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Identifying molecular targets 
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Lung cancer is one of the leading cancers and causes of cancer-related deaths worldwide. Due to 
its high prevalence and mortality rate, its clinical management remains a significant challenge. 
Previously, the in vitro anticancer activity of Aspiletrein A, a steroid and a saponin from Aspidistra 
letreae, against non-small cell lung cancer (NSCLC) cells was reported. However, the anticancer 
molecular mechanism of other Aspiletreins from A. letreae remains unknown. Using in silico network 
pharmacology approaches, the targets of Aspiletreins were predicted using the Swiss Target 
Prediction database. In addition, key mediators in NSCLC were obtained from the Genetic databases. 
The compound-target interacting networks were constructed using the STRING database and 
Cytoscape, uncovering potential targets, including STAT3, VEGFA, HSP90AA1, FGF2, and IL2. Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that several 
pathways were highly relevant to cancer pathogenesis. Additionally, molecular docking and molecular 
dynamic analyses revealed the interaction between key identified targets and Aspiletreins, including 
hydrogen bonding and Van der Waals interaction. This study provides potential targets of Aspiletreins 
in NSCLC, and its approach of integrating network pharmacology, bioinformatics, and molecular 
docking is a powerful tool for investigating the mechanism of new drug targets on a specific disease.

Lung cancer remains an aggressive malignancy with high mortality and incidence rate because of its aggressive 
characteristics1. Among the common subtypes of lung cancer, non-small cell lung cancer (NSCLC) is the primary 
subtype, accounting for 85% of the cases2. The standard therapy for NSCLC includes surgery, radiation, chemo-
therapy, targeted therapy, and immunotherapy3. In the past decade, despite advances in therapeutic approaches, 
the number of deaths has gradually increased due to NSCLC’s ability to metastasize, acquisition of chemo-
therapeutic resistance, and high recurrence rate; in addition, drug efficacy is limited by significant side effects4,5. 
Particularly, a five-year survival rate of only 7% was reported for patients with lung cancer at the metastatic 
stage1. Therefore, continuous drug discovery for lung cancer is necessary for improving the clinical outcome.

Plants are a versatile source of biologically active compounds. For example, the plants of the Aspidistra genus, 
discovered in Vietnam6, contain many active components, such as saponin, coumarin, and isoflavones7,8, with 
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various demonstrated pharmacological activities, including antibacterial, antifungal, antitumor, and antiviral7–10. 
A previous study reported that Aspiletreins, mainly three steroidal saponins, exhibited cytotoxicity in breast, 
cervical, hepatocellular, gastric, and lung cancer cells8,11. These three steroidal saponins contain different sugar 
moiety side chains located at C3, suggesting distinct potencies (Table 1). The mechanistic investigation dem-
onstrated that Aspiletrein A (AA) could suppress lung cancer metastasis by inhibiting protein kinase A (Akt) 
signaling11. However, the molecular targets of Aspiletreins B and C (AB and AC, respectively) have not been 
elucidated.

On the other hand, network pharmacology-based strategies, integrating complex systems of biology and the 
network analysis of multiple drug targets, have been established as a new paradigm for drug discovery12. This 
type of approach is a powerful tool for predicting the molecular targets of new chemical entities as well as disease 
pathways. In addition, molecular docking analysis reveals the potential intermolecular interactions between a 
target and compounds13. Furthermore, pharmacokinetics and pharmacodynamics were analyzed according to 
chemical properties and structures using the algorithm-based method14. These comprehensive approaches can 

Table 1.   Compound information.

No. Parameters Aspiletrein A Aspiletrein B Aspiletrein C

1 MW 857.044 1019.185 1149.328

2 Log P 0.9331 − 1.2427 − 1.3633

3 H-bond acceptor 16 21 24

4 H-bond donors 8 11 12

5 Rotatable bond 7 10 11

6 % Intestinal absorption 63.78 39.771 25.623

7 BBB (log BB) − 0.28 − 2.125 − 2.533

8 Ames toxicity No No No

9 Hepatotoxicity No No No

10 Max. tolerated dose (mg/kg/day) 0.007 0.122 0.348

11 Drug likeness N/A N/A N/A

12 Oral bioavailability N/A N/A N/A

Aspiletrein A   

Aspiletrein B  

Aspiletrein C  
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help reduce the time and cost of preclinical experiments. In this study, we explored the molecular mechanism 
of Aspiletreins against NSCLC using network pharmacology and computation-based approaches.

Results
Identification of drug targets in non‑small cell lung cancer.  The experiment procedures are pre-
sented in Fig. 1. Targets in NSCLC were searched in the GeneCards Human database, DisGeNET, OMIM, and 
TTD using “non-small cell lung cancer” as a keyword. After removing duplication among these databases, a 
total of 6431 NSCLC targets were found based on the relevance scores (Fig. 2). The targets of each Aspiletrein 
were fetched from the Swiss Target Prediction. The predicted targets identified included 28 for AA, 32 for AB, 
and 30 for AC (Table 2). The 17 intersecting targets of Aspiletreins and NSCLC were in a Venn diagram (Fig. 2) 
and listed (Table S1). Furthermore, the compound-target network plot was constructed using Cytoscape 3.9.0 
(Fig. 3). Among the targets, STAT3 and IL2 for AA and AB, GLRAs and TRPV1 for AB and AC, whereas TACR2 
was a target only for AC.

Analysis of target protein–protein interaction (PPI) network.  The 17 intersected targets, including 
VEGFA, FGF1, FGF2, HPSE, CDK1, HSP90AA1, ADRA2B, DRD2, CYP2D6, LGALS3, RORC, IL2, ADRA1A, 
STAT3, TRPV1, SLC6A2, TRPV1, and GLRA1, were imported to the STRING database, and the potential 
relationships among them were investigated. The PPI network with a confidence score of 0.9 was constructed 
(Fig. 4A). The STRING database analysis revealed that the average node degree, defined as the average number 
of interactions of a protein in a network, was 1.06 and the local clustering coefficient, defined as the wellness 
of the connected nodes in a network, was 0.312. The interactions between the targets comprised 17 nodes and 
9 edges, with each edge representing the association between nodes. Cytoscape analysis showed that there was 
one main cluster associated in the PPI network (Fig. 4B). According to the scores of degree, closeness centrality, 
betweenness centrality, and clustering centrality, signal transducer and activator of transcription 3 (STAT3), heat 
shock protein HSP 90-alpha (HSP90AA1), vascular endothelial growth factor A (VEGFA), fibroblast growth 
factor-2 (FGF2), and interleukin-2 (IL-2) were identified as the top 5 intersecting targets of Aspiletreins and 
NSCLC interaction (Fig. 4C and Table S2).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analy‑
sis.  GO enrichment analysis was conducted to analyze the impact of the targets in NSCLC. The classification 
of GO was set for three criteria, including biological processes (Fig. 5A), GO molecular functions (Fig. 5B), and 
GO subcellular localizations (Fig. 5C). First, the data with the candidate target and KEGG pathway analysis 
were interpreted using the R software with a ggplot2 plug-in, uncovering 245 biological processes, 9 molecular 
functions, and 3 subcellular localizations. Then, the top 10 biological processes of Aspiletreins were identified 
by sorting them by the degree of significance, including response to ethanol, regulation of protein modification 
process, regulation of phosphate metabolic process, positive regulation of signal transduction, positive regula-
tion of protein phosphorylation, positive regulation of multicellular organismal process, positive regulation of 
kinase activity, positive regulation of intracellular signal transduction, positive regulation of catalytic activity, 
and cellular response to chemical stimulus (Fig. 5A). Molecular functions were mainly enriched in growth fac-
tor activity, chemoattractant activity, growth factor receptor binding, protein binding, receptor-ligand activity, 
molecular function regulator, sulfur compound binding, catecholamine binding, and alpha-adrenergic receptor 
activity (Fig.  5B). Finally, subcellular localization includes extracellular space, platelet-derived growth factor 
complex, and VEGF-A complex (Fig. 5C). Furthermore, the KEGG pathway suggested that the predicted targets 
were components of the pathways involved in oncogenesis, particularly in the PI3K-Akt, Rap1, Ras, and MAPK 
signaling pathways, and resistance to EGFR tyrosine kinase inhibitors (Fig. 5D, Fig. S1).

Compounds‑target interaction analysis by molecular docking and molecular dynamic simula‑
tion.  Among the 17 main targets of Aspiletreins in NSCLC, the top 5 potential targets, including STAT3, 
VEGFA, HSP90AA1, FGF2, and IL-2, were investigated for possible interaction with Aspiletreins. The Aspi-
letreins were molecularly docked using the PyRx Virtual Screening Tool, and their interactions with the high-
est affinity in each target were presented (Fig. 6, Fig. S2). The major binding interactions included hydrogen 
bonding and Van der Waals interactions. The binding energy score during docking indicates the affinity of a 
component for the target protein15. Here, all of the binding energy scores analyzed were less than 0, suggesting 
high-affinity interactions among the targets and the Aspiletreins (AA, AB, and AC) (Table. 3).

Since our finding demonstrated that STAT3 exhibited the most potential target of compounds in lung cancer 
cells, molecular dynamic simulation between STAT3 and AA or AB was then performed. A RMSD plot gener-
ated by R-Studio was used to evaluate the residual deviations in the complexes. The data shows that both AA 
and AB have comparable consistent interaction with STAT3 over the time after their binding (Fig. 7, Videos S1 
and S2). However, the ligand movement in the binding pocket side of STAT3 showed that AB was more stable 
due to its longer time in the aspect of equilibrium, which average RMSD of AB was 3.07 ± 0.49 Å, whereas that 
of AA was 6.87 ± 2.4 Å. Apart from RMSD plot, other factors such as the amount of hydrogen, hydrophobic, and 
Van der Waals interaction between ligand and protein are important to determine the efficacy of ligand–protein 
interaction16. In this case, AB has more significant hydrogen interaction (Table S3) compared to AA, in which 
hydrogen bonds play a major role in the stabilization of ligand–protein complexes17. These results suggest the 
stable behaviors of the complexes formed between AA or AB with STAT3.

In vitro cytotoxicity and target validation.  Cytotoxicity of the tested compounds was performed in 
NSCLC-H460 cells by MTT assay. The results demonstrated that IC50 of AA, AB, and AC in H460 cells were 
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13.25 ± 0.77, 6.82 ± 0.87, and 15.76 ± 0.17 μM respectively (Fig. S3A), indicating that AB has the most potent 
compound. Next, an in vitro experiment for validating the molecular target of the compounds was examined. 
Since STAT3 plays an important role in cancer survival and apoptosis, and our finding demonstrated that STAT3 
was the most relevant core target (Fig. 4, Table S2), the effect of AB on STAT3 activity was then investigated. The 
data demonstrated that phosphorylated STAT3 (pSTAT, an active form) was significantly decreased in response 
to AB, whereas its total form was unchanged (Fig. S3B), confirming the molecular mechanism identified. This 

Figure 1.   The framework of this study.
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Figure 2.   Venna diagram representing the overlapping of NSCLC targets (yellow) and compound targets (blue).

Table 2.   Lists of compound targets obtained from the Swiss Target Prediction.

No. Aspiletrein A (AA) Aspiletrein B (AB) Aspiletrein C (AC)

1 VEGFA VEGFA HSP90AA1

2 FGF1 FGF1 PSEN2

3 FGF2 FGF2 CDK1

4 HPSE HPSE HPSE

5 CDK1 HSP90AA1 VEGFA

6 LGALS4 PSEN2 FGF1

7 LGALS8 CDK1 FGF2

8 HSP90AA1 LGALS4 HTR2B

9 HTR2B LGALS8 ADRA2A

10 ADRA2A HTR2B ADRA2C

11 ADRA2C ADRA2A ADRA2B

12 ADRA2B ADRA2C DRD1

13 DRD1 ADRA2B HTR2C

14 DRD2 DRD1 CYP2D6

15 ADRA1D DRD2 HTR6

16 HTR2A ADRA1D HTR1B

17 HTR2C HTR2A RORC

18 DRD3 HTR2C LGALS4

19 CYP2D6 DRD3 LGALS3

20 HTR6 CYP2D6 LGALS8

21 HTR1B HTR6 DRD2

22 PSEN2 ADRA1A DRD3

23 LGALS3 HTR1B ADRA1A

24 RORC LGALS3 ADRA1D

25 IL2 RORC TRPV1

26 ADRA1A TRPV1 HTR2A

27 STAT3 SLC6A2 TACR2

28 SLC6A2 STAT3 SLC6A2

29 GLRA1 GLRA1

30 GLRA2 GLRA2

31 IL2

32 VEGFA
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suggests that network pharmacology in combination with molecular docking approaches is a beneficial platform 
for the identification of new drugs.

Discussion
Despite the advances in cancer treatment, such as chemotherapy, radiotherapy, targeted therapy, and immu-
notherapy, lung cancer continues to be one of the main causes of cancer-related deaths worldwide and a major 
global health problem due to its low five-year overall survival rate and poor prognosis1. Natural compounds 
are a promising source of drug candidates for lung cancer treatment18; therefore, they are investigated for their 
potential in improving clinical overcome. Recently, our group discovered Aspiletreins A, B, and C, promising 

Figure 3.   Compound-target-NSCLC network constructed using Cytoscape v_3.9.0. The grey rectangles 
represent the compounds (AA, AB, and AC), and the white ovals represent the hub protein-target interaction. 
AA Aspiletrein A, AB Aspiletrein B, AC Aspiletrein C.

Figure 4.   Protein–protein interaction (PPI) analysis. (A) Protein–protein interaction network of Aspiletreins 
and NSCLC targets obtained from STRING v_11.5 database. (B) The PPI network was constructed using 
the plug-in targets from the STRING database and imported into Cytoscape. (C) The top 5 targets in the PPI 
network as ranked using the cytoHubba plug in network analyzer. The higher degree value is represented by 
colors ranging from red to yellow.
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natural compounds from Aspidistra letreae. In addition, these steroidal saponins reportedly exhibited cyto-
toxicity in various cancer cell lines8,11. In this study, we have identified the molecular mechanism between the 
Aspiletreins and their predicted targets using the network pharmacology approach in combination with in silico 
molecular docking.

Network pharmacology-based assessments provide in-depth analyses on how various network factors interact 
with potential drug candidates19–21. This approach has emerged as a powerful tool for drug target identification 
based on a multidisciplinary concept integrating biology systems and polypharmacological models22. Aside 
from discovering new drugs and their targets, this tool enables the exploration of prospective target areas and 
the repurposing of existing drugs for diverse diseases23.

In this study, the potential targets of the compounds that overlapped with NSCLC targets were identified, 
including STAT3, VEGFA, HSP90AA1, FGF2, and IL2. These targets are highly relevant in the progression 
and metastasis in lung cancer24–29. STAT3, one of the main members of the STAT family, is responsible for the 
transcription of several genes related to oncogenesis, such as those encoding the proteins of the CDK family and 
pro-survival Bcl-2 family, VEGF, and epithelial-to-mesenchymal transition-related transcription factors SNAIL 
and SLUG25,30. Even though STAT3 expression was not significantly altered in tumor (Fig. S4A), the STAT3 
mutation was strongly correlated to the overall survival rate of lung cancer patients (Fig. S4B), and hyperphos-
phorylation of STAT3 was extensively found in lung adenocarcinoma (Fig. S4G), suggesting that suppression of 
its phosphorylation provides promising therapeutic approach31,32. Meanwhile, VEGFA, a growth factor, functions 
particularly through VEGFR-1 and VEGFR-2 on endothelial cells. It has various modes of action, including 
forming new blood vessels and vascular networks, increasing vascular permeability, stimulating endothelial cell 
proliferation and migration, and preventing endothelial cell apoptosis26,33. On the other hand, HSP90AA1 is a 
gene that regulates the expression of heat shock protein 90α (HSP90α) in response to intracellular stress27. In 
addition to its intracellular roles, HSP90α acts as an inflammation-stimulated, secreted extracellular factor that 
promotes malignant cell motility and metastasis by activating NF-kB and STAT3 transcription programs27. In 
the case of growth factor FGF2, it possesses broad mitogenic functions under normal conditions, especially in 
embryonic development and tissue repairment. In contrast, in cancer, its gene becomes overexpressed, inducing 
uncontrolled proliferation and the metastasis of several malignant tumors29,34. In addition, IL2, a multifunctional 
glycoprotein of the interleukin family, is a growth factor involved in the immune system, promoting the growth 
of natural killer cells, B-cells, and T-cells35,36. IL2 also aids the immune system by improving the ability of specific 

Figure 5.   Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis. The biological processes (A), molecular functions (B), subcellular localization (C), and KEGG terms 
(D) distributed in the ordinate and the degree of enrichment were analyzed. The size of the dots represents the 
gene count. Adjusted P-value indicates the importance of enrichment in which the blue-to-red represents the 
high-to-low value of the enrichment.
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Figure 6.   Molecular docking between Aspiletreins and the top 5 targets that have the highest affinity. (A) The 
interaction between AA and STAT3 (PDB: 6NJS). (B) The interaction between AA and VEGFA (PDB: 4KZN). 
(C) The interaction between AB and HSP90AA1 (PDB: 4BQG). (D) The interaction between AB and FGF2 
(PDB: 2FGF). (E) The interaction between AA and IL2 (PDB: 1M48). Hydrogen bonds were displayed in green, 
and Van der Waals interactions were displayed in light green. Alkyls were displayed in pink, and π–sigma was 
displayed in purple. AA Aspiletrein A, AB Aspiletrein B.
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white blood cells to identify and destroy cancer cells37. In lung cancer tissues, low expression of IL2 was associated 
with poor prognosis (Fig. S4C). Even though some of them, their expressions were not directly relevant to the 
overall survival rate of NSCLC patients (Fig. S4), they participate in cancer signaling as downstream molecules 
or ligands of growth factor receptors whose upstream regulators or receptors were aberrant expressed or over-
activated in cancers38–41. Furthermore, targeting these core targets was widely reported as potential therapeutic 
strategy for cancer42–44. Taken together with previous study, the mechanisms of these molecular targets may 
inform on the mechanisms of Aspiletreins against cancer8,11.

These promising targets were investigated for their interactions with Aspiletreins using molecular docking 
analysis. Consistent with our hypothesis, the Aspiletreins bound to the targets with high affinity and likely inhib-
ited the tumor-promoting functions of STAT3, VEGFA, HSP90AA1, and FGF2 or enhanced tumor-suppressing 
activity of IL2, or both. In addition, the cytotoxicity of these compounds was shown, which AB posed the most 
potent toxic to lung cancer cells, and STAT3 was validated as a potential target of this compound. Although 
advances in the field of biological systems and network pharmacology can aid rational drug design and devel-
opment as well as target identification45,46, the information of new compounds including Aspiletreins are not 
completely available in several databases, the interactions between drugs and their targets need to be further 
elucidated, and pharmacokinetic profile and the safety and efficacy of the drugs need to be verified. This work, 
at least, full filled the scientific information of this compound suggesting their potential for anti-cancer drug 
research and development for clinical application.

Conclusion
Using network pharmacology and molecular docking-molecular dynamic approaches, this study systematically 
analyzes the pharmacological mechanism of Aspiletreins in the treatment of NSCLC. Aspiletreins suppress 
NSCLC by targeting various proteins, including STAT3, VEGFA, HSP90AA1, FGF2, and IL-2. The network 
pharmacology approach has significant advantages for uncovering the mechanism of Aspiletreins, and narrowing 
down the number of targets, thus minimizing the time and cost of preclinical investigations. Further in vitro and 
in vivo experiments will be conducted to verify the mode of action of Aspiletreins against NSCLC.

Methods
Compound database.  The compounds information of Aspiletrein A (AA), Aspiletrein B (AB), and Aspi-
letrein C (AC) were identified using the J-GLOBAL Database (https://​jglob​al.​jst.​go.​jp/​en), while the log P infor-
mation (Table 1) was obtained from the pkCSM tools (http://​biosig.​unime​lb.​edu.​au/​pkcsm/), an online pharma-
cokinetic prediction model.

Table 3.   Binding energy among the compounds and the top 5 potential targets.

Compound

Binding energy (kcal/mol)

STAT3 VEGFA HSP90AA1 FGF2 IL-2

AA − 9.1 − 8 − 8 − 6.9 − 7.7

AB − 9.3 − 7.1 − 9 − 7.2 − 7.5

AC – − 7.7 − 7.3 − 6.9 –
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Figure 7.   Molecular dynamic interaction between AA and AB with STAT3 during 0–10 ns. The RMSD for 
ligand movement plot for interaction of AA (red) or AB (green) with STAT3 complex.

https://jglobal.jst.go.jp/en
http://biosig.unimelb.edu.au/pkcsm/
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Compounds‑target identification.  The canonical SMILE of the compounds was uploaded into the Swiss 
Target Prediction database (http://​www.​swiss​targe​tpred​iction.​ch/)47. The compound-target network was visual-
ized using Cytoscape (3.9.0)48.

Non‑small cell lung cancer target identification.  The NSCLC-related targets were retrieved by 
searching for “non-small cell lung cancer” in the GeneCards database (https://​www.​genec​ards.​org/), DisGeNET 
(https://​www.​disge​net.​org/), OMIM (https://​www.​omim.​org/), and TTD (http://​db.​idrbl​ab.​net/​ttd/). The targets 
of NSCLC and compounds (AA, AB, and AC) were integrated using VENNY (https://​bioin​fogp.​cnb.​csic.​es/​
tools/​venny_​old/​index.​html) and the intersected targets were presented in a Venn diagram.

Construction of protein‑PPI network.  A PPI network was constructed by uploading the genes to the 
STRING v_11.0 database (https://​string-​db.​org/)49. The settings for building the PPI network were established 
in accordance with the “Homo sapiens” model, and the confidence of the interaction between the targets was set 
at 0.950. The network nodes represented proteins, and the edges reflected the protein–protein interactions. For 
the core target protein identification, the Cytoscape data was sorted by using these parameters, including degree, 
closeness centrality, betweenness centrality, and clustering coefficient.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.  Gene 
Ontology (GO)51 and Kyoto Encyclopedia of Genes (KEGG)52 were analyzed by plotting the data analysis 
obtained from STRING 11.5 database as a scatterplot to display the relationship between two continuous vari-
ables of gene count and adjusted P-value. The R software with ggplot253 was applied to construct a bubble scat-
terplot of the GO (molecular function, biological function, and subcellular localization) and KEGG biological 
pathway. The target count and significance value (P < 0.05) were mapped to size and color, respectively.

Molecular docking.  The possible interaction between compounds AA, AB, and AC and the targets, includ-
ing STAT3 (PDB ID: 6NJS), VEGFA (PDB ID: 4KZN), HSP90AA1 (PDB ID: 4BQG), FGF2 (PDB ID: 2FGF), 
and IL-2 (PDB ID: 1M48), were modeled. Each protein was retrieved from RCSB Protein Data Bank (https://​
www.​rcsb.​org/​pages/​polic​ies). The interaction between each compound with its target was predicted using PyRx 
Virtual Screening Tools (Version 0.8)54. All the interactions among the target proteins and compounds were con-
structed using PyMOL 2.5 in the PDBQT format file55. Lastly, the 2-dimensional visualization of the interaction 
between compounds and target proteins was investigated using Discovery Studio Visualizer 2021.

Molecular dynamic simulation.  SwissParam web service56 was used to create topology and parameter 
in CHARMM36 force field (version Jul 21)57 for AA and AB ligands. The topology and parameter of STAT3 
complexes were patched and generated using pfsgen (version 2.0). The complexes were solvated by TIP3 water58 
in 15 Å for each direction and ionized using VMD’s solvate and autoIonize plugins (version 1.9.2)59. The simula-
tions were performed using NAMD (version 2.14)60. The simulation system was minimized for 1000 steps the 
simulated for 50,000 steps, 2 fs for each step using particle mesh Ewald, Langevin dynamic simulation under 
300 K and 1 atm. The rmsd of molecular dynamic simulation were calculated using VMD’s NAMD Energy and 
RMSD Trajectory Tool plugins (version 1.9.2)59.

Data availability
The datasets used and/or analyzed during the current study are included in this published article and its sup-
plementary information files.
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