly being developed and improved all 
these years.

In this review, we focus only on the qBOLD technique 
and purpose to introduce the basic technical methodology of 
qBOLD and the clinical work, which have been carried out 
to have a general overview of the current status and devel-
opment foreground of this research area. Specifically, we 
start with an overview of the most representative theoretical 
models, followed by some specific details and extensions of 
the methodology, and finally the application of the qBOLD 
technique in brain diseases.

Theory for qBOLD

Simplistic Model

The simplistic model is actually very similar to water in a 
phantom (He and Yablonskiy 2007). This one-component 
structure cannot describe the actual brain structure, but the 
abstracted model, which has been widely used in OEF estima-
tion and studies of cerebrovascular diseases, could improve the 
generalization,  and it is reasonably acceptable (An et al. 2015; 

Lee et al. 2003; Wang et al. 2021b; Xie et al. 2011; Yin et al. 
2018; Yu et al. 2013).

The fundamental assumption of the qBOLD model is that 
the blood vessels in each voxel are uniformly and randomly 
distributed (An and Lin 2000; An et al. 2001). Relaxation rate 
constant R�

2
 is sensitive to mesoscopic scale magnetic field 

gradients (Stone and Blockley 2017), and in general the rela-
tionship between R�

2
 and OEF is described in the following 

analytical form (An and Lin 2000; He and Yablonskiy 2007),

where γ in Eq. 2 is the hydrogen nucleus spin magnetic ratio, 
which takes the value of 2.68 × 108rad∕s∕tesla ; Hct is the 
hematocrit, in the large blood vessels, with a typical value 
in human body of 0.42 (Lu et al. 2004), and the Hct ratio 
of tissue to large blood vessels is about 0.85 (Eichling et al. 
1975) so that the small-vessel hematocrit can be calculated 
as 0.357; Δ�0 is the susceptibility difference between com-
pletely deoxygenated and oxygenated red blood cells, which 
is generally taken as 0.27 ppm per unit Hct (Spees et al. 
2001); �� is the dHb-induced frequency shift, and DBV is 
deoxygenated blood volume, mainly contributed by veins; 
B0 is the main magnetic field, and generally the experiments 
based on qBOLD to calculate OEF are done at 3 T.

The theory describing the evolution of MR signals in bio-
logical tissues under static magnetic field inhomogeneities, 
called static dephasing regime, is also the basis of qBOLD 
model (Yablonskiy and Haacke 1994). In the static dephas-
ing regime, the characteristic dephasing time caused by static 
magnetic field inhomogeneities is much shorter than the char-
acteristic diffusion time. The effect of water diffusion on signal 
attenuation of free induction decay (FID) is therefore ignored 
in the simplistic model. Only considering the extravascular 
tissue compartment, MR signal acquisition around the spin 
echo (SE) can be achieved by Gradient Echo Sampling of Spin 
Echo (GESSE), which is an early implementation of qBOLD 
quantitative imaging sequence (An and Lin 2000). S0 is the 
signal amplitude with the spin-echo as the time origin and the 
signal from brain tissue, decays as an exponential form:

Here the Rt
2
 relaxation rate is a constant for brain tissue, 

J0(x) is the zero-order Bessel function. The characteristic 
time tc is given by:

(2)

R
�

2
= DBV ⋅ �� = DBV ⋅ � ⋅

4

3
⋅ � ⋅ Δ�0 ⋅ Hct ⋅ OEF ⋅ B0

(3)St(t) = S0e
−Rt

2
⋅t
⋅ e−DBV⋅fc(t∕tc)

(4)fc
�

t∕tc
�

=
1

3

1
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√
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3u2

�
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�
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⋅

t
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According to the asymptotic properties of Bessel func-
tions, the variation of R�

2
-weighted signal can be divided into 

two time regimes, a short time and a long time scale (An and 
Lin 2000). The characteristic time, 1.5tc is generally consid-
ered to be the boundary between these two regimes (An and 
Lin 2000; He and Yablonskiy 2007; Yin et al. 2018). For 
the times t greater than 1.5tc , the one-component signal, St , 
is linearly exponential. For shorter time, the signal decay 
profile is quadratically dependent on time:

It is clear that the acquired signal with t > 1.5tc around 
the spin echo can be distinguished by Eq. 7 for the two 
relaxation components R2 and R�

2
 . Logarithmic transforma-

tion on both sides of Eq. 7, the relaxation rate R�

2
 can be 

quickly quantified by linear fitting (An and Lin 2000; Yin 
et al. 2018). This is the most important step in quantifying 
OEF using the qBOLD method, which will be discussed in 
detail in “Parameter Quantification”.

Multicomponent Tissue Model

Fujita et al. have demonstrated that the measurement of R�

2
 

is correlated with the spin echo time in the GESSE sequence 
(Fujita et al. 2003). That’s because the brain tissue is a multi-
component structure, and each component has a different 
T2 relaxation constant. Thus, there will be different weights 
on the acquired images for different spin echo times. The 
correct brain tissue model, consequently, should consider 
with the multi-component structure to get more accurate 
estimation (Fujita et al. 2003). He and Yablonskiy proposed 
a modified qBOLD model, in which the signal strength was 
contributed mainly from three components, intravascular, 
extravascular tissue and finally extracellular fluid, including 
CSF and interstitial fluid (ISF) (He and Yablonskiy 2007). 
For the multi-component qBOLD model, the normalized 
signal forms of these three components were represented as 
sb, st and se . Hence, the Eq. 3 should be rewritten as follows 
(He et al. 2008; Yablonskiy et al. 2013):

where parameters � and �′ were the fractions of signal from 
brain parenchyma and CSF/ISF at the spin echo, which 
depended on the relaxation rate constants of brain tissue 
components, the relative spin densities of the tissue com-
ponents and the pulse sequence details. The signal profile 

(5)tc = 1∕�� =
DBV

R
�

2

(6)St,S(t) = S0e
−0.3⋅DBV(t∕tc)

2

e−R
t
2
⋅t t < 1.5tc

(7)St,L(t) = S0e
DBVe−R

�

2
⋅te−R

t
2
⋅tt > 1.5tc

(8)S(t) = S0 ⋅ F(t) ⋅
[

� ⋅ st + �� ⋅ se + DBV ⋅ sb
]

of brain parenchyma was unified with the simplistic model 
(see Eq. 3), and the function F(t) represents the macroscopic 
field inhomogeneities.

This model assumed that the extracellular fluid signal, 
se had the frequency Δf  and phase � shifts relative to the 
extravascular tissue component on account of the different 
protein and lipid content between the CSF/ISF and brain 
cellular tissue:

For intravascular signals, given the assumption that ran-
dom orientation distribution of vessels in each voxel, the 
frequency was also considered to be uniformly distributed, 
and the normalized signal can be presented in the form 
(Sukstanskii and Yablonskiy 2001):

where function C(x) and S(x) are the Fresnel integral func-
tions, sign(x) is a sign function (+ 1 for positive arguments 
and − 1 for negative arguments), and �� is the characteristic 
frequency shift as defined in Eq. 5. The multi-component 
model introduces a very large number of parameters, such 
as Δf  , � , � , etc. Most of the newly introduced parameters 
are simultaneously obtained by curve fitting except for the 
relaxation rate of blood Rb

2
 , which is based on empirical 

assumptions under different field strengths (He and Yablon-
skiy 2007; He et al. 2008).

In fact, it is also a simplification to divide the brain 
roughly into three components, but the relatively long 
exchange times give this model a certain feasibility 
(Yablonskiy et al. 2013). Due to the cumbersome post-
processing steps and the large number of parameters to 
be fitted, however, this model has not been widely used 
in human studies at present. Numerical simulation results 
showed that (Wang et al. 2013), although the multi-com-
ponent tissue model could more accurately describe the 
brain structure, additional parameters were introduced 
accounting for ISF/CSF signals, which also increases the 
relative errors. Conversely, the relative errors of fitting 
would be decreased if the model considered the intravas-
cular contribution. And the simulation also indicated that 
there was a minimum value of relative errors when the 
echo time TE ∼ 10tc located in the long-time regime, as 
shown in Fig. 1, which might provide some references 
for the optimization of MRI protocols and pulse sequence 
parameters.

However, also because of the multi-component model 
and more detailed description of the qBOLD theory pro-
posed by He and Yablonskiy (2007), the qBOLD technique 
gradually gained the attention of the academic community. 

(9)se(t) = e−R
e
2
⋅te−2�i⋅Δf ⋅t−i�
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The subsequent theoretical work and clinical promotion of 
qBOLD were greatly influenced by their work.

Diffusion qBOLD

The multi-component tissue model proposed by He and 
Yablonskiy could implement the OEF quantification, but the 
value of DBV and T2 were underestimated (He and Yablon-
skiy 2007). It is  suggested that if the model considered the 
diffusion effect, the T2 estimates would be improved (Kise-
lev and Posse 1999a, b). As mentioned above, the primary 
multi-component model was built on the static dephasing 
regime where the diffusion was negligible. Based on this 
assumption, it can be known that the attenuation of MR sig-
nal is independent of vessel radius. However, the phantom 
studies showed that the diffusion of water had a marked 
impact on the capillaries (Schröder et al. 2006). Sohlin and 
Schad (2011) expected that diffusion might be significant 
where the radius distribution of the capillary network was 
in the range of 20–4 µm in vivo, and the dynamic averaging 
effect would be extended to larger vessels at longer echo 
times in a spin echo experiment. Thus Dickson and col-
leagues suggested to replace the traditional static model with 
the diffusion dephasing model to obtain the more accurate 
and reliable tissue parameters by fitting the signal intensity 
of multiple echoes (Dickson et al. 2010).

Unlike the first two models, it is difficult for the diffusion 
dephasing model to establish an intuitive physical equation 

to fit the real signal in such a complex system that takes 
diffusion effects into account. Actually, the modeling of dif-
fusion qBOLD signal, as well as the quantitative approach, 
is more like a form of MR Fingerprinting (MRF) (Ma et al. 
2013). This means that for diffusion qBOLD, it is crucial 
to correctly simulate the motion of protons in the diffusion 
dephasing system so that an accurate dictionary consisting 
of quantitative parameters, such as OEF, DBV, etc. can be 
constructed.

The most important step in diffusion qBOLD was to gen-
erate the vascular system with a homogenous vessel density 
constrained within a sphere of radius RS , as shown in Fig. 2. 
And then Monte Carlo simulation was used to simulate the 
protons random walk in such vascular network. At each step 
of the random walk, the random shift of the protons in each 
direction followed a normal distribution N

(

0, �2
)

 . Given the 
diffusion coefficient D and the time interval Δt , the standard 
deviation could be written as (Stone et al. 2019b):

If it was further assumed that all these vessels had a uni-
form susceptibility (Dickson et al. 2010), the phase accumu-
lation of the proton arising from the vascular network could 
be linearly correlated with OEF (Boxerman et al. 1995).

Assuming that the final phase accumulation of each pro-
ton was Φ , then the decay of the signal was the collective 
contribution of these M protons,

(11)� =
√

2DΔt
Fig. 1  The comparison of the relative errors �DBV as functions of 
echo time (TE). Solid lines: one-compartment model; dashed lines: 
two-compartment model (i) tissue and ISF/CSF; dotted lines: two-
compartment model (ii) tissue and blood; dash–dotted lines: three-
compartment model (iii) tissue, CSI/CSF, and blood [Adapted from 
Wang et al. (2013) with permission]

Fig. 2  The simulation diagram of vessel system. RS = 900 μm, Num-
ber of vessels = 100
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The more details can be referred to the numerical simula-
tion work of Dickson et al. (2010) and Stone et al. (2019b).

In order to match the collected real signals with the 
parameters of interest for the qBOLD approach, as men-
tioned in the very beginning of this section, it is necessary 
to construct a look-up table containing parameters, such as 
OEF, DBV, and diffusion coefficient D, varied at equal inter-
vals by Monte Carlo simulations. As the value of D can be 
obtained from diffusion weighted imaging (DWI), we need 
only to estimate the same number of parameters by fitting a 
4D b-spline in the look-up table for the diffusion qBOLD. 
Dickson et al. (2010) had shown that the simulated results 
were in good agreement with the multi-component tissue 
model when the diffusion coefficient was set to zero. How-
ever, due to the diffusion effect, the magnetic field before 
and after the refocusing pulse were not equivalent, and the 
protons couldn’t be entirely re-phased at the spin echo (Dick-
son et al. 2010). Therefore, the peak point in the diffusion 
dephasing regime appeared earlier than in the static dephas-
ing regime, and the amplitude was somewhat reduced.

As we can see, the diffusion qBOLD clearly has a great 
similarity with the static dephasing model of the vascular 
network. Blood vessels are modeled as random distributed, 
infinitely long cylinders with uniform blood oxygenation, 
and the DBV controls the physical details of the network 
geometry. The only difference was that the diffusion effect 
was taken into account in the random walk of protons 
through the vascular network.

Methodological considerations for qBOLD

Parameter quantification

Quantifying OEF based on the qBOLD theoretical model 
is essentially a non-linear process. But for the simplistic 
model, each physiological parameter is obtained step by 
step, and the fitting process is only reflected in the quantifi-
cation of R�

2
 (An and Lin 2000; Yin et al. 2018). The step-

wise quantification approach may introduce error propaga-
tion. In contrast, the multi-component tissue model as well 
as the diffusion model are quantified simultaneously for all 
parameters, which can overcome this problem (Cherukara 
et al. 2019).

He and colleagues first validated the accuracy of quanti-
fying OEF using the multi-component tissue model in twelve 
male rats, and the experiment showed that the qBOLD 
results were in high agreement with pulse oximetry under 

(12)S(t) =
1

M

|

|

|

|

|

|

M
∑

i=1

e−iΦi

|

|

|

|

|

|

two different anesthesia methods (He et al. 2008). Mean-
while, the diffusion qBOLD was proposed to test for the 
sources of quantitative error in parameters such as DBV and 
OEF in vivo (Dickson et al. 2010), as shown in Fig. 3.

A total of eight subjects were studied and the higher OEF 
was obtained in absolute value, with the average OEF value 
around 38% and smaller variance compared to the static 
dephasing model without considering diffusion (Dickson 
et al. 2010). The tissue T2 fitted by the diffusion qBOLD was 
indeed improved compared to the multi-component model, 
which was about 80.5 ms in gray matter and 71.3 ms in 
white matter (Dickson et al. 2010). However, the gray mat-
ter T2 was still lower compared to the results obtained from 
other relaxation parameters quantitative experiment (Spees 
et al. 2001). Moreover, similar to the multi-component tissue 
model, diffusion qBOLD still systematically underestimated 
DBV, suggesting that the effect of diffusion was not the main 
source of error in the DBV analysis (Dickson et al. 2010).

The multi-component model and diffusion qBOLD can 
theoretically reflect the real physiological tissue structure 
of the brain or delineate a relatively realistic proton tra-
jectory. We can hardly deny that these modified models 
are more reliable in quantifying OEF than the simplis-
tic model. However, due to the complexity of the model 
and the time-consuming Monte Carlo simulations, these 
methods are not easy to analyze, and the excessive param-
eters introduced by CSF compartments will increase the 
relative error during the post-processing fitting process, 
which will affect the accuracy of parameter quantifica-
tion (Dickson et al. 2010; Wang et al. 2013). Thus, for 

Fig. 3  Parameter maps from the diffusive qBOLD; a DBV, b OEF, 
c Tt

2
 , d D values from a co-registered DWI. [Adapted from Dickson 

et al. (2010) with permission]



107Measurement of Cerebral Oxygen Extraction Fraction Using Quantitative BOLD Approach: A Review  

1 3

the present, in some studies, the intravascular signal was 
suppressed by providing a flow dephasing gradient (An 
and Lin 2003; Wang et al. 2016a), and the signal from 
the extravascular fluid compartments, such as CSF, was 
eliminated using FLuid Attenuated Inversion Recovery 
(FLAIR) preparation pulses (Stone and Blockley 2017; 
Stone et al. 2019a), i.e., inversion pulses thus allowing the 
analysis of the qBOLD signal consistent with the assump-
tions of the simplistic model. On the basis of such an idea, 
several protocols have been proposed, and a unified post-
processing process has been established. In the next part of 
this section, we will elaborate on the detailed steps of the 
simplistic model to calculate OEF based on a set of gra-
dient echo signals acquired by the conventional GESSE, 
which can be easily extended to other acquisition methods.

The value of OEF can be obtained directly from the 
linear relationship defined by Eq. 2, so DBV and R�

2
 are 

calculated first. In order to remove the R2 effect on the 
signal from Eqs. 6 and 7, a pair of echoes on either side of 
the spin-echo is then calculated:

TE is the echo time of the spin-echo, and τ is the time 
interval between the spin echo and the acquired gradient 
echoes. In order to improve the accuracy of R2 , more sym-
metric gradient echoes can be used to calculate (An and 
Lin 2000). After obtaining R2 , the R2 effect is removed 
from the original signal according to Eqs. 6 and 7, and 
take the logarithm of both sides of the equations. ΔTEi 
represents the time interval between the ith gradient echo 
and the spin echo, rewriting the above two equations:

We will find that ln
[

SL
(

ΔTEi

)

]

 is linearly dependent on 
ΔTEi , using linear least squares to fit the curve of Eq. 15, 
and the slope is R�

2
 . We should pay attention to whether the 

selected gradient-echo moment is in the long-time scale, 
which directly indicates the value of ΔTEi . The value of 
DBV can be derived by dividing Eq. 7 by Eq. 6 with the 
following relationship:

where the first term is obtained by extrapolation and the 
second is the true signal value at the spin-echo moment, as 
shown in Fig. 4.

(13)R2 = ln

[

S(TE − �)

S(TE + �)

]

∕2�

(14)
ln
[

SS
(

ΔTEi

)

]

= C1 +
[

−0.3 ⋅ DBV ⋅

(

𝛿𝜔 ⋅ ΔTEi

)2
]

t < 1.5tc

(15)ln
[

SL
(

ΔTEi

)

]

= −R
�

2
⋅ ΔTEi + C2t > 1.5tc

(16)DBV = ln
[

SL,extrapolated(0)
]

− ln
[

SS(0)
]

After determining R2 , R
�

2
 and DBV, the value of OEF can 

be directly calculated by Eq. 2. The design of the echo time 
in the sequence parameters is very important, especially the 
choice of τ, which directly determines the accuracy of R2 
estimation and thus affects the accuracy of R�

2
 , ultimately 

affecting the OEF. By the verification of error analysis (An 
and Lin 2000). An and Lin (2000) proposed that, the time 
interval, satisfying this criterion 2τ ≈ 0.76∕R2 , would quan-
tify R2 more accurately and thus can better quantify the OEF.

What’s more, one point worth emphasizing is that what-
ever model we choose, it is important to recognize that a 
high signal-to-noise ratio (SNR) of the data is essential to 
obtain reliable fitting results (He and Yablonskiy 2007; 
Sedlacik and Reichenbach 2010; Yablonskiy 1998). The 
GESSE simulation results also showed that OEF could only 
be well estimated when a high SNR, greater than 500, was 
achieved (Sohlin and Schad 2009). Bayesian approach might 
be a good choice, combing the prior information of physi-
ological parameters and giving the parameter uncertainties 
(Cherukara et al. 2019; Wang et al. 2013). In addition to 
this, another optional and relatively simple method was pro-
posed to quantify OEF using separate measurements, called 
multi-parametric qBOLD (see Multi-parametric qBOLD) 
(Christen et al. 2012).

Sequence Design for qBOLD Signal Acquisition

The acquisition of qBOLD signal is generally based on two 
main sequences, GESSE and asymmetric spin echo (ASE). 
As shown in Fig. 5, at first glance, the overall structure of 
both is remarkably similar. There will be an array of gradient 

Fig. 4  Schematic of the qBOLD model describing the transverse MR 
signal decay in the presence of a blood vessel network. R�

2
 is inferred 

from the long-term regime, and DBV is  inferred from the mismatch 
between the linear intercept of this fit and spin echo signal (t = 0 ms). 
[Modified from Stone and Blockley (2017)]
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echoes on the left and right of the spin echo. The GESSE 
sequence has a fixed spin-echo moment and changes the gra-
dient echo time. In contrast, the ASE sequence has a fixed 
gradient-echo time, and changes the spin-echo moment by 
shifting the position of the 180° pulse. Through this way, the 
magnetic field fluctuation due to the changes in susceptibil-
ity can be evaluated (An and Lin 2003; Stone et al. 2019b).

Gradient Echo Sampling of Spin Echo

GESSE sequence acquires a set of gradient echoes around 
the spin echo. To ensure a good SNR for each echo data, 
the TE should not be longer than T2, so the echo spacing 
should be shortened and the bandwidth should be increased 
(Yablonskiy 1998). Of course, the use of 3D readout can 
also improve the SNR and reduce signal distortion due to 
macroscopic field inhomogeneities (He et al. 2008), but it 
may further increase the scan time. The first detailed analy-
sis using the GESSE sequence was performed based on a 
rigorous phantom design to assess the feasibility of qBOLD 
theory in terms of volume fraction and relaxation param-
eter quantification,  and it was concluded that the GESSE 
method had the ability to separate mesoscopic magnetic field 
inhomogeneity effects to extract tissue-specific physiological 
information (Yablonskiy 1998). This work was an important 
theoretical support for the qBOLD method based on GESSE 
acquisition toward in vivo experiments. Subsequently, this 
method was rapidly applied to healthy subjects using 2D 
acquisition, and the OEF value was in high agreement with 
PET results (An and Lin 2000; An et al. 2001; Lammertsma 
et al. 1983). It was also found that macroscopic magnetic 
field inhomogeneities could induce DBV overestimation, 
and additional acquisition of field maps was essential for 
quantitative correction of parameters (An and Lin 2002; He 
and Yablonskiy 2007).

However, the relatively long data acquisition time of 
GESSE makes it difficult to control the scan time to be clini-
cally acceptable, even if the echo spacing is controlled at 

1.5 ms (Xie et al. 2011). This question makes it challeng-
ing to perform whole brain high-resolution OEF imaging in 
clinical settings, not to mention the additional field maps to 
be acquired. In practice, the phase data of GESSE actually 
can be used directly to calculate the macroscopic field inho-
mogeneities, removing their contribution to the R�

2
 estimate 

(Dickson et al. 2010; Liu et al. 2020). The idea of using 
GRE phase information for correction is also reflected in 
the research of R∗

2
 mapping (Baudrexel et al. 2009; Sedlacik 

et al. 2014). In addition, the introduced CSF/ISF compart-
ment in the qBOLD model would also affect the fitting preci-
sion. Simon et al. (2016) proposed FLAIR-GESSE sequence 
with inversion time (TI) set at 1.38 s to suppress the CSF 
signal, thus raising the stability of OEF quantification.

Asymmetric Spin Echo EPI Approach

Due to the fixed echo time TE in the ASE sequence, the 
effect of T2 can be considered as a constant weighting in 
the signal (Blockley et al. 2013). Therefore, using single-
echo acquisition, ASE can directly estimate R�

2
 without the 

need for image acquisition, which is close to the spin echo 
in the GESSE (Blockley and Stone 2016), and it could also 
minimize the TE-dependent diffusion effects (An and Lin 
2003). The ASE sequence combined with the EPI readout 
compresses scanning time compared to GESSE, overcoming 
the problem of motion sensitivity due to the long acquisi-
tion (An and Lin 2003). It is the reason why ASE is more 
widely used in clinical research than GESSE, and it is more 
feasible in whole-brain OEF estimation. Houston et al. were 
early to observe the changes in MR signal relative to base-
line under hypoxic conditions using the ASE method only 
with a fixed time offset (Houston et al. 2000). Neverthe-
less, there were no quantitative studies based on the ASE 
method before the firstly proposed ASE-EPI-based method, 
and the images were acquired with different time offset to 
quantify OEF in normal subjects and the  relatively homo-
geneous results throughout the brain were obtained (An and 

Fig. 5  Sequence diagram of the qBOLD approach sequence; a two-dimensional, multi-echo gradient and spin echo sequence, b two-dimensional 
three-echo asymmetric SE echo-planar imaging (EPI) sequence
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Lin 2003). The flow dephasing gradient was also applied to 
suppress the intravascular signal, and the results showed that 
the lower b value (b = 13 s/mm2) was sufficient to do this 
(An and Lin 2003).

As with GESSE, correction of macroscopic field inho-
mogeneities is also essential for ASE method, but the dif-
ference is that this cannot be done with standard ASE data 
alone (Blockley et al. 2013). The acquisition of separate 
field maps is necessary, which in turn increases the scan-
ning time. In order to solve this problem, Blockley and Stone 
(2016) combined Gradient-Echo Slice Excitation Profile 
Imaging (GESEPI) technique with the ASE sequence, called 
GASE. GASE essentially oversampled in the slice direction 
(z-direction), and the z-direction maximum phase encoding 
value determined how much magnetic field gradient through 
slice can be compensated (Yang et al. 1998). This correc-
tion process was implemented directly through the GASE 
sequence, making the post-processing step much simpler 
(Blockley and Stone 2016). Based on their previous work, 
they later proposed the FLAIR-GASE sequence, which fur-
ther simplified the application of qBOLD and improved the 
robustness of the resultant OEF mapping after suppress-
ing the CSF signal (Stone and Blockley 2017). In general, 
because of the flexibility of ASE sequence, the shorter 
acquisition time, the relative ease of post-processing, and 
the great operability of sequence optimization, the qBOLD 
method using ASE to generate brain oxygenation mapping 
has quickly gained traction in clinical applications (An et al. 
2015, 2012; Chang et al. 2016; Fields et al. 2018; Guilliams 
et al. 2018; Sen et al. 2016; Stone et al. 2019a; Zhang et al. 
2013).

Multi‑parametric qBOLD

As mentioned in “Parameter Quantification”, the qBOLD 
method for multiparameter quantification such as OEF 
using GESSE or ASE single experiment relies heavily on 
high SNR to produce accurate results through fitting pro-
cedures (Ulrich and Yablonskiy 2016). Moreover, Sedlacik 
and Reichenbach's phantom study showed that if OEF and 
DBV were quantified simultaneously, this approach could 
lead to large variations due to their interdependent effects 
on the BOLD signal, whereas if one value was fixed first, 
the other parameter could be estimated more correctly (Sed-
lacik and Reichenbach 2010). Based on this idea, Christen et 
al. (2011) for the first time converted the multi-parameter 
fitting problem into a very direct univariate fitting task by 
measuring blood volume and relaxation parameters sepa-
rately, and then tested this approach on healthy rats, which 
was correlated well with the direct measurements (Bouzat 
et al. 2008; Christen et al. 2011). This study was the origin 
of the multi-parametric qBOLD (MqBOLD).

On the basis of animal studies, Christen and col-
leagues continued to translate this approach into clinical 
studies, further simplifying post-processing steps, and deter-
mined the specific standard scanning protocol of MqBOLD 
in  vivo (Christen et  al. 2012). Most of the subsequent 
MqBOLD-based studies have inherited this specification 
(Hirsch et al. 2014; Kaczmarz et al. 2020) and used con-
cise formulas to generate OEF mapping, rewriting Eq. 2 to 
Eq. 17:

The only difference between these two equations is that 
cerebral blood volume (CBV) here represents the average 
contribution of arterial and venous blood instead of the orig-
inal DBV, so strictly speaking, it is not entirely the effect 
of deoxyhemoglobin on the BOLD signal (Christen et al. 
2011, 2012). Using the MqBOLD approach, we need to use 
three independent experiments, multi-echo GRE, multi-echo 
SE, and dynamic susceptibility contrast perfusion-weighted 
imaging (DSC-PWI), to determine R∗

2
 , R2 , and CBV, respec-

tively (Christen et al. 2012; Hirsch et al. 2014), as shown 
in Fig. 6. The correction of macroscopic field inhomoge-
neities is mainly reflected in the generation of R∗

2
 mapping 

(Baudrexel et al. 2009).
As can be seen, quantification of OEF with MqBOLD 

actually translates to choose the appropriate scanning 
sequences, or post-processing methods, to accurately 
estimate these three parameters, including how to solve 

(17)OEF =
R∗
2
− R2

4

3
� ⋅ CBV ⋅ � ⋅ Δ�0 ⋅ Hct ⋅ B0

Fig. 6  Overview of MqBOLD sequences and derived parameters. 
Representative images of a 72-year-old male patient with acute 
ischemic stroke (2 h post-onset case)
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the challenge of DSC absolute quantification (Wirestam 
et al. 2007). Hirsch and colleagues conducted a very com-
prehensive evaluation of the MqBOLD validity from the 
technology standpoint (Hirsch et al. 2014). They argued 
that the OEF results were reasonable using GESSE and 
the simplistic model without considering diffusion effects, 
but this was not necessarily true for MqBOLD. Because 
the multi-echo SE for R2 mapping compensated for the 
diffusion effects (Carr and Purcell 1954), which led to a 
mismatch of diffusion effects between R∗

2
 and R2 from sep-

arate measurements and might cause large errors (Hirsch 
et al. 2014). But at the same time, they also confirmed 
the robustness of DSC for voxel-wise CBV calculation 
(Nguyen et al. 2015) and believed that the variation in 
OEF produced by the MqBOLD approach would be of 
a great clinical marker even for semi-quantitation. Later, 
a more detailed study was carried out on the analysis of 
T2-related biases in MqBOLD (Kaczmarz et al. 2020), and 
the experiments showed that the overestimation of OEF in 
MqBOLD could be overcome by applying 3D GRAdient 
and Spin Echo (GRASE) imaging sequences (Kaczmarz 
et al. 2020). Unlike 2D acquisition, which requires the 
consideration of slice-selection pulse imperfections (Pra-
sloski et al. 2012), R2 quantification using 3D-GRASE 
imaging was not affected by stimulated echoes (Hennig 
1988; Kaczmarz et al. 2020).

Compared to ASE and GESSE, MqBOLD doesn’t require 
additional development of MRI sequences, and overcomes 
the dependence of high SNR, allowing for acquiring rela-
tively high spatial resolution images, making it a simpler 
and more convenient MRI-based method for clinical OEF 
determination (Christen et al. 2012). However, MqBOLD 
is clearly an invasive measurement because of the need of 
accurate CBV, which requires the injection of a gadolinium-
based contrast agent into the patient. But fortunately, consid-
ering that DSC is a routine sequence for MRI examination 
in patients with brain tumors and stroke (Willats and Cala-
mante 2013), MqBOLD approach is acceptable in clinical 
studies and even makes better use of perfusion information.

Clinical Applications

There are many clinically applicable MR imaging 
approaches to assess brain oxygenation, but in this section, 
we only discuss clinical studies that utilize the qBOLD 
method of brain diseases.

Cerebrovascular Disease

Elevated OEF can predict  the occur rence of 
hypoxia–ischemia and identify at-risk patients with 

cerebrovascular disease (Fan et al. 2020; Kang et al. 2022). 
At the same time, this physiological phenomenon, as a meta-
bolic reserve (Heiss and Podreka 1993), can be regarded 
as an important biomarker for assessing salvageable tissue 
(Fan et al. 2019). The clinical research based on qBOLD 
was first applied in acute ischemic stroke (AIS) by Lee et al. 
(2003). This validation study found that the threshold of tis-
sue viability, obtained by the GESSE approach for monitor-
ing changes in cerebral oxygen metabolism relative to the 
contralateral hemisphere, was very consistent with previous 
PET results (Touzani et al. 1997). It should be mentioned 
that this study is the first attempt to quantify oxygen metabo-
lism using MRI for cerebrovascular disease, letting alone the 
validation of qBOLD for clinical uses. An et al. (2015) cor-
related the ASE and DSC measurements in AIS patients 
with larger sample size and defined the product of OEF and 
CBF as oxygen metabolic index (OMI). This index was fur-
ther used to derive the threshold of the ischemic penumbra 
(Fig. 7).

In the study of severe unilateral internal carotid artery 
(ICA) or middle cerebral artery (MCA) atherosclerosis, 
the  increased OEF was  observed to be  associated with 
decreased CBF in hemispheres ipsilateral to the vascu-
lar lesions (Xie et al. 2011). This compensatory mecha-
nism, also known as stage two hemodynamic compromise 
(Derdeyn et al. 2002), was also found in cerebral small ves-
sel disease (cSVD), which is accompanied by the increase of 
white matter hyperintensities (WMH) density and prolonged 
disease duration (Ford et al. 2020; Kang et al. 2022). For 
cSVD, Kang et al. first used ASE approach to obtain the 
whole-brain OEF mapping but paid more attention to the 

Fig. 7  An example from a patient with a right middle cerebral artery 
stroke. The OMI map two hours after onset was in column (a), with 
an OMI threshold of 0.28 to differentiate infarct core from penumbra, 
and 0.4 to differentiate the penumbra from tissue not-at-risk. The sec-
ond MRI scan, six hours after onset, further subdivided the penumbra 
(b). Survived (green) or died (red) tissues in column (c) were deter-
mined by FLAIR imaging after 1 month (d). [Adapted from An et al. 
(2015) with permission]
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changes of OEF in watershed region during subsequent anal-
ysis (Kang et al. 2022). Indeed, elevated watershed OEF was 
found to correlate with microstructural damage and greater 
WMH burden, which might mean that the OEF variation 
leading the WMH growth (Kang et al. 2022).

Sickle Cell Disease

Sickle cell disease (SCD) is a group of inherited hemoglo-
binopathies (Jordan and DeBaun 2017; Piel et al. 2013), 
the most severe form of which is sickle cell anemia (SCA). 
Autosomal recessive mutation in the β-globin gene results 
in reduced oxygen carrying capacity of erythrocytes and 
the induced chronic anemia, which leads to microvascular 
obstruction and tissue ischemia (Fields et al. 2018; Ware 
et al. 2017). Although SCD patients can present stroke-like 
symptoms, unlike cerebrovascular disease, the most imme-
diate change in hemodynamics of SCD is the decrease in 
arterial oxygen content  (CaO2), resulting in an inadequate 
oxygen delivery (Guilliams et al. 2018; Hurlet-Jensen et al. 
1994; Oguz et al. 2003). A global elevation in CBF and OEF 
is therefore necessary to meet the cerebral oxygen metabolic 
demand, and such elevations can be detected (Jordan et al. 
2016; Wang et al. 2021b). However, as the density of deep 
white matter silent infarcts increases, CBF in this region 
would still be reduced (Ford et al. 2018), and information 
about regional OEF becomes more important in SCD, high-
lighting the advantage of qBOLD as a quantitative method 
of OEF at the voxel level (Fields et al. 2018).

In the study of pediatric SCD, it was found that the peak 
OEF region in white matter often corresponded to lower 
CBF relative to total white matter volume, and the peak OEF 
region was coincided with highest infarct density region 
(Fields et al. 2018). At the same time, the occurrence of 
infarction was observed within internal border zone, which 
invalidated compensatory mechanisms and left tissue oxygen 
metabolism demands unmet, increasing the future stroke risk 
(Fields et al. 2018). By comparing OEF and CBF before 
and after chronic transfusion therapy (CTT),  researchers 
found that the physiology of blood transfusion for stroke 
prevention in children with SCA perhaps was related to 
the global and regional reduction of OEF and CBF with 
concomitant increase in  CaO2 (Guilliams et al. 2018). The 
volume of peak OEF within the border zone also gradually 
diminished after transfusions (Fig. 8) (Guilliams et al. 2018).

A similar approach was applied by Fields et al. (2019) in 
their following work. They later evaluated the neuropro-
tective efficacy of hydroxyurea (HU) in younger SCA 
patients, aged five to twenty five, and found that HU and 
CTT had a similar but different degrees of cerebral oxy-
gen metabolic stress regulation (Fields et al. 2019). Wang 
et al. (2021b) also analyzed the correlation between OEF 
and diffusion tensor imaging (DTI) parameters in SCD, and 

their results suggested that microstructural damage may pre-
cede the development of cerebral infarctions (Wang et al. 
2021b), consistent with the findings in non-SCD cSVD stud-
ies (Kang et al. 2022).

Brain Tumors

Hypoxia is a hallmark of malignancies implicated in sev-
eral aspects of neo-angiogenesis, tumorigenesis, and tumor 
progression (Jensen 2009). For brain tumors, especially in 
highly aggressive glioblastomas (GBM), hypoxic niches 
contribute to a more malignant tumor phenotype (Huang 
et al. 2016), resistant to chemo- and radiation therapy (Har-
rison et al. 2002). As a consequence, imaging of tumor 
hypoxic regions (Tóth et al. 2013), detection of tumor micro-
environment (TME) (Stadlbauer et al. 2019a), and accurate 
tumor classification (Stadlbauer et al. 2016), play a key role 
in the treatment of brain tumors (Omuro and DeAngelis 
2013; Schatten 2018). As we mentioned in Multi-parametric 
qBOLD, DSC-PWI is the most commonly used examination 
for brain tumor perfusion MRI, which is an important sup-
port for the clinical application of MqBOLD approach in 
brain tumors (Boxerman et al. 2020).

Tóth et al. (2013) first measured the whole-brain OEF of 
45 glioma patients based on MqBOLD. Within the tumor-
ous areas, the regions with OEF value one standard devia-
tion above the mean were defined as ‘hypoxic tumor’ and 
the protocol was collectively referred to as hypoxia imag-
ing (Tóth et al. 2013). The heterogeneity of glioma was 
well illustrated in this prospective trial, where they found 

Fig. 8  Averaged OEF maps before (a), and after (b) CTT. Left side 
indicates the averaged maps. Right side shows the regions above 
the OEF thresholds. The median proportion of hemispheric volume 
above the OEF threshold decreased after transfusion (c). [Adapted 
from Guilliams et al. (2018) with permission]
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that high-grade tumors still exhibited higher OEF, despite 
higher CBV, than lower-grade tumors, and the volume of 
high OEF increased with the malignancy of the tumor tissue. 
The feasibility of the MqBOLD method to identify hypoxic 
regions in high-grade tumors was initially confirmed (Tóth 
et al. 2013). Much everer hypoxia in response to OEF eleva-
tion could also serve as a signature to differentiate glioma 
patients with epidermal growth factor receptor amplifica-
tion, but it might not be an independent predictor of overall 
survival (Oughourlian et al. 2021).

In addition, abnormal angiogenesis is also essential for 
tumor growth and metastasis (Bielenberg and Zetter 2015). 
Thus, establishing the relationship between tumor vascu-
larization and hypoxia could provide more information on 
pathophysiological mechanisms of drug therapy and further 
follow up on the prognosis of cancer patients (Stadlbauer 
et al. 2019a). A recent study has proposed a novel physi-
ological MRI method named TME mapping, combining 
MqBOLD and vascular architecture mapping (VAM) to 
achieve the classification of different TME compartments 
(Stadlbauer et al. 2018). They determined that iso-citrate 
dehydrogenase 1 (IDH1) wild-type glioblastomas had two 
distinct phenotypes, one dominated by hypoxic necrosis, and 
the other by glycolysis, the latter with a high proportion of 
functional neo-vasculature (Fig. 9). This method can also 
be used in glioma grading and IDH gene mutation detection 
(Stadlbauer et al. 2016), and prospective studies suggest that 
the MqBOLD-based TME mapping may also be feasible in 

breast cancer (Bennani-Baiti et al. 2020; Stadlbauer et al. 
2019b).

Discussion

There are a few issues need to be addressed to understand 
the technical limitations in this review, as well to properly 
interpret the qBOLD results and choose the appropriate 
application scenarios.

First, the qBOLD analytical model introduces several 
physical or physiological parameters, such as hematocrit, 
Hct. The current qBOLD-based studies set it to a con-
stant of 0.42, but under pathological conditions of cerebral 
ischemia, there is a certain degree of Hct reduction in local 
small vessels (Yamauchi et al. 1998), which may cause an 
underestimation of OEF if empirical values are still used. 
Apart from that, arterial oxygen saturation, Ya is assumed 
to be an absolute value of 100% during post-processing 
quantification. In most cases, it is an acceptable assump-
tion but a study based on near-infrared spectroscopy sug-
gests that hypoxia may induce a decrease in arterial oxygen 
saturation (McCormick et al. 1991), which is exactly what 
MqBOLD has focused on in brain tumors. In addition, the 
magnetic field strength may also affect these parameters, 
especially if the multi-component tissue model is adopted, 
the relationship between blood T2 and OEF may need fur-
ther verification, and the frequency offset of CSF/ISF may 
have to take into account phase wrapping.

Fig. 9  A patient with a glioblas-
toma IDH1 wt showing features 
of the glycolytic dominated 
phenotype. The large areas of 
the lesions with both very high 
mitochondrial oxygen ten-
sion (mitoPO2) and very high 
micro-vessel type indicator 
(MTI) values, representing 
the presence of glycolysis, 
and proliferation of functional 
neovascularization, respectively. 
[Adapted from Stadlbauer et al. 
(2018) with permission]
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Second, the qBOLD technique is hardly able to account 
for the effect of non-BOLD contributions to the quantifi-
cation of relaxation parameters. Therefore, it is a fact that 
myelin, hemosiderin, non-heme iron accumulation, etc. may 
all contribute to potential errors in the final OEF estima-
tion (Ni et al. 2015), narrowing the clinical applications in 
patients with cerebrovascular diseases, such as intracerebral 
hemorrhage. Combined with QSM, qBOLD has the poten-
tial to break through this limitation utilizing both phase 
and magnitude gradient echo data (Cho et al. 2018, 2020a, 
b,2021). Furthermore, measurement protocol may also be a 
sensitive issue for relaxation parameters quantification (Ni 
et al. 2015), particularly for MqBOLD approach (Ulrich and 
Yablonskiy 2016). The GRE and SE experiments have dif-
ferent weightings of brain tissue compartments, and if R2 
maps are acquired from multi-echo SE experiment, which 
usually requires long TR and SE times, long T2 compart-
ments may dominate the MR signal. This is also the case in 
R∗
2
 maps, where components of short T1 and short T2, like 

myelin water can generate a high weighting in the map, and 
thus the value of R�

2
 would not really reflect the true BOLD 

response (Ulrich and Yablonskiy 2016).
Finally, although the focus of this article is primarily 

cerebral OEF measurements, it should also be noted that 
qBOLD method is being used for other organs with increas-
ing frequency, particularly the kidney (Wang et al. 2016a, b, 
2021a). Because imaging is performed in abdominal organs, 
fast acquisition of ASE-EPI is required, as well as respira-
tory triggering (Wang et al. 2021a).

Conclusion

OEF, as a biomarker of both normal and pathological brain 
function, contributes significantly to systematic monitor-
ing the disease progression and exploring the pathogenesis. 
The qBOLD technique, meanwhile, as one of the powerful 
MRI tools for quantifying OEF, has evolved from feasibil-
ity to practical utility over the past two decades. Concomi-
tant with the proposed more precise quantitative methods 
(Cherukara et al. 2019), more optimized MRI sequences 
(Stone and Blockley 2017), and the solution of limited SNR 
(Christen et al. 2012), clinical applications of qBOLD have 
been gaining increasing attention from researchers. Now that 
a consensus on the qBOLD imaging strategy and analysis 
methods is needed, only then may it become an increasingly 
valuable tool in MRI brain imaging so that it can be used in 
multicenter large-sample studies.
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