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Abstract

Understanding how biases originate in medical technologies and developing safeguards to 

identify, mitigate, and remove their harms are essential to ensuring equal performance in all 

individuals. Drawing upon examples from pulmonary medicine, this article describes how bias 

can be introduced in the physical aspects of the technology design, via unrepresentative data, 

or by conflation of biological with social determinants of health. It then can be perpetuated 

by inadequate evaluation and regulatory standards. Research demonstrates that pulse oximeters 

perform differently depending on patient race and ethnicity. Pulmonary function testing and 

algorithms used to predict healthcare needs are two additional examples of medical technologies 

with racial and ethnic biases that may perpetuate health disparities.
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INTRODUCTION

Naïve, conventional wisdom suggests that machines cannot be biased because they are 

objective, inanimate objects that lack the ability to make conscious decisions (1, 2). Yet, 

limitations in the design of hardware or software can result in systematic performance 

differences in populations based on attributes such as race, ethnicity, gender, sex, or 

socioeconomic status. For example, biased hardware designs within automated soap 
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dispensers result in technology that readily dispenses soap to individuals with light skin 

tones but fails to dispense soap to individuals with darker skin tones (3). High-profile 

examples of software technologies that may perpetuate discriminatory practices include 

algorithms used for facial recognition (4), loan decisions (5), and criminal sentencing (6). 

This recognition of racial bias within technologies incorporates the modern understanding of 

racial bias as rooted not only in explicit individual prejudices or racism, but also in systems, 

laws, policies, or practices in the form of structural racism, whether they are intentionally 

biased or not (7, 8).

Health care is not immune to these critical problems. Bias is well documented in medical 

practice, affecting behavior, interactions, and decision making, where it may play a role in 

perpetuating health disparities (9, 10). Analogously, medical devices can also exhibit racial 

or ethnic bias if design flaws lead to performance differences in patients of racial or ethnic 

minority groups (2). While these design flaws may largely be unintentional, it is incumbent 

upon designers and users to make every effort to identify, mitigate, and remove these biases 

so that they do not contribute to the stark health disparities of minority groups (11, 12).

Pulse oximeter technology serves as an important case study in how bias can be introduced, 

be perpetuated, and remain unaddressed in medical devices. In this article, we examine 

the historical development of the pulse oximeter and describe recent research highlighting 

performance differences by patient race and ethnicity. We then compare pulse oximeters 

with two other medical technologies recently recognized as perpetuating health disparities: 

pulmonary function testing and algorithms used to predict healthcare need. We identify key 

points where bias can be introduced, perpetuated, and addressed in medical technologies and 

discuss general strategies to ensure that medical technologies perform equivalently on all 

patients.

THE PULSE OXIMETER: BIAS INTRODUCED IN THE PHYSICAL DESIGN OF 

MEDICAL TECHNOLOGY

The modern pulse oximeter noninvasively measures the oxygen content of arterial blood. 

This medical device has been described as “arguably the most significant technological 

advance ever made in monitoring the well-being and safety of patients during anesthesia, 

recovery, and critical care” (13, p. 285). Blood oxygen level is considered as important 

as other cardinal vital signs such as temperature or blood pressure (14). Before the 

development of modern noninvasive pulse oximeters, measurement of blood oxygen 

levels was time-consuming, painful, and unreliable. The modern pulse oximeter was first 

conceived in 1972 by Takuo Aoyagi, who recognized that by measuring the pulsatile 

change of red and infrared (IR) light absorbance through tissue, oxygen saturation could be 

computed (15). By the 1980s, pulse oximeters were widely adopted as the standard of care 

for patient monitoring in hospitals and clinics. At the start of the COVID-19 pandemic, pulse 

oximeters rose to further prominence as an essential home monitoring device for patients 

with COVID-19 (16).

The common finger pulse oximeter works by shining light through the fingertip at two 

wavelengths, approximately 660 nm (red) and 940 nm (IR), and measuring the light 
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transmitted across the finger. These two wavelengths are chosen because oxygenated blood 

and deoxygenated blood absorb light to a different degree at these wavelengths. The Beer–

Lambert law describes how light transmission through a dissolved substance is related to 

the concentration of the substance. The pulse oximeter capitalizes on this principle by 

measuring the amount of light transmitted through the finger at both light wavelengths to 

determine the concentration of oxygenated blood.

When a pulse oximeter sends light through the finger, most light is absorbed or scattered 

by tissue, bone, and venous blood. Each heartbeat causes a small increase in arterial blood 

into the finger, increasing the level of light absorbed at both wavelengths. Because the 

device isolates the arterial change in light absorption due to pulsating blood, it was generally 

understood that pulse oximeter accuracy was not influenced to a meaningful degree by static 

factors of the finger such as skin thickness, subcutaneous fat, or skin tone (17).

As the pulse oximeter continuously measures light transmission at both wavelengths, signal 

processing algorithms in the device identify the peak and trough light transmittance during 

each cardiac cycle to isolate the absorbance due to arterial blood. The AC component of 

the photoplethysmography signal is associated with the pulsating arterial blood while the 

DC component is associated with light absorption by tissue, venous blood, and nonpulsating 

arterial blood. The peak and trough amplitudes of the photoplethysmography signal are used 

to calculate the AC and DC components at both wavelengths and the modulation ratio: R = 

(ACred/DCred)/(ACIR/DCIR) (18).

There is no direct mathematical relationship between R and the arterial oxygen saturation 

of blood (SaO2). Therefore, pulse oximeter manufacturers empirically determine the 

relationship between R and SaO2 for a device on the basis of data collected from test 

subjects. This is commonly done by measuring R in healthy volunteers whose saturations 

were altered from 100% to approximately 70% by breathing various hypoxic gas mixtures 

(17). An underlying assumption of this approach is that the relationship between the 

measured parameter R and physiological parameter SaO2 did not have clinically meaningful 

variability between test subjects and the general population.

In 1990, Jubran & Tobin (19) published one of the first studies to describe differences in 

pulse oximeter accuracy based on race. They studied whether pulse oximeters could be used 

to safely titrate oxygen in patients receiving invasive mechanical ventilation. They compared 

oxygen saturation measured by pulse oximeters (SpO2) with arterial oxygen tension (PaO2) 

and SaO2 directly measured from simultaneously collected arterial blood gas samples in a 

cohort of 25 White and 29 Black critically ill patients. They found that pulse oximeters 

overestimated oxygen saturation to a greater degree in Black patients than in White patients. 

Pulse oximeter bias, calculated as the average difference between SpO2 and SaO2 readings, 

was significantly higher in Black patients (3.3 ± 2.7%) than in White patients (2.2 ± 1.8%). 

The authors concluded that the optimal SpO2 target to ensure a safe level of oxygen in the 

blood (PaO2 ≥ 60) should differ based on a patient’s race, with a minimum SpO2 of 95% in 

Black patients and a minimum SpO2 of 92% in White patients.
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Two laboratory-based investigations of healthy volunteers conducted in 2005 and 2007 also 

found that pulse oximeters overestimated arterial oxygen levels in individuals with darker 

skin tone. The 2005 study compared pulse oximeter values in 10 White and 11 Black 

patients, finding that skin pigment–related bias increased approximately in proportion to the 

level of desaturation (20). The 2007 study further explored the issue by grouping 36 subjects 

with a range of skin tones into “light,” “intermediate,” and “dark” skin pigmentation groups, 

identifying a dose-response between the degree of skin pigment and pulse oximeter bias 

(21). However, both studies concluded that the magnitude of pulse oximeter error related 

to skin pigmentation was relatively small at SaO2 values above 80% and probably of no 

general clinical significance.

A 2020 study analyzed retrospective electronic health record data of SpO2 and SaO2 

samples collected during routine practice from patients hospitalized in a single center in 

2020 and from 178 US hospitals in 2014 and 2015 (22). Analyzing routinely collected 

data provided the opportunity to analyze samples from 1,333 White and 276 Black patients 

in the single-center cohort and 7,342 White and 1,050 Black patients in the multi-center 

cohort—an order of magnitude more measurements than prior studies. SpO2 measurements 

were compared to subsequent arterial blood samples if they were collected within 10 min. 

In the primary analysis, the study investigated how frequently pulse oximeter measurements 

between 92% and 96% missed true oxygen levels below 88%, which they termed “occult 

hypoxemia.” A SpO2 range of 92–96% was chosen because changes in care would be less 

likely to occur in the time between SpO2 and SaO2 measurements for oxygen saturation 

measurements in that range. SpO2 measurements higher than 96% may result in clinical 

changes to reduce oxygen supplementation, whereas SpO2 measurements below 92% may 

result in clinical changes to increase oxygen supplementation. The study found that occult 

hypoxemia was three times more common in measurements from Black patients than in 

measurements from White patients.

The primary analysis performed in the 2020 study was a departure from typical metrics 

used to evaluate pulse oximeter accuracy, such as bias and accuracy root mean square error 

(Arms) (23). Pulse oximeter bias is the mean difference between SpO2 and SaO2 values, and 

Arms is the square root of the mean of squared differences between SpO2 and SaO2 values 

(23). The 2020 study measured how often low SaO2 values occurred despite normal SpO2 

values, an analysis that was more similar to the Jubran & Tobin (19) study, which tried to 

identify safe pulse oximeter saturation targets that minimized hypoxemia. This framing may 

be better aligned with how pulse oximeters are used in clinical practice. Clinicians primarily 

make decisions based on pulse oximeter readings as a surrogate for, and without knowledge 

of, true SaO2. The metric is easy to comprehend and represents how often pulse oximeters 

with a normal reading miss low oxygen levels. In diagnostic testing, this metric is called the 

false omission rate and is equal to the number of false negatives divided by the total number 

of true negatives and false negatives.

Compared to laboratory-based studies evaluating pulse oximeter accuracy, such as the two 

published in 2005 and 2007, the 2020 study had several important limitations. Because 

SpO2 and SaO2 values were not collected synchronously, some fluctuation in the arterial 

saturation would be expected within the time frame between a SpO2 measurement and 
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arterial blood gas collection. This could result in the appearance of lower pulse oximeter 

accuracy compared to laboratory studies. However, this would not explain the differences 

seen between Black and White patients unless clinicians reacted in a systematically different 

fashion for Black and White patients in the time between SpO2 and SaO2 measurements. 

The 2020 study also relied on self-reported race, rather than an objective measurement 

of skin tone. Race is a social construct used to categorize populations primarily based on 

physical traits or ancestry (24). While differences in skin tone are present across racial 

groups, variation is also present within groups (25). For example, in the National Survey 

of Black Americans, 1979–1980, professionally trained Black interviewers categorized skin 

complexion as “very dark” in 8.5% of respondents and “light or very light” in 17% of 

respondents (26). Despite these limitations, the 2020 study raised significant concerns about 

bias in pulse oximeters, leading the US Food and Drug Administration (FDA) to issue a 

communication in February 2021 warning about the use of such devices for clinical decision 

making (27).

After the 2020 study, several others demonstrated differences in pulse oximeter accuracy 

between Black and White patients. An analysis of critically ill patients undergoing 

evaluation for extracorporeal membrane oxygenation found that self-reported Black patients 

had twice the rate of occult hypoxemia compared to White patients but did not find 

differences between White, Hispanic, and Asian patients (28). Another study of 87,971 

patient encounters found that pulse oximeters missed occult hypoxemia most often in Black, 

followed by Hispanic, Asian, and White patients (29). This same study found that patients 

with occult hypoxemia subsequently had more organ dysfunction and higher in-hospital 

mortality, despite clinically similar appearance at hospital presentation. The association 

between occult hypoxemia and mortality was replicated in a separate study of patients 

admitted to the intensive care unit (ICU) or undergoing surgery (30). These latter two studies 

highlight how differences in pulse oximeter accuracy across racial groups could contribute to 

disparities in patient outcomes.

PULMONARY FUNCTION TESTING: BIAS IN THE INTERPRETATION OF 

MEASUREMENTS FROM MEDICAL TECHNOLOGY

Pulmonary function testing is a common procedure used to measure how much and how 

quickly air can be moved in and out of the lungs during inspiration and expiration. This 

series of tests is commonly used to diagnose and quantify the severity of lung diseases (31). 

Racial and ethnic disparities in pulmonary function testing, in contrast to pulse oximetry, 

are not due to the inherent design of the device used to measure lung function. Instead, 

disparities have arisen because of how the results are interpreted.

Interpreting pulmonary function test results and determining whether values are normal is 

challenging because important characteristics such as age, sex, and height can influence the 

size and elasticity of normal, healthy lungs. Therefore, an individual patient’s test results 

are compared to average values taken from population-based studies to determine whether 

they are normal (32). Reference equations for normal pulmonary function values have been 

derived using large population-based studies of nonsmoking individuals.
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In large population-based studies, Black and Hispanic patients of the same age, sex, and 

height typically have lower average lung function than White patients (33, 34). Rather 

than considering how potential differences in social and environmental exposures might 

affect lung development and lead to these differences, lung function differences were often 

interpreted in the context of scientifically inaccurate beliefs that Black individuals had 

smaller lungs than White individuals. Such beliefs were described in writings from Thomas 

Jefferson in the 1700s and reinforced by faulty scientific methods during the 1800s (35). 

Race- and ethnicity-based lung function equations or correction factors that assume a 10–

15% lower lung capacity for Black patients have been common practice in the use of modern 

pulmonary function tests since the 1970s.

Mirroring broader conversations about race-based correction in clinical algorithms (36), 

concerns have been raised about race-based correction to pulmonary function testing and 

its potential to exacerbate disparities (37). In a 2022 study, Baugh et al. (38) evaluated 

how well lung function equations with and without race-based correction correlated with 

other measures of lung health. They found that equations without race-based correction 

better aligned with respiratory symptoms, as quantified by the St. George’s Respiratory 

Questionnaire (39), and with airway wall thickness (40), a measure of airway disease. 

They concluded that the use of race-based correction may normalize lung injury due to 

long-standing discrimination against minorities. Another recent study concluded that lung 

function equations with race-based correction did not improve the prediction of respiratory 

disease events or mortality compared to equations without race-based correction, further 

questioning the clinical utility of such equations (41).

The use of race-based correction in pulmonary function testing is problematic for 

several reasons. First, overestimating the lung function of Black individuals may lead 

to underdiagnosis and undertreatment of lung disease. Race-based correction artificially 

boosts lung function measurements for Black patients up to 15%. As a result, Black 

individuals with respiratory symptoms may be falsely reassured by seemingly normal 

lung function values. Second, race-based correction perpetuates centuries of racist beliefs 

that Black individuals were inferior and lacked fitness (42). Finally, race-based correction 

presumes race and ethnicity to be a biological, rather than a social, construct, bringing 

inaccuracy to the interpretation of pulmonary function testing. By inappropriately conflating 

social and environmental factors that influence lung development with inherent biological 

differences between races and ethnicities, the use of race-based correction distorts accurate 

measurements from a pulmonary function device.

ALGORITHMS USED TO PREDICT HEALTHCARE NEED: BIAS IN DATA 

USED TO TRAIN MEDICAL SOFTWARE

In contrast to pulse oximeters and pulmonary function testing, algorithms used to manage 

the health of populations and determine healthcare needs are solely software-based medical 

technologies. Large health systems, insurance companies, and governmental agencies have 

widely adopted commercial risk-prediction algorithms (43). One use of these algorithms is 

to identify high-risk patients who may benefit from complex care management programs, 
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with the goal of providing additional resources to these medically complex patients before 

their health further deteriorates. Because these programs themselves are costly to operate, 

health systems may use commercial algorithms to help select patients for these programs 

(44).

A 2019 study by Obermeyer et al. (45) demonstrated how a widely used commercial 

risk-prediction algorithm resulted in racial bias. The algorithm was designed to estimate 

future healthcare needs using previous healthcare insurance claims data, insurance type, 

diagnosis and procedure codes, prescribed medications, and detailed healthcare encounter 

billed amounts, but it did not include race as a predictor variable. The researchers compared 

predictions made by the algorithm to other markers of patient health, including the number 

of active chronic medical conditions, blood pressure control, diabetes severity measured 

by hemoglobin A1c, kidney function measured by creatinine, low-density lipoprotein 

cholesterol, and anemia. Black patients classified in the same risk category as White patients 

were found to be sicker by all measures. This bias in classification resulted in fewer Black 

patients being referred for complex care management programs.

The primary reason for the algorithm’s racial bias was that its design conflated healthcare 

costs with healthcare needs (45, 46). Unequal access to care results in less healthcare 

spending for Black patients at the same level of illness as White patients. Thus, the 

algorithm learned the historical inequalities present in the data used for training, falsely 

concluding that Black patients were healthier than White patients because fewer healthcare 

dollars were spent on them. When researchers studied a new algorithm trained to predict 

a patient’s number of active chronic medical conditions rather than their healthcare costs, 

the fraction of Black patients above the threshold for automatic referral to the complex care 

management program nearly doubled, increasing from 14% to 27%.

While reducing the bias in the clinical risk prediction software may be as simple as 

rerunning the algorithm with another outcome label, ensuring that similar problems do 

not arise in other clinical risk algorithms is decidedly more difficult. When developing a 

software algorithm, Obermeyer et al. (45) highlighted the essential step of careful problem 

formulation, which is the translation of high-level objectives or strategic goals into a 

tractable problem that can be solved with available data (47). Predicted cost is an easily 

measurable outcome, common among other risk algorithms, and was even suggested in 

the literature as a method for identifying high-need patients (48). Yet, a lack of nuanced 

understanding of the inherent bias in using healthcare costs as an outcome variable led to 

the development of a racially biased algorithm. Because software algorithms are typically 

trained using historical data that are often biased by human decisions and systemic racism, 

it is critical that algorithm designers have a deep appreciation for the social and historical 

influences on these data (49).

HOW BIAS IS INTRODUCED AND PERPETUATEDIN MEDICAL 

TECHNOLOGIES

Bias impacting racial or ethnic groups can be introduced and perpetuated at several points 

during medical technology development (Table 1). Frequently, failures occur at multiple 

Sjoding et al. Page 7

Annu Rev Med. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stages. Establishing safeguards at each stage could work toward limiting bias in new medical 

technologies.

Physical Design of the Technology

Fundamental aspects of the pulse oximeter’s physical design contribute to differences 

in performance across patient groups. Important individual characteristics such as skin 

pigment, finger size, fingernail polish, and skin perfusion are relevant to pulse oximeter 

accuracy (50). Because pulse oximeters were designed to isolate light absorption from 

pulsatile blood, it was assumed that pulse oximeter accuracy would not be significantly 

influenced by static factors of the finger such as skin tone. Yet, this assumption has proved 

to be inaccurate. Finger size, which impacts light absorption and scatter, may also impact 

accuracy. Difference in finger size is a hypothesized reason for accuracy differences between 

males and females or adults and children (21, 51, 52).

Concerns have also been raised about the physical design of other medical devices such as 

orthopedic implants and cardiac pacemakers (53–55). If such technologies were primarily 

designed for the anatomy of an average male, this could result in a higher failure rate in 

females and in males of small stature. Similarly, if pulse oximeters were originally designed 

and tested on patients with almost universally lighter skin tone, inaccuracies in subjects of 

more diverse backgrounds may go underappreciated. Knowledge of whether a particular 

device design may introduce bias among key patient subgroups may be difficult to obtain 

in the early design phase. Ensuring diversity in the engineering design team may be one 

possible mitigation strategy.

Use of Data That Do Not Reflect Important Subgroups

Biased data used to develop medical technologies are a common root cause of performance 

variation across racial and ethnic groups. A high-profile example of underrepresentative 

data as a source of bias was identified during the evaluation of several facial recognition 

technologies (4). One of the most commonly used face databases, Labeled Faces in the 

Wild, was estimated to be 78% male and 84% White (56). Using such a database to 

develop facial recognition technology resulted in significantly lower software performance 

in Black females. A similar issue would arise in pulse oximeters if the original calibration 

of the modulation ratio to SaO2 was performed in a homogeneous population of healthy, 

light-skinned males. Given the importance of skin pigment and finger size to pulse oximeter 

accuracy, ensuring that the initial development population has significant diversity in these 

characteristics is critical. Including an equal distribution of males and females of both light 

and dark pigmentation might ensure that pulse oximeters perform more equally in these 

groups.

Conflation of Biological and Social Determinants of Health

Data used to establish normal values for pulmonary function testing and algorithms to 

allocate complex care management illustrate the need to critically evaluate why underlying 

racial or ethnic differences in the data exist. These differences, when identified at the 

population level, are increasingly recognized as reflective of the lived experiences of 

minority groups rather than reflective of true biological differences (57). Definitions of race 
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and ethnicity, both clinically and in medical research, often rely on characteristics unrelated 

to biology and genetics, such as physical appearance, language, culture, and religion (58). 

The extent of meaningful genetic differences is highly questionable, with studies suggesting 

more variation within racial groups than between groups (59).

Race, ethnicity, biological determinants of health (e.g., genetics), and social and 

environmental determinants of health (e.g., poverty, medical access, blight, pollution) are 

often conflated. The use of race-based correction factors (as in pulmonary or kidney function 

testing) arose from racial or ethnic differences identified at the population level that were 

inappropriately attributed to biological rather than social and environmental origins (36). 

Similarly, complex care management algorithms that used healthcare costs as a proxy for 

healthcare needs failed to consider the social determinants (such as medical access) that 

contribute to healthcare costs and disparities across racial groups. However, there have 

been several recent efforts to acknowledge and eliminate these sources of racial and ethnic 

disparities. Work supported by the National Kidney Foundation and the American Society 

of Nephrology led to new clinical algorithms for estimating kidney function that removed 

race-based correction (60). Researchers affiliated with the Maternal-Fetal Medicine Units 

Network also recently updated a risk tool predicting the success rate of vaginal birth after a 

cesarean delivery by removing variables for race and ethnicity (61).

Imperfect Technology Evaluation and Regulatory Standards

Medical device regulation and rigorous peer-reviewed medical literature are essential 

safeguards to mitigate the impact of biased medical technologies. While the United States 

and Europe well-established systems for medical device regulation, concerns have been 

raised about their effectiveness (62). A review of the highest risk medical device applications 

submitted to the FDA in 2014–2017 found that device performance reporting for safety 

and efficacy by gender, race, or age is uncommon (63). When subgroups are reported, 

the number of patients is often too small to enable meaningful conclusions. Current FDA 

510(k) premarket notification guidance for pulse oximeters recommends that performance 

should be reported on 10 or more healthy subjects that vary in age and gender (64). The 

guidance states that at least 2 subjects or 15% of the subject pool, whichever is larger, should 

have darkly pigmented skin. The small number of darkly pigmented subjects and lack of 

specific subgroup analysis in this recommendation has been cited as a critical regulatory 

gap—insufficient to ensure that pulse oximeters perform equivalently on darkly and lightly 

pigmented patients (65).

Regulation of clinical algorithms or software used to support medical decisions is more 

variable. The International Medical Device Regulators Forum developed a regulatory 

framework to evaluate software as a medical device, basing the level of regulation on the 

level of risk to patients (66). For instance, software used to diagnose and treat patients 

in critical healthcare settings requires the highest level of scrutiny, while software used to 

inform management in nonserious settings receives substantially less scrutiny (67). Software 

algorithms used to estimate patient risk, such as the one evaluated by Obermeyer et al. 

(45), or equations used to determine normal pulmonary or kidney function are not strictly 
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regulated. Thus, independent peer-reviewed medical research and the efforts of medical 

societies are the primary way these technologies are evaluated.

Recognizing that clinical algorithms can be biased, understanding the mechanisms of bias, 

and promoting efforts to evaluate technologies for bias are essential steps toward preventing 

racial and ethnic disparities. Grassroots efforts such as the Algorithmic Justice League 

worked to remove biased facial recognition software (https://www.ajl.org/learn-more). 

Independent initiatives to ensure that newly developed medical technologies are unbiased 

could serve the same purpose in health care.

CONCLUSION

Disparities in medical technology performance can be introduced and perpetuated at several 

points throughout its development. Greater interest and awareness in these issues echo 

broader conversations about the roots of structural racism in health care and society (68, 69). 

Understanding how biases in medical technologies originate and developing safeguards to 

identify, mitigate, and remove their harms are essential to ensuring that medical technologies 

perform equivalently for all individuals.
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Table 1

Mechanisms by which bias in medical technologies is introduced and perpetuated

Mechanism Pulse oximetry
Algorithms to estimate 

healthcare needs Pulmonary function testing

Physical aspects of technology 
design

Melanin may cause light scatter leading 
to performance differences based on 
skin pigment

Not applicable Not applicable

Use of data that do not reflect 
important patient subgroups

Calibration of modulation ratio with 
saturation may be biased if data lack 
sufficient diversity

Not applicable Not applicable

Conflation of biological and 
social determinants of health

Not applicable Use of a biased outcome: 
healthcare costs as proxy for 
healthcare needs

Assumption that population-
based differences in lung 
function represent biological 
differences

Evaluation and regulatory 
standards

Lack of robust standards to ensure equal 
performance in relevant subgroups

Varying standards for 
regulating software 
algorithms

Delayed appreciation of 
findings described in peer-
reviewed medical literature
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