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Germline rare deleterious variant load alters cancer risk, age of
onset and tumor characteristics
Myvizhi Esai Selvan1,2,3, Kenan Onel1, Sacha Gnjatic 3,4, Robert J. Klein 1 and Zeynep H. Gümüş 1,2,3✉

Recent studies show that rare, deleterious variants (RDVs) in certain genes are critical determinants of heritable cancer risk. To more
comprehensively understand RDVs, we performed the largest-to-date germline variant calling analysis in a case-control setting for a
multi-cancer association study from whole-exome sequencing data of 20,789 participants, split into discovery and validation
cohorts. We confirm and extend known associations between cancer risk and germline RDVs in specific gene-sets, including DNA
repair (OR= 1.50; p-value= 8.30e-07; 95% CI: 1.28–1.77), cancer predisposition (OR= 1.51; p-value= 4.58e-08; 95% CI: 1.30–1.75),
and somatic cancer drivers (OR= 1.46; p-value= 4.04e-06; 95% CI: 1.24–1.72). Furthermore, personal RDV load in these gene-sets
associated with increased risk, younger age of onset, increased M1 macrophages in tumor and, increased tumor mutational burden
in specific cancers. Our findings can be used towards identifying high-risk individuals, who can then benefit from increased
surveillance, earlier screening, and treatments that exploit their tumor characteristics, improving prognosis.
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INTRODUCTION
Inherited genetic variants play an important role in cancer
susceptibility. These variants are associated with disease risk in a
spectrum, from common variants that tend to have weak effects,
to rare variants (<0.5% minor allele frequency, MAF) with often
large effects1,2. In fact, some studies suggest that greater than
95% of variants predicted to be functionally important are rare3,4.
In addition to their high penetrance, rare variants are also
abundant3. Studies in cancer prone families were the first to
identify rare, deleterious variants (RDVs) with statistically signifi-
cantly elevated cancer risk. Well-known examples include BRCA1/2
in inherited breast and ovarian cancer syndrome5, DNA mismatch
repair genes in Lynch syndrome6, TP53 in Li-Fraumeni syndrome7,
and APC in familial adenomatous polyposis8. Genetic screening for
these inherited cancer syndromes has constituted one of the first
applications of genomics in precision medicine, as it allows
tailored cancer screening, prevention, and in certain cases,
therapies5–8. While the vast majority of genes identified this way
and currently screened for in the cancer clinic are in DNA damage
repair (DDR) genes, RDVs in genes for which cancer risks are less
well-characterized present a challenge in the clinic9.
While genome-wide association studies (GWAS) have identified

multiple susceptibility loci as determinants of increased cancer risk
in relatively large cohorts, these studies examine associations with
common variants only, which typically have modest effects that
explain only a small fraction of heritability. RDVs can have larger
effect sizes than common variants, yet large cohorts are needed to
obtain statistical power for conclusive analyses on their cancer
risk, which are often prohibitive. More recently, next generation
sequencing studies by large consortia have produced and
aggregated data from thousands of germlines and matched
tumors. These studies have revealed many germline risk
variants10–14, and provide a rich resource for investigating the
association of RDVs with cancer risk11,12,15,16. Our team has
previously utilized such resources in focused studies on lung

cancer, which revealed that RDVs in ATM increase risk for lung
adenocarcinomas16 and in Fanconi Anemia (FA) genes for lung
squamous cell carcinomas15. In these studies, we addressed the
issue of low power observed in single, recurrent RDV studies by
conducting case-control analyses for RDVs that may affect risk of
cancer cumulatively as part of a gene or gene group. We reason
that a similar approach focused on RDVs will provide novel
insights into risk across cancers, as it is unlikely to miss weaker
associations. To better characterize the roles of RDVs in cancer risk
and other cancer-related outcomes, it is paramount to compre-
hensively assess RDVs in such cancer germline datasets, including
analysis of the effects of RDVs aggregated per each individual. This
will enable the development of new predictive tools and precision
preventive strategies for the clinic.
Towards this end, we have performed the largest-to-date

germline sequencing data analysis in a cancer case-control setting,
aggregating existing whole-exome sequencing (WES) datasets on
20,789 participants, split into discovery and validation cohorts. In
discovery analysis, we processed germline WES datasets on 15,709
participants (13,018 total post-Quality Control, with 6371 cases
and 6647 controls) where the cases span 24 different cancers from
The Cancer Genome Atlas, TCGA17. We then replicated our
discovery cohort findings in an independent validation cohort,
by using WES data from 7771 participants (1571 cases, 6200
controls) from the Icahn School of Medicine at Mount Sinai
(ISMMS) BioMe Biobank. In these studies, as the low frequencies of
RDVs make genome-wide discovery difficult without large cohorts,
we investigated their roles by collapsing RDVs at gene and gene-
set levels for cohort-level RDV burden (RDVs in cases vs. controls).
Furthermore, unlike previous studies that compared RDVs in cases
only to population-level databases for controls, our variant calling
in a case-control setting enabled us to identify the number of
RDVs, or RDV load for each control as well as case participant, and
thereby to study the association of personal RDV load with cancer
risk (>1 RDV vs. 1 RDV vs. 0 RDV). In Fig. 1, we graphically represent
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the RDV burden and RDV load concepts. Finally, we studied the
association of personal RDV load in cancer individuals with their
age of disease onset, tumor mutation burden and cellular
composition of tumor immune microenvironment.
RDV burden analysis results revealed that individuals with RDVs

in specific cancer genes and gene-sets are at increased risk for
cancers. While TCGA germline RDVs have been categorized
previously12, this study reports result where germline variants
are processed in a case-control setting, which enabled us to study
associations between personal RDV load and cancer risk.
Importantly, this study also replicates germline discovery case-
control cohort findings in an independent case-control validation
cohort.
Overall, our multi-scale analysis results first confirm known

associations in TCGA12 and then provide novel observations on
the associations of germline RDVs in specific gene-sets with cancer
risk. Furthermore, we show that having a germline RDV load in
certain gene-sets (i.e. RDVs in more than one gene in the same
pathway) is a potential biomarker for younger age of disease
onset, tumor mutational burden (TMB), and characteristics of the
tumor immune microenvironment (TME) in a dose-dependent
manner (i.e. >1 RDV vs. 1 RDV vs. 0 RDV).

RESULTS
Germline variant calling in a case-control setting identified
sites of rare, deleterious variants (RDVs) and their genotypes
across the cohort
In the discovery cohort, to enable case-control analyses (Fig. 1)
while avoiding biases potentially introduced by different calling
algorithms, we first realigned and called variants in the germline
WES data in a case-control setting. These included 8321 TCGA
cases (Supplementary Table 1), and 7388 controls from dbGaP
(Supplementary Table 2), for a total of 15,709 participants. To
reduce confounding due to population stratification, we focused
on those participants in the discovery cohort who comprised the
largest group by ancestry, which clustered via principal compo-
nent analysis (PCA) with individuals of known European ancestry
(Fig. 2). After sample and variant QC (see methods), we observed
941,609 variants (Supplementary Table 3) in 17,507 genes across
the autosomes and X chromosomes of 13,018 participants (6371
cases and 6647 controls) (clinical characteristics in Table 1). We
note that recently an independent multi-cancer analysis of TCGA
cases12 (‘case-only analysis’) called each case sample separately
(rather than calling variants across all samples in a case-control
setting) and used the union of several calling software packages
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Fig. 1 Study design. Flowchart of the study pipeline to identify rare deleterious variants (RDVs) and to perform RDV burden and RDV load
analyses.
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for variant identification. Unlike that case-only approach, our
calling approach in a case-control setting can distinguish between
instances where a variant site is wild type and where it does not
have enough sequence coverage to make a call.
To compare these two approaches in more detail, we focused

on data from 6275 TCGA participants that were analyzed by both
methods. From our case-control analysis, after QC we identified
588,287 variants for which at least one alternate allele was called.
Of these, 460,373 (78%) were also called by the case-only analysis,
while 22% were unique to our calling. Conversely, the case-only
analysis call set, which used several genotype callers and took the
union of calls, identified 1,681,769 variants, of which 27% were
also called by our approach (Supplementary Fig. 1). To estimate
the fraction of variants unique to each of these call sets that
represent true variant sites versus spurious false positives, we used
the imputation panel from the TOPMed consortium18 as an
external reference. This panel was generated from a large set of
participants of diverse ancestry for whom whole genome
sequencing (WGS) data are available. Importantly, TCGA partici-
pants were not included in this panel. As this panel has been
shown to enable imputation of variants at low MAF (0.01%)19, we
reasoned that it would allow us to assess the quality of many of
the low-MAF calls in the call sets. Of the 460,373 germline variants
that were called in both the case-control and the case-only
analyses, 67% were on the TOPMed panel (Supplementary Table
4). Most importantly, at the variant level, a greater fraction of the
alternate alleles at sites found uniquely in our case-control data
were concordant with TOPMed compared to the case-only
approach (Supplementary Table 5).

Based on the comparison results between the two calling
approaches, we proceeded with our case-control analysis
approach to identify germline RDVs that associate with cancer
risk relative to controls. Overall, we identified 7241 RDVs (MAF <
2% in cases or controls, MAF ≤ 1% in ExAC non-TCGA Non-Finnish
European population and MAF ≤ 1% gnomAD Ashkenazi Jewish
population) across 1787 genes in the discovery cohort. Similarly,
focusing on 1571 cases and 6200 control participants of European
ancestry in the validation cohort, we identified 5766 RDVs in
1814 genes.

Gene-set level burden analysis revealed that RDVs in cancer
predisposition, DNA damage repair, Fanconi Anemia and
somatic cancer driver gene-sets are associated with cancer
risk
Though we performed tests at the levels of individual genes, we did
not find any significant (p ≤ 0.05), replicable associations beyond the
well-known association of BRCA1 (discovery cohort: OR= 2.91; p-
value= 1.14e-04; 95%CI: 1.67–5.32, validation cohort: OR= 2.91; p-
value= 1.06e-03; 95% CI: 1.55–5.35) and BRCA2 (discovery cohort:
OR= 3.04; p-value= 9.35e-04; 95%CI: 1.55–6.46, validation cohort:
OR= 2.50; p-value= 1.04e-03; 95% CI: 1.46–4.18) with breast and
ovarian cancer risk (Supplementary Data 1). Instead, we hypothe-
sized that collapsing RDVs at the gene-set level would be more
powerful and enable better understanding of risk-associated
biological processes. Therefore, we compared the RDV burden
(Table 2, Fig. 3) in a priori defined gene groups (Supplementary
Table 6). We first tested the set of 94 genes in the TruSight Cancer

Fig. 2 Principal component analyses (PCA) of the study cohort and the gated study cohort. PCA based on common SNPs (MAF ≥ 0.05)
showing the top two principal components of (a) the study cohort together with 1000 Genomes and The Ashkenazi Genome Consortium
(TAGC) samples and of (b) the gated samples from the study cohort with European ancestry (6371 cases and 6647 controls).

Table 1. Characteristics of samples in the case-control study cohorts.

Variables TCGA-dbGaP cohort BioMe cohort

Cases (6371) Controls (6647) Cases (1571) Controls (6200)

Gender Male 3099 (48.64%) 4034 (60.69%) 690 (43.92%) 3150 (50.81%)

Female 3230 (50.70%) 2610 (39.27%) 881 (56.08%) 3050 (49.19%)

Missing 42 (0.66%) 3 (0.05%) 0 0

Age Mean (yrs) 60.20 57.54 – –

Unknown 86 (1.35%) 4509 (67.84%)

Smoking Never 448 (7.03%) 322 (4.84%) 1391 (88.54%) 5418 (87.39%)

Yes 1491 (23.40%) 746 (11.22%) 174 (11.08%) 744 (12.00%)

Unknown 4432 (69.57%) 5579 (83.93%) 6 (0.38%) 38 (0.61%)
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Gene panel (Illumina https://www.illumina.com/products/by-type/
clinical-research-products/trusight-cancer.html), which is often used
in genetic testing clinics, and observed statistically significant RDV
burden (p ≤ 0.05) across cancers in the discovery cohort (OR= 1.51;

p-value= 4.58e-08; 95% CI: 1.30–1.75), which replicated in the
validation cohort (OR= 1.24; p-value= 0.04; 95%CI: 1.01–1.51).
Similarly, when we focused on 95 DNA repair genes involved in
known functional DDR pathways20, which included those known to
associate with autosomal dominant cancer predisposition (CPD)
syndromes (20 genes)21 (Supplementary Table 6), we observed a
statistically significant enrichment of RDVs in cases compared to
controls in both discovery (OR= 1.50; p-value= 8.30e-07; 95%CI:
1.28–1.77) and validation cohorts (OR= 1.59; p-value= 1.17e-04;
95% CI: 1.26–2.00). Next, we hypothesized that germline mutations
in genes with known somatic mutations may increase cancer risk,
and tested the germline RDV burden on 299 known somatic cancer
driver (SCD) genes22. We again observed a statistically significant
burden of RDVs across cancers in cases vs. controls in the discovery
cohort (OR= 1.46; p-value= 4.04e-06; 95%CI: 1.24–1.72), which
replicated in the validation cohort (OR= 1.72; p-value= 2.00e-06;
95% CI: 1.38–2.14).
Based on our earlier findings15 that RDVs in Fanconi Anemia (FA)

genes increased risk for squamous lung cancer (LUSC), we also
investigated the burden of FA (subset of 22 DDR genes) RDVs in
other tissues and multi-cancer. Consistent with our LUSC findings,
we observed an increased RDV burden cross-cancers in cases vs.
controls in both discovery (OR= 2.05; p-value= 6.14e-08; 95% CI:
1.58–2.70) and validation (OR= 2.01; p-value= 1.07e-04; 95% CI:
1.42–2.80) cohorts. In the discovery cohort, this signal was
significantly driven by cancers of the breast, bladder, stomach
and ovary (Supplementary Data 2). Furthermore, the 9 FA core
complex genes and 11 FA genes involved in DNA repair both had
a statistically significant signal cross-cancers in the discovery
cohort (OR= 1.93; p-value= 0.02; 95% CI: 1.10–3.49 and OR=
2.12; p-value= 2.15e-06; 95% CI: 1.54–2.93, respectively). The
finding on 11 FA genes involved in DNA repair further replicated
in the validation cohort (OR= 2.48; p-value= 3.14e-06; 95% CI:
1.71–3.56), while on 9 FA core complex genes trended in the
expected direction (OR= 1.18; p-value= 0.74; 95% CI: 0.41–2.88).
Next, to make sure the signals we observed in these gene-sets
(CPD, DDR, SCD and FA) were not solely driven by BRCA1/2, as a

Table 2. Gene-set level rare, deleterious variant (RDV) burden in the study cohorts.

TCGA-dbGaP Cohort BioMe Cohort

Cases (6371) Controls (6647) Cases (1571) Controls (6200)

94 Cancer predisposition genes

# Variants 274 186 88 192

# Genes 57 48 35 51

# Unique individuals 464 (7.28%) 326 (4.90%) 136 (8.66%) 439 (7.08%)

OR (p-value) [95% CI] 1.51 (4.58e-08) [1.30–1.75] 1.24 (0.04) [1.01–1.51]

95 DNA damage repair genes

# Variants 254 181 82 160

# Genes 41 36 29 35

# Unique individuals 374 (5.87%) 269 (4.05%) 108 (6.87%) 273 (4.40%)

OR (p-value) [95% CI] 1.50 (8.30e-07) [1.28–1.77] 1.59 (1.17e-04) [1.26–2.00]

299 Somatic cancer driver genes

# Variants 231 154 88 169

# Genes 59 52 40 59

# Unique individuals 377 (5.92%) 272 (4.09%) 125 (7.96%) 294 (4.74%)

OR (p-value) [95% CI] 1.46 (4.04e-06) [1.24–1.72] 1.72 (2.00e-06) [1.38–2.14]

22 Fanconi Anemia genes

# Variants 115 58 32 69

# Genes 15 13 8 13

# Unique individuals 163 (2.56%) 85 (1.28%) 52 (3.31%) 103 (1.66%)

OR (p-value) [95% CI] 2.05 (6.14e-08) [1.58–2.70] 2.01 (1.07e-04) [1.42–2.80]

Fig. 3 Gene-set level rare, deleterious variant (RDV) burden in the
discovery (blue) and validation (red) cohorts. The whiskers span
the 95% confidence interval for OR values (penalized logistic
regression). The black circle outline indicates significant burden
p ≤ 0.05.
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sensitivity analysis we removed BRCA1/2 and repeated the burden
analyses, and observed that these gene-sets were still significant
(Supplemental Table 7, Supplementary Fig. 2). Furthermore, our
analysis of the MSigDB gene-sets (below) supported our findings
on the association of the FA gene-set with cancer risk. Note that
while we further tested for the confounding effects of gender for
all gene-sets multi-cancer, we did not observe a noticeable
difference in the OR results for any gene-set (Supplementary Fig.
3). We provide the gender distribution in Supplementary Table 8.
Finally, we performed a similar gene-set level burden analysis

(Supplementary Data 3) for sets of cancers grouped by histological
or anatomical relation, including pan-gastrointestinal23, pan-
kidney24, pan-gynecological25, and pan-squamous26. Pan-
gastrointestinal and pan-gynecological cohorts were associated
with significant (p ≤ 0.05) cancer risk with RDVs in all four gene-
sets (CPD, DDR, SCD and FA). Furthermore, in pan-kidney and pan-
squamous analyses, we observed significant burden of RDVs in
cases compared to controls in CPD and FA gene-sets, respectively
(Supplementary Data 3).

Data-driven analysis of 17,810 gene-sets in MSigDB again
identified RDV burden in Fanconi Anemia genes associated
with increased cancer risk
Next, to ensure we did not miss any additional gene-sets with
significant RDV burden in cases vs. controls, we performed a data-
driven exome-wide gene-set analysis. For this purpose, we tested
all gene-sets (17,810) contained in the Molecular Signatures
Database (MsigDB)27 (Supplementary Data 4). Consistent with our
observations on pre-selected gene-sets, the strongest signal was
in Fanconi Anemia pathway genes from REACTOME (p= 1.4e-11;
OR= 2.54; 95% CI= 1.92–3.40) in the discovery cohort, which was
further replicated in the validation cohort (p= 1.2e-05; OR= 2.21;
95% CI= 1.56–3.09). Other cancer-related pathways, for the
majority including the strongest DDR genes, were found
statistically significant after adjusting for multiple comparisons.
Of note in the discovery cohort, we observed significant risk
association for RDV burden in the set of genes targeted by the
eukaryotic translation initiation factors EIF4EBP1 and EIF4EBP2
(OR= 1.43; p-value= 4.4e-05; 95% CI: 1.20–1.69). While we did not
observe significant association in the validation cohort, we still
observed higher frequency with the same direction of effect in
cases with RDVs compared to controls (OR= 1.14; p-value= 0.39;
95% CI: 0.85–1.51).

Germline RDV load in key cancer genes is a potential marker
for increased cancer risk
RDVs in cancer are usually considered in a binary context: a
patient either has an RDV in a gene of interest or does not (similar
to our RDV burden analysis). Given that even when the penetrance
of RDVs in cancer risk is high, it is not absolute (i.e., some
individuals with RDVs in known cancer predisposition genes will
never develop cancer), we hypothesized that the accumulation of
RDVs within a set of related genes in an individual could increase
their cancer risk. We refer to this concept as personal “germline
RDV load”. We hypothesized that an increased personal germline
RDV load in particular gene-sets is associated with an increased
risk of cancer. The premise of this hypothesis is that the RDVs
damage, but do not fully destroy a particular pathway; therefore,
additional RDVs in the same pathway add to the damage and
increase cancer risk further. To test this hypothesis, we evaluated
the associations between the participant-level RDV load within
gene-sets (i.e., CPD, DDR, SCD and FA) (Supplementary Table 6)
and cancer risk (Fig. 4 and Supplementary Table 9). For each gene-
set, we divided the participants into three participant groups: (i)
participants with no RDVs; (ii) participants where RDVs occurred in
only one gene; and (iii) participants with RDVs in two or more
genes (Supplementary Table 9), recognizing that the small
number of participants with RDVs in >1 gene makes precise
estimation of the effect of RDV load difficult. Consistent with our
hypothesis on RDV load, for each studied gene-set, we observed a
greater association with cancer risk for participants that had
higher number of genes with germline RDVs, as shown in Fig. 4
and Supplementary Table 9 (except for FA due to the limited
number of genes in this gene-set). Notably, all our RDV load
findings replicated in the validation cohort. Note that in SCD and
FA gene-sets, we did not observe significant cancer risk
association (p-value ≤ 0.05) with individuals with RDVs in more
than one gene.
We further hypothesized that a higher RDV load in these gene-

sets is associated with a younger age of diagnosis. To test this
hypothesis, we used the detailed clinical information available on
the discovery cohort of TCGA participants. We evaluated the
associations between each participant’s germline RDV load with
their age at cancer diagnosis, and observed that those participants
with a germline RDV indeed exhibited a statistically significant
early age of diagnosis than those individuals without RDVs (Fig. 5)
in CPD, DDR and FA gene-sets. Additionally, we observed that the
individuals with high RDV load (>1 RDV) in CPD and SCD gene-sets
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Fig. 4 Cancer risk based on RDV load. a Discovery cohort; b Validation cohort. The whiskers span the 95% confidence interval for OR values
(penalized logistic regression). The black circle outline indicates significant burden p ≤ 0.05.
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had significantly younger age of diagnosis than those individuals
without RDV.

Germline RDV load is associated with altered tumor immune
microenvironment and increased tumor mutation burden
Next, in light of recent findings on the impact of germline variants
on tumor immune microenvironment (TME) in various can-
cers28–30, we tested the association of increased germline RDV
load in CPD, DDR, SCD and FA gene-sets with TME immune cell
fractions. Briefly, to avoid any potential biases from B-cell immune
signatures in blood cancers, we focused on 6277 participants with
solid tumors in TCGA by excluding 94 TCGA participants with
hematological malignancies. We then utilized previously reported
annotations on the 22 infiltrating immune cell types on solid
tumors of TCGA participants31, based on analysis by the
CIBERSORT tool that used their tumor RNA-sequencing data32.
Next, for each participant, we tested the association of tumor
immune cell fraction with their germline RDV load in the CPD,
DDR, SCD and FA gene-sets (Supplementary Fig. 4, Supplementary
Data 5). Remarkably, the germline RDV load in CPD, DDR or FA
genes exhibited the strongest association with increased levels of
M1 macrophages in the TME. Specifically, we observed that
participants with a germline RDV in DDR or FA gene-sets
developed tumors with a statistically significantly higher fraction
of M1 macrophages (Fig. 6), compared to participants with no

RDV. Additionally, we observed that the individuals with high RDV
load (>1 RDV) in CPD and DDR gene-sets had higher fraction of M1
macrophages than those individuals without RDV although it was
not statistically significant. This signal was mostly driven by the
increased levels of the chemokine ligands CXCL10/11. We provide
the complete set of results in Supplementary Data 6. We next
asked whether increased M1 macrophages in TME of participants
with solid tumors associated with survival (Supplementary Table
10). We observed that those participants with increased M1
macrophages exhibited worse survival (p ≤ 0.05 without correction
for multiple testing) in brain lower grade glioma, kidney renal clear
cell carcinoma and kidney renal papillary cell carcinoma.
Finally, since tumor mutation burden (TMB) is currently being

investigated as a biomarker for durable response to life-extending
cancer immunotherapies33, we also tested the association of
germline RDV load in CPD, DDR, SCD and FA gene-sets with TMB
for each cancer type with solid tumors (Supplementary Data 7).
We observed the most significant TMB association with germline
RDV load in FA genes in breast cancer patients (p= 0.00052).
Overall, germline RDVs associated with TMB in: (i) DDR, CPD and
SCD genes in colon cancer; (ii) DDR genes in kidney clear cell and
cervical cancers; (iii) CPD genes in kidney papillary cell cancer;
(iv) SCD genes in stomach and ovarian cancers; and (v) FA genes in
breast, cervical, ovarian and stomach cancers. This signal for FA
genes was mostly driven by BRCA1/2; when we removed BRCA1/2
and reperformed the analysis, we still observed associations of
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germline RDV load in FA genes and TMB for stomach cancer.
Details are in Supplementary Data 7.

DISCUSSION
Here, we have performed the largest-to-date case-control WES
study to identify germline rare, deleterious variants (RDVs) in
specific genes and gene-sets that associate with multi-cancer risk
and to further investigate whether this risk increases with the
number of RDVs an individual has. The study findings were made
possible by performing variant calling analysis in a case-control
setting by including thousands of controls, which allowed the
examination of combinations of variants for individual control
participants. We then used an independent pan-cancer cohort
from the ISMMS BioMe Biobank for validation. To examine the
cumulative effects of RDVs in functionally related gene groups, we
used a gene-set based variant collapsing approach. Specifically,
we focused both on a few cancer-associated gene groups, as well
as in a function-agnostic manner on all 17,810 gene-sets in
MSigDB27. For cancer-associated gene groups, mindful of the fact
that many risk variants have been shown to exhibit tissue
specificity34, we tested RDVs in cancer predisposition (CPD) and
DNA damage repair (DDR) genes, which we hypothesized would
pleiotropically associate with risk across cancer sites, due to the
accumulation of mutations that fail to be properly repaired35. In

addition, we tested whether germline RDVs in genes with known
somatic mutations (somatic cancer drivers, SCDs) increase cancer
risk22. Finally, based on our earlier findings15 that RDVs in Fanconi
Anemia (FA) genes are associated with lung squamous cancer risk,
we tested RDVs in the FA genes. Remarkably, we observed
increased cancer risk associated with RDVs in all four tested gene-
sets (CPD, DDR, SCD, and FA) in both discovery and validation
cohorts. Furthermore, our analysis of the MSigDB gene-sets
supported our findings on the association of the FA gene-set
with cancer risk.
Our results demonstrate the value of variant calling in a case-

control setting in germline risk variant discovery. Notably, unlike
prior works12 that have simply compared germline variant
frequencies in TCGA cancer individuals to those in databases
such as ExAC36 non-TCGA or gnomAD37 as controls, we performed
germline variant calling in a case-control setting. Doing so
enabled us to identify control participants with more than one
RDV in a given gene or gene-set and to examine the role of
personal RDV load in cancer risk (see Fig. 1). This is a significant
finding, which prior works12 were unable to examine. While
multiple studies have focused on the somatic tumor mutation
burden (TMB), our study highlights the critical importance of
germline RDV load in key cancer gene-sets. The association of
increased RDV load in CPD, DDR, FA and SCD gene-sets with
increased personalized cancer risk in both discovery and
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validation cohorts have important implications for our under-
standing of how germline genetic factors govern cancer risk, and
can impact the clinical management of cancer patients with one
or more germline RDVs, and their families.
We further observed that personal RDV load in specific gene-

sets associated with age of disease onset, tumor immune
microenvironment (TME) and TMB in TCGA matching tumor data.
That individuals who have RDVs in CPD, DDR or FA genes have
statistically significantly earlier age of diagnosis than those
without warrants research in whether these individuals should
start screening and surveillance efforts at younger ages than the
currently recommended guidelines for the general public.
TME and TMB are two tumor characteristics important in

immunotherapy response and prognosis. Recent studies show
that germline variants can shape certain immune features within
the TME of solid tumors28–30. Consistent with and complementary
to these observations, our results show that the personal germline
RDV load of a cancer patient is associated with their TME (see
Supplementary Fig. 4, Supplementary Data 5). Interestingly, the
germline RDV load in CPD, DDR or FA genes exhibited the
strongest association with increased levels of M1 macrophages in
the TME (Fig. 6). Unlike T-cells which may or may not be in the
TME38, macrophages are often present in tumors as the most
dominant cells, including tissue resident cells and infiltrating cells,
with relative proportions varying in different patients. However,
the potential impact of TME macrophage elevation is currently
somewhat controversial, as the historical dichotomy between
good (M1) vs. bad (M2) subsets is being challenged by more
granular data on macrophage subsets and lineage based on
single-cell transcriptomics39. While increased levels of M2 macro-
phages in tumors generally associate with poor survival40,41, the
levels of M1 macrophages have so far not been associated with
poor outcome. M1 macrophages have been shown to likely
contribute to a more immunogenic tumor environment by
providing activating signals, including Th1 polarizing cytokines
or chemokines42. They also are likely to active via their phagocytic
function, either directly through eating up tumor cells and
contributing to antigen presentation and priming of T cells as
well, or via antibody dependent cell-mediated cytotoxicity43. As
TME can impact response to standard-of-care therapies44, includ-
ing chemotherapy, radiation and angiogenic inhibitors, and since
clinical trials that examine the combinations of these treatments
are currently on-going, our results warrant further investigations
into identifying specific macrophage markers that may correlate
with immunotherapy treatment efficacy and prognosis of
individuals with germline RDV load in CPD, DDR or FA genes in
solid tumors.
We further observed statistically significant association of RDV

load with TMB in different gene-sets for different cancer types (see
Supplementary Data 7). Since TMB has been suggested as a
biomarker for durable response to cancer immunotherapies33,45,
these results further support our findings on the potential
importance of RDV load in specific gene-sets in shaping tumor
immune characteristics (Supplementary Data 5). For example, in
colon cancer RDV load in most gene-sets we tested associated
with increased TMB.
Finally, we asked whether RDV load is associated with survival.

While we had limited statistical power to answer this question
directly, we did observe that increased M1 macrophages (which
correlated with RDV load) associated with worse survival (p ≤ 0.05
without correction for multiple testing, Supplementary Table 10)
in specific cancers (brain lower grade glioma, kidney renal clear
cell carcinoma and kidney renal papillary cell carcinoma). The
functionality of macrophages in these histologies compared to
other tumor types in relation to antigen presentation capacity or
inflammatory potential remains to be further explored. Future
studies in larger, independent cohorts are needed for validation of
this finding and will help better understand the nature of

interactions between germline RDV load, tumor characteristics
and survival.
This study should be considered in the context of its limitations.

First, the multi-cancer analysis needs to consider the over-
representation of rarer cancers in the TCGA data. Thus, strong
association signals specific to these less common cancers in the
TCGA data may be weaker when studied in a cohort reflective of
the population incidences of cancers of various sites. Similarly,
inclusion of some cancer types with small sample size increased
the heterogeneity of our study, risking a diluted signal for
associations with more common cancers. Second, while focusing
on variants annotated as pathogenic in ClinVar46 was necessary to
ensure the clinical reliability of our results, it also restricts our
analysis to those genes previously known to have a clinical impact.
There are variants, such as rs11571833 (p.Lys3326Ter) in BRCA2, for
which research studies strongly support a role in cancer risk15,47

but not annotated as pathogenic in ClinVar. Alternative
approaches to identifying pathogenic variants will be needed to
address these issues. Third, while we had well-annotated gender
data available to study its potential confounding effects, informa-
tion on other potential confounders such as age and smoking was
not available for all controls in the dbGaP studies. Thus, we were
unable to investigate their potential confounding effects and
cannot distinguish direct genetic effects on cancer risk versus
genetic effects on risk factors for cancer. Fourth, our results do not
explore the interplay between specific RDVs, RDV load, and
environmental and clinical exposures. Future efforts that link
genetic information with epidemiological exposure and clinical
information from electronic health records (EHR) (e.g. blood
measurements; smoking and alcohol history; viral infections, etc.)
will be needed to understand such interactions. This work also did
not consider the role of common genetic polymorphisms in
cancer risk, such as that captured by polygenic risk scores48,49.
Future efforts towards understanding if and how the penetrance
of RDV load (and visa versa) will be impacted with polygenic
background could be quite informative50,51. We did not include
cancer types for which data are currently available in TCGA, but
were not available when we first began this project. Finally, the
statistical power of our validation was somewhat limited. As data
from larger population- or hospital-based BioBanks (e.g. UKBio-
bank) become available, larger studies to interrogate the role of
RDV load in multi-cancer and tissue-specific cancer risk will
become possible.

METHODS
Data sources
For discovery, we used case data from TCGA (Supplementary
Table 1) and control data from twelve population-based studies
(Supplementary Table 2) in the database of Genotypes and
Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/gap,
RRID:SCR_002709). Briefly, we downloaded TCGA germline WES
bam files from National Cancer Institute Cancer Genomics Hub
(cgHub), a predecessor to the Genomic Data Commons which is
no longer online. We extracted control fastq files from the NCBI
Short Read Archive (SRA) for dbGaP studies listed in Supplemen-
tary Table 2. For replication, we used the exome calls from BioMe
Biobank52 of Icahn School of Medicine at Mount Sinai (ISMMS).
The relevant data access committees at NIH under project #8668
approved TCGA and dbGaP data usage. The usage of BioME data
in our study (HS# 19-01088) was approved by the Program for the
Protection of Human Subjects (PPHS) office at ISMMS as exempt
human research (IRB-19-02546).

Study cohorts
For the discovery cohort, we realigned and called germline variants
in a case-control cohort setting for 8321 TCGA cases and 7388
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dbGaP controls. Cases included participants with 24 different cancer
types of different sample sizes, as listed in Supplementary Table 1.
For the control samples, when the underlying dbGaP study was a
case-control study focused on a disease, we only included control
individuals who did not have that disease in question.
For the validation cohort, we utilized available datasets from

ISMMS BioMe52, which is an electronic health record (EHR) linked
biobank. BioMe encompasses a wide array of phenotypic and
genetic data from the diverse population of ISMMS patients with a
vast spectrum of medical disorders. WES data (Illumina v4 HiSeq
2500) already exist for 30,813 BioMe participants52. Focusing on
BioMe participants with existing WES data, we identified cancer
patients and healthy controls based on their International
Classification of Diseases (ICD)-9 and ICD10 codes53, which led
to 1,571 cases and 6,200 controls of European ancestry (filtering
details below). The clinical characteristics of the cohorts are listed
in Table 1. The study design is provided in Fig. 1.

Discovery cohort variant discovery
We first realigned and called germline variants from WES datasets
in a case-control setting using GVCF-based best practices for the
genome analysis toolkit (GATK, https://www.broadinstitute.org/
gatk/, RRID:SCR_001876) as implemented in a custom pipeline at
the Icahn School of Medicine at Mount Sinai (ISMMS)54 and
previously15,55,56. Briefly, we independently aligned all samples to
human genome build GRCh37 with BWA57 (RRID:SCR_010910),
performed indel realignment, duplicate marking and base quality
score recalibration using GATK and Picard (RRID:SCR_006525), and
finally called to a GVCF file with HaplotypeCaller. The case-control
germline variant calling step consisted of calling variants from GVCF
files and variant quality score calibration with GATK, where we only
included samples for which over 75% of the exome was callable
(depth ≥ 20, mapping quality ≥ 10, base quality ≥ 20) and for which
there was no evidence of contamination (VerifyBamID < 3%).

Discovery cohort sample QC
We first removed samples with 15% or more missing genotype
data. To filter samples that are duplicates or from first or second
degree relative pairs, we performed relatedness analysis with KING
software58 (RRID:SCR_009251) and then removed a sample from
each such pair that had the highest fraction of missing data. To
remove any bias that may arise due to systematic ancestry-based
variations in allele frequency differences between cases and
controls (i.e. population stratification) we used Principal Compo-
nent Analysis (PCA). Briefly, we first removed indels and rare
variants (defined by <5% of minor allele frequency, MAF), using
1000 Genomes dataset59 (RRID:SCR_008801) and The Ashkenazi
Genome Consortium (TAGC, https://ashkenazigenome.org) as
reference. For the remaining variants, we performed linkage
disequilibrium (LD) pruning, filtered for a call rate of at least 0.99,
and performed PCA with smartpca using EIGENSOFT 5.0.1 software
(RRID:SCR_004965). We filtered for the least ancestry-based
variation by focusing our downstream analyses on the largest
set of case-control individuals clustered within the PCA plot by
examining the PCA plot and selecting thresholds on PC1 and PC2
to corresponded to individuals of European ancestry (EA);
analogous to flow cytometry we call this approach “gating”. The
PCA plots along with the gated region are shown in Fig. 2. To
adjust for population-level differences, we used the first two
principal components from PCA of the gated individuals as
covariates in the burden analyses. After sample QC, 6371 cases
and 6647 controls remained.

Discovery cohort variant-level QC
For participants that passed PCA gating, we focused on ensuring
high-quality genotype/variant calls for analysis. For this purpose,

we filtered for variants with: read genotype quality ≥20; read
depth ≥10; allelic depth of alternate allele ≥4; sites with: quality
score ≥50; quality by depth score ≥2; mapping quality ≥40; read
position rank sum > –3; mapping quality rank sum > –10 and
variant tranche <99%. For heterozygous genotypes, we filtered for
alternative allele ratio between 0.30 and 0.70. To reduce any
differences between samples in cases and controls, we kept sites
that have differential missing variant fraction ≤ 0.05 between the
cases and controls. Finally, we kept sites with ≥88% of data (in
both cases and controls).

Validation cohort participant selection
Next, to replicate the discovery cohort findings within an ancestry-
matched validation cohort, we focused on those of EA in BioMe.
Briefly, we used the PCA performed on the common variants60

and gated for EA individuals based on the first two principal
components which captured the majority of the variance,
resulting in 10,784 BioMe participants of (Supplementary Fig. 5).
Next, we also ensured we used data from unrelated participants
up to second degree. Finally, we identified participants with
cancer based on their ICD9 and ICD10 codes available within
BioMe52. Specifically, to avoid any false positives, we filtered for
participants who had ICD9/10 codes related to cancer at least
twice in their diagnosis files on separate dates. To avoid any
conflicts in categorizations, we also removed participants with the
following diagnoses (or diagnoses of similar nature): benign
neoplasms, neoplasm of uncertain behavior and genetic suscept-
ibility to malignant neoplasm. The complete list of ICD9/10 codes
used for classification and elimination of cancer diagnosis are
listed in Supplementary Data 8. We considered all other
participants who were unaccounted for in the above categories
as controls. These led to 1571 cases and 6200 control participants
of EA in the BioMe cohort.

Validation cohort data generation and variant QC
BioMe WES data generation and QC steps have been discussed in
detail previously52. Briefly, we filtered out sites with missingness
>0.02 and biallelic sites with allele balance (<0.3 or >0.8).
Additionally, to be consistent with the discovery cohort variant
QC, we filtered for variants with: read genotype quality ≥20; read
depth ≥10; allelic depth of alternate allele ≥4; sites with: quality
score ≥50; quality by depth score ≥2; mapping quality ≥40; read
position rank sum > –3; mapping quality rank sum > –10; differ-
ential missing variant fraction ≤ 0.05 between the cases and
controls and site missingness <12% (in both cases and controls).

Variant filtering (both cohorts)
After sample and variant QC, we focused on rare, deleterious
variants (RDVs) with known pathogenicity. To filter out common
polymorphisms, we removed any variant present in both case and
control cohorts at MAF > 2% or in Exome Aggregation Consortium
(ExAC)36 non-TCGA Non-Finnish European population at MAF >
1% or in Genome Aggregation Database (gnomAD)37 Ashkenazi
Jewish population at MAF > 1%. We considered variants that pass
these filters to be rare. We then filtered the remaining variants for
functional impact based on those present in the ClinVar
database46 (RRID:SCR_006169) using the Annovar tool (http://
annovar.openbioinformatics.org, RRID:SCR_012821). We consid-
ered a variant to be deleterious if: (i) it is listed as pathogenic/likely
pathogenic in ClinVar; or (ii) it is a frameshift or stopgain variant
located 5′ of a variant described to be a pathogenic LOF variant in
ClinVar (nonsense and frameshift). We also performed a sensitivity
analysis for our MAF cutoff by removing any variant present in
both case and control cohorts at MAF > 1% or in ExAC non-TCGA
Non-Finnish European population at MAF > 1% or in gnomAD
Ashkenazi Jewish population at MAF > 1% and did not observe a
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difference in the top genes or gene-set level burden analyses
(data not shown).

Statistical analysis
Background variation correction. To test for possible background
variation between cases and controls, we calculated the tally of
rare autosomal synonymous variants per each study participant.
We defined synonymous variants as rare at Exac MAF ≤ 0.005%
and cohort MAF ≤ 0.05%. Supplementary Fig. 6 provides the
distribution and background variation statistics of genes with rare
synonymous variants between the cases and controls in both
cohorts. We accounted for differences in background variation by
using the number of genes with rare synonymous variants of each
individual as a covariate during the burden analyses.

Gene level RDV burden analyses. Next, to evaluate the cumulative
effects of multiple RDVs in each gene, and thereby increase the
statistical power to identify cancer risk genes, we performed gene
level RDV burden tests. Briefly, to accommodate for data sparsity,
we performed aggregate RDV burden for each gene using
penalized logistic regression analysis (PLRA), using the logistf
package in R (https://cran.r-project.org/web/packages/logistf/
index.html). To adjust for background variation, we used the
number of genes with rare synonymous variants as a covariate for
each individual in both cohorts. Additionally, in the discovery
cohort we used the first two principal components as covariates to
adjust for population difference. We deemed genes with p-
value ≤ 0.05 and odds ratio >1 as statistically significant risk genes.
We performed the burden analysis in pan-cancer and tissue-
specific cancer types. All statistical tests were two-sided.

Gene-set level RDV burden analyses. Next, we evaluated the RDV
burden of gene-sets that typically play key roles in cancer risk
and progression: (i) known cancer predisposition genes
(Illumina, https://www.illumina.com/products/by-type/clinical-
research-products/trusight-cancer.html); (ii) DNA damage repair
genes20,21; (iii) somatic cancer driver genes22 and (iv) Fanconi
Anemia genes61. We performed the burden analysis for (i) tissue
type specific cancers; (ii) histologically or anatomically related
cancer types, including pan-gastrointestinal23, pan-kidney24,
pan-gynecological25, and pan-squamous26, and (iii) pan-cancer.
We provide a complete list of genes in these gene-sets in
Supplementary Table 6. For burden analyses, we used PLRA and
considered all participants with at least one RDV in a gene
within the considered gene-set. Furthermore, for an unbiased
data-driven exome-wide gene-set analysis, we also tested all
gene-sets (17,810) in Molecular Signatures Database (MSigDB)27

using the same RDV burden approach. We considered statisti-
cally significant burden as p-value ≤ 0.05.

Gender effects. The gender breakdown of participants for each
cancer type in TCGA is provided in Supplementary Table 8. To
study the effect of gender on burden analyses, we first removed
samples with missing gender data (Supplementary Table 8) and
then used PLRA with gender as an additional covariate. Resulting
ORs and p-values of all gene-sets are in Supplementary Fig. 3.
Please note that we did include gender-biased cancer subtypes
breast, prostate, ovarian, cervical and uterine (endometrial and
sarcoma) in the multi-cancer analysis of gender effects.

Cancer type grouping. While cancer type is traditionally defined
based on tissue of origin and histologic type, recently62,
histologically or anatomically related cancer types have been
studied together, including pan-gastrointestinal23, pan-kidney24,
pan-gynecological25, and pan-squamous analyses26. In light of
these studies, we performed gene-set level burden analyses in
these four sub-groups. We included 634 patients with stomach,

colon or rectum adenocarcinoma for pan-gastrointestinal; 528
patients with clear cell, papillary or chromophobe renal cell
carcinoma for pan-kidney; 1392 patients with ovarian serous
cystadenocarcinoma, uterine corpus endometrial carcinoma,
cervical squamous cell carcinoma and endocervical adenocarci-
noma, uterine carcinosarcoma or breast invasive carcinoma for
pan-gynecological; and 1038 patients with lung squamous cell
carcinoma, head and neck squamous cell carcinoma, or cervical
and bladder cancers with squamous differentiation26 for pan-
squamous analyses. For all of these groupings, we compared the
cases with the full set of controls.

Germline RDV load effects. Next, we asked whether the accumu-
lation of personal germline RDVs, or “RDV load” of an individual
impacts their personal cancer risk. Towards this end, we first
divided the discovery cohort participants based on their RDV loads
into three groups: participants with (i) no RDVs; (ii) one RDV; and
(iii) more than one RDV. We then tested and compared the
association of germline RDV load with age of diagnosis between
these groups using the Mann–Whitney U test. Next, we asked
whether the germline RDV load is associated with tumor immune
microenvironment (TME). For this purpose, we used existing
datasets31 on the relative fraction of 22 different immune cell
types within TME across TCGA cancers, as estimated by the
CIBERSORT tool32 (RRID:SCR_016955), which included 5917 cases.
To obtain the total cell fraction in tissue, we multiplied the relative
immune cell fractions with leukocyte fraction31. We then
compared the immune cell fractions between the groups using
the Kruskal-Wallis test. Next, to study the effect of M1
macrophages on survival, we used Cox proportional hazards
regression model. Finally, to study the effect of germline RDVs on
tumor mutation burden (TMB) between the groups, we used
Mann–Whitney U test. To calculate the TMB, we used the publicly
available TCGA somatic mutations MAF file (mc3.v0.2.8.PUBLIC.-
maf.gz) which included 6225 cases. We used the TMB definition as
the total number of somatic, missense, nonsense, frameshift/
inframe mutations per megabase (Mb) of genome examined, with
38Mb as an estimate of exome size.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The results here are in part based upon data generated by the TCGA Research
Network (https://www.cancer.gov/tcga) and datasets from dbGaP (http://
www.ncbi.nlm.nih.gov/gap) through dbGaP accession numbers phs000209,
phs000276, phs000296, phs000298, phs000424, phs000654, phs000687, phs000806,
phs000876, phs000971, phs001000, phs001101. BioMe BioBank (http://
icahn.mssm.edu/research/ipm/programs/biome-biobank) WES data from Mount Sinai
Health system requires PPHS/IRB approval.

CODE AVAILABILITY
All analyses were performed utilizing standard publicly available software. Any
specific analysis code details are available from the authors upon request.

Received: 15 July 2022; Accepted: 16 January 2023;

REFERENCES
1. Stadler, Z. K. et al. Genome-wide association studies of cancer. J. Clin. Oncol. 28,

4255–4267 (2010).
2. Li, X. et al. The impact of rare variation on gene expression across tissues. Nature

550, 239–243 (2017).

M Esai Selvan et al.

10

npj Precision Oncology (2023)    13 Published in partnership with The Hormel Institute, University of Minnesota

https://cran.r-project.org/web/packages/logistf/index.html
https://cran.r-project.org/web/packages/logistf/index.html
https://www.illumina.com/products/by-type/clinical-research-products/trusight-cancer.html
https://www.illumina.com/products/by-type/clinical-research-products/trusight-cancer.html
https://www.cancer.gov/tcga
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
http://icahn.mssm.edu/research/ipm/programs/biome-biobank
http://icahn.mssm.edu/research/ipm/programs/biome-biobank


3. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation
from deep sequencing of human exomes. Science 337, 64–69 (2012).

4. Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target
genes sequenced in 14,002 people. Science. 337, 100–104 (2012).

5. Robson, M. & Offit, K. Clinical practice. Management of an inherited predisposi-
tion to breast cancer. N. Engl. J. Med. 357, 154–162 (2007).

6. Lindor, N. M. et al. Recommendations for the care of individuals with an inherited
predisposition to Lynch syndrome: a systematic review. JAMA 296, 1507–1517
(2006).

7. Villani, A. et al. Biochemical and imaging surveillance in germline TP53 mutation
carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet
Oncol. 12, 559–567 (2011).

8. Galiatsatos, P. & Foulkes, W. D. Familial adenomatous polyposis. Am. J. Gastro-
enterol. 101, 385–398 (2006).

9. Hall, E. T. et al. Pathogenic variants in less familiar cancer susceptibility genes:
What happens after genetic testing? JCO Precis. Oncol. https://doi.org/10.1200/
PO.18.00167 (2018).

10. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N.
Engl. J. Med. 373, 2336–2346 (2015).

11. Lu, C. et al. Patterns and functional implications of rare germline variants across
12 cancer types. Nat. Commun. 6, 10086 (2015).

12. Huang, K. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173,
355–370.e14 (2018).

13. Ding, L. et al. Perspective on oncogenic processes at the end of the beginning of
cancer genomics. Cell 173, 305–320.e10 (2018).

14. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93
(2020).

15. Esai Selvan, M., Klein, R. J. & Gümüş, Z. H. Rare, pathogenic germline variants in
Fanconi anemia genes increase risk for squamous lung cancer. Clin. Cancer Res.
25, 1517–1525 (2019).

16. Esai Selvan, M. et al. Inherited rare, deleterious variants in ATM increase lung
adenocarcinoma risk. J. Thorac. Oncol. 15, 1871–1879 (2020).

17. Cancer Genome Atlas Research Network, J. N. et al. The cancer genome atlas pan-
cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

18. Kowalski, M. H. et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine
(TOPMed) Consortium whole genome sequences improves imputation quality
and detection of rare variant associations in admixed African and Hispanic/Latino
populations. PLoS Genet. 15, e1008500 (2019).

19. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
Program. Nature 590, 290–299 (2021).

20. Knijnenburg, T. A. et al. Genomic and molecular landscape of DNA damage
repair deficiency across the cancer genome atlas. Cell Rep. 23, 239–254.e6
(2018).

21. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic
prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

22. Matthew Bailey, A. H. et al. Comprehensive characterization of cancer driver
genes and mutations article comprehensive characterization of cancer driver
genes and mutations. Cell 173, 371–385 (2018).

23. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas.
Cancer Cell 33, 721–735.e8 (2018).

24. Ricketts, C. J. et al. The cancer genome atlas comprehensive molecular char-
acterization of renal cell carcinoma. Cell Rep. 23, 313–326.e5 (2018).

25. Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic
and breast cancers. Cancer Cell 33, 690–705.e9 (2018).

26. Campbell, J. D. et al. Genomic, pathway network, and immunologic features
distinguishing squamous carcinomas. Cell Rep. 23, 194–212.e6 (2018).

27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.
USA 102, 15545–15550 (2005).

28. Shahamatdar, S. et al. Germline features associated with immune infiltration in
solid tumors. Cell Rep. 30, 2900–2908.e4 (2020).

29. Lim, Y. W. et al. Germline genetic polymorphisms influence tumor gene
expression and immune cell infiltration. Proc. Natl Acad. Sci. USA 115,
E11701–E11710 (2018).

30. Tian, J. et al. CancerImmunityQTL: A database to systematically evaluate the
impact of genetic variants on immune infiltration in human cancer. Nucleic Acids
Res. 49, D1065–D1073 (2021).

31. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14
(2018).

32. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression
profiles. Nat. Methods 12, 453–457 (2015).

33. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy
biomarker: Utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

34. Spira, A. et al. Precancer atlas to drive precision prevention trials. Cancer Res. 77,
1510–1541 (2017).

35. Jeggo, P. A., Pearl, L. H. & Carr, A. M. DNA repair, genome stability and cancer: a
historical perspective. Nat. Rev. Cancer 16, 35–42 (2016).

36. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291 (2016).

37. Karczewski, K. J. et al. The mutational constraint spectrum quantified from var-
iation in 141,456 humans. Nature 581, 434–443 (2020).

38. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune
set point. Nature 541, 321–330 (2017).

39. Reyes-Torres, I. et al. TREM2 sensing of tumor cell efferocytosis promotes a
macrophage molecular state that limits NK cell antitumor immunity. SSRN Elec-
tron. J. https://doi.org/10.2139/ssrn.3900125 (2021).

40. Buscher, K. et al. Natural variation of macrophage activation as disease-relevant
phenotype predictive of inflammation and cancer survival. Nat. Commun. 8,
16041 (2017).

41. S, T. et al. High numbers of macrophages, especially M2-like (CD163-positive),
correlate with hyaluronan accumulation and poor outcome in breast cancer.
Histopathology 66, 873–883 (2015).

42. Ardighieri, L. et al. Infiltration by CXCL10 secreting macrophages is associated
with antitumor immunity and response to therapy in ovarian cancer subtypes.
Front. Immunol. 12, 690201 (2021).

43. Pan, Y., Yu, Y., Wang, X. & Zhang, T. Tumor-associated macrophages in tumor
immunity. Front. Immunol. 11, 583084 (2020).

44. Klemm, F. & Joyce, J. A. Microenvironmental regulation of therapeutic response in
cancer. Trends Cell Biol. 25, 198–213 (2015).

45. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of
response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608
(2017).

46. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence
variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

47. Wang, Y. et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung
cancer. Nat. Genet. 46, 736–741 (2014).

48. Graff, R. E. et al. Cross-cancer evaluation of polygenic risk scores for 16 cancer
types in two large cohorts. Nat. Commun. 12, 970 (2021).

49. Klein, R. J. & Gümüş, Z. H. Are polygenic risk scores ready for the cancer clinic?-a
perspective. Transl. Lung cancer Res. 11, 910–919 (2022).

50. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic
variants for tier 1 genomic conditions. Nat. Commun. 11, 1–9 (2020).

51. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of
polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

52. Abul-Husn, N. S. et al. Exome sequencing reveals a high prevalence of BRCA1 and
BRCA2 founder variants in a diverse population-based biobank. Genome Med. 12,
2 (2019).

53. SEER. Surveillance, Epidemiology, and End Results Program, National Cancer Insti-
tute https://seer.cancer.gov/ (2022).

54. Linderman, M. D. et al. Analytical validation of whole exome and whole genome
sequencing for clinical applications. BMC Med. Genom. 7, 20 (2014).

55. Wei, X. et al. Germline Lysine-Specific Demethylase 1 (LSD1/KDM1A) mutations
confer susceptibility to multiple myeloma. Cancer Res. 78, 2747–2759 (2018).

56. Waller, R. G. et al. Novel pedigree analysis implicates DNA repair and chromatin
remodeling in multiple myeloma risk. PLoS Genet. 14, e1007111 (2018).

57. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics 26, 589–595 (2010).

58. Manichaikul, A. et al. Robust relationship inference in genome-wide association
studies. Bioinformatics 26, 2867–2873 (2010).

59. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74
(2015).

60. Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell
184, 2068–2083.e11 (2021).

61. Ceccaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new
players and new functions. Nat. Rev. Mol. Cell Biol. 17, 337–349 (2016).

62. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification
of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).

ACKNOWLEDGEMENTS
This work was supported by grants to Z.H.G from LUNGevity Foundation, Uniting
Against Lung Cancer Foundation and Cancer Moonshot R33 award # CA263705-01; to
R.J.K. from the National Cancer Institute (R01 CA167824); to S.G. from the grants U24
CA224319 and U01 DK124165 and in part through the computational resources and
staff expertise provided by Scientific Computing at the Icahn School of Medicine at
Mount Sinai. We would also like to thank the ISMMS BioMe team for providing whole-
exome sequencing calls, principal component analysis, and identification of
unrelated individuals. We thank the participants, investigators and staff of the TCGA
Research Network and dbGaP studies (accession numbers phs000209, phs000276,
phs000296, phs000298, phs000424, phs000654, phs000687, phs000806, phs000876,

M Esai Selvan et al.

11

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    13 

https://doi.org/10.1200/PO.18.00167
https://doi.org/10.1200/PO.18.00167
https://doi.org/10.2139/ssrn.3900125
https://seer.cancer.gov/


phs000971, phs001000, phs001101). We thank Berk Turhan for help with one of the
figures. We include the following acknowledgement statements for the dbGaP
studies: phs000209: MESA and the MESA SHARe project are conducted and
supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration
with MESA investigators. Support for MESA is provided by contracts N01-HC- 95159,
N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-
HC-95165, N01-HC- 95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-RR-
025005, and UL1-TR-000040. This study is part of the NHLBI Grand Opportunity
Exome Sequencing Project (GO-ESP). Funding for GO-ESP was provided by NHLBI
grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924
(WHISP). The exome sequencing was performed through NHLBI grants RC2 HL102925
(BroadGO) and RC2 HL102926 (SeattleGO). HeartGO gratefully acknowledges the
following groups and individuals who provided biological samples or data for this
study. DNA samples and phenotypic data were obtained from the following studies
supported by the NHLBI: the Atherosclerosis Risk in Communities (ARIC) study, the
Coronary Artery Risk Development in Young Adults (CARDIA) study, Cardiovascular
Health Study (CHS), the Framingham Heart Study (FHS), the Jackson Heart Study (JHS)
and the Multi-Ethnic Study of Atherosclerosis (MESA). phs000276: The NFBC1966
Study is conducted and supported by the National Heart, Lung, and Blood Institute
(NHLBI) in collaboration with the Broad Institute, UCLA, University of Oulu, and the
National Institute for Health and Welfare in Finland. This manuscript was not
prepared in collaboration with investigators of the NFBC1966 Study and does not
necessarily reflect the opinions or views of the NFBC1966 Study Investigators, Broad
Institute, UCLA, University of Oulu, National Institute for Health and Welfare in Finland
and the NHLBI. phs000296: This research used data generated by the COPDGene
study, which was supported by NIH grants U01 HL089856 and U01 HL089897. The
COPDGene project is also supported by the COPD Foundation through contributions
made by an Industry Advisory Board comprised of Pfizer, AstraZeneca, Boehringer
Ingelheim, Novartis, and Sunovion. This study is part of the NHLBI Grand Opportunity
Exome Sequencing Project (GO-ESP). Funding for GO-ESP was provided by NHLBI
grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924
(WHISP). The exome sequencing was performed through NHLBI grants RC2 HL102925
(BroadGO) and RC2 HL102926 (SeattleGO). phs000298: The dataset(s) were deposited
by the ARRA Autism Sequencing Collaborative, an ARRA funded research initiative.
Support for the Autism Sequencing Collaborative was provided by grants: R01-
MH089208 awarded to Dr. Mark Daly, R01-MH089175 awarded to Dr. Richard Gibbs,
R01-MH089025 awarded to Joseph Buxbaum, R01-MH089004 awarded to Gerard
Schellenberg, and R01-MH089482 awarded to James Sutcliffe. phs000424: The
Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of
the Office of the Director of the National Institutes of Health (commonfund.nih.gov/
GTEx). Additional funds were provided by the NCI, NHGRI, NHLBI, NIDA, NIMH, and
NINDS. Donors were enrolled at Biospecimen Source Sites funded by NCI\Leidos
Biomedical Research, Inc. subcontracts to the National Disease Research Interchange
(10XS170), Roswell Park Cancer Institute (10XS171), and Science Care, Inc. (X10S172).
The Laboratory, Data Analysis, and Coordinating Center (LDACC) was funded through
a contract (HHSN268201000029C) to The Broad Institute, Inc. Biorepository
operations were funded through a Leidos Biomedical Research, Inc. subcontract to
Van Andel Research Institute (10ST1035). Additional data repository and project
management were provided by Leidos Biomedical Research,
Inc.(HHSN261200800001E). The Brain Bank was supported supplements to University
of Miami grant DA006227. Statistical Methods development grants were made to the
University of Geneva (MH090941 & MH101814), the University of Chicago
(MH090951,MH090937, MH101825, & MH101820), the University of North Carolina -
Chapel Hill (MH090936), North Carolina State University (MH101819),Harvard
University (MH090948), Stanford University (MH101782), Washington University
(MH101810), and to the University of Pennsylvania (MH101822). phs000654: The
sequencing was performed through Epi4K Gene Discovery in Epilepsy study (NINDS
U01-NS077303) and the Epilepsy Genome/Phenome Project (EPGP—NINDS U01-
NS053998). phs000687: The Bulgarian Trio Sequencing study is an accumulation of
exome sequencing performed and/or funded by the Broad Institute, Cardiff
University, Icahn School of Medicine at Mount Sinai, and the Wellcome Trust Sanger
Institute. Work at the Broad Institute was funded by Fidelity Foundations, the Sylvan

Herman Foundation and philanthropic gifts from Kent and Liz Dauten, Ted and Vada
Stanley, and an anonymous donor to the Stanley Center for Psychiatric Research.
Work at Cardiff was supported by Medical Research Council (MRC) Centre (G0800509)
and Program Grants (G0801418), the European Community’s Seventh Framework
Programme (HEALTH-F2-2010-241909 (Project EU-GEI)). Work at the Icahn School of
Medicine at Mount Sinai was supported by the Friedman Brain Institute, the Institute
for Genomics and Multiscale Biology and National Institutes of Health grants
R01HG005827 (SMP) and R01MH071681 (PS). Work at the Wellcome Trust Sanger
Institute was supported by The Wellcome Trust (WT089062 and WT098051). The
recruitment of the trios in Bulgaria was funded by the Janssen Research Foundation.
phs000876: This research was supported in part by NCI grants U19CA148127 and
P30CA023108, as well as Canadian Cancer Society Research Institute (no. 020214) and
the International Agency for Research on Cancer. phs000971: This publication
includes data from the ClinSeq™ study that was supported by the National Human
Genome Research Institute Intramural Research Program. phs000806, phs001000
and phs001101: We thank the Broad Institute for generating high-quality sequence
data supported by NHGRI funds (grant # U54 HG003067) with Eric Lander as PI.

AUTHOR CONTRIBUTIONS
R.J.K. and Z.H.G. conceived and designed the study. Z.H.G. supervised the research.
M.E.S. and R.J.K performed data analysis. M.E.S., R.J.K. and Z.H.G. wrote and reviewed
the manuscript with critical feedback and support from K.O. and S.G. All authors
approved the manuscript.

COMPETING INTERESTS
S.G. reports consultancy and/or advisory roles for Merck and OncoMed and research
funding from Bristol-Myers Squibb, Genentech, Celgene, Janssen R&D, Takeda, and
Regeneron. Other authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41698-023-00354-3.

Correspondence and requests for materials should be addressed to Zeynep H.
Gümüş.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

M Esai Selvan et al.

12

npj Precision Oncology (2023)    13 Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-023-00354-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Germline rare deleterious variant load alters cancer risk, age of onset and tumor characteristics
	Introduction
	Results
	Germline variant calling in a case-control setting identified sites of rare, deleterious variants (RDVs) and their genotypes across the cohort
	Gene-set level burden analysis revealed that RDVs in cancer predisposition, DNA damage repair, Fanconi Anemia and somatic cancer driver gene-sets are associated with cancer risk
	Data-driven analysis of 17,810 gene-sets in MSigDB again identified RDV burden in Fanconi Anemia genes associated with increased cancer risk
	Germline RDV load in key cancer genes is a potential marker for increased cancer risk
	Germline RDV load is associated with altered tumor immune microenvironment and increased tumor mutation burden

	Discussion
	Methods
	Data sources
	Study cohorts
	Discovery cohort variant discovery
	Discovery cohort sample QC
	Discovery cohort variant-level QC
	Validation cohort participant selection
	Validation cohort data generation and variant QC
	Variant filtering (both cohorts)
	Statistical analysis
	Background variation correction
	Gene level RDV burden analyses
	Gene-set level RDV burden analyses
	Gender effects
	Cancer type grouping
	Germline RDV load effects

	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




