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Abstract

Motivation: Multi-omics approaches offer the opportunity to reconstruct a more complete picture of the molecular
events associated with human diseases, but pose challenges in data analysis. Network-based methods for the ana-
lysis of multi-omics leverage the complex web of macromolecular interactions occurring within cells to extract sig-
nificant patterns of molecular alterations. Existing network-based approaches typically address specific combina-
tions of omics and are limited in terms of the number of layers that can be jointly analysed. In this study, we
investigate the application of network diffusion to quantify gene relevance on the basis of multiple evidences
(layers).

Results: We introduce a gene score (mND) that quantifies the relevance of a gene in a biological process taking into
account the network proximity of the gene and its first neighbours to other altered genes. We show that mND has a
better performance over existing methods in finding altered genes in network proximity in one or more layers. We
also report good performances in recovering known cancer genes. The pipeline described in this article is broadly
applicable, because it can handle different types of inputs: in addition to multi-omics datasets, datasets that are
stratified in many classes (e.g., cell clusters emerging from single cell analyses) or a combination of the two
scenarios.

Availability and implementation: The R package ‘mND’ is available at URL: https://www.itb.cnr.it/mnd.

Contact: ettore.mosca@itb.cnr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Current omics technologies are capable of generating data relative
to different types of molecular entities (DNA, RNA, proteins, etc.).
The resulting heterogeneous datasets can be analysed to reconstruct
a more complete picture of the molecular events underlying human
diseases. The analysis of such datasets is a challenging problem in
bioinformatics, due to differences in terms of information type,
coverage, data distribution type, noise, just to mention a few and,
last but not least, research questions that can be addressed (Ahmad
and Fröhlich, 2016; Huang et al., 2017; Ritchie et al., 2015).

Knowledge about the complex web of direct and indirect interac-
tions among macromolecules at genome scale is a powerful resource
for explaining multiple omics measurements, highlighting the
molecular mechanisms underlying diseases (Kristensen et al., 2014).
Indeed, the emergence of a disease can be explained as a combinator-
ial problem in which different molecular alterations affect a series of
pathways that result in a similar phenotype (Barabasi et al., 2011).

In this view, network-based methods exploit known interactions
in finding meaningful patterns in omics datasets—such as coherent
variations of several functionally related genes (Bersanelli et al.,
2016a,b)—and help explain the heterogeneity of alterations detected
at gene-level, as the intra-tumour genetic heterogeneity, in terms of
interacting genes (e.g. disease modules (Barabasi et al., 2011)). In
this last decade, the principle of network diffusion (ND)—also
referred to as network propagation—has been proposed to solve sev-
eral problems in biological data analysis, thanks to its ability to
quantify network proximity considering simultaneously all the pos-
sible network paths between query network nodes (e.g. genes)
(Cowen et al., 2017).

Several studies focused on the integrative analysis of multiple
omics datasets using ND. The method TieDIE (Paull et al., 2013)
applies ND for identifying a subnetwork that links a source gene set
carrying genomic alterations to a target set of differentially
expressed genes on the same network. There is evidence that ND is
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useful in predicting ‘silent’ players in cancer (Ruffalo et al., 2015),
using different combinations of diffusion scores (e.g. dot product,
Spearman correlation) obtained from two types of initial statistics
(mutation frequency and differential expression). More recently,
NetICS (Dimitrakopoulos et al., 2018), which uses ND on directed
graphs, has been proposed to integrate aberration events [somatic
mutations (SMs), copy number variations, methylation and miRNA
expression data] with differential expressions to prioritize cancer
genes. In general, existing methods are usually relevant only to two
types of omics or specific combinations of them.

In this article, we present a gene-score, named ‘mND’, to assess
gene relevance on the basis of gene position in a genome-scale net-
work in relation to one or more types of biological evidences
(‘layers’ hereafter) (Fig. 1). Genes are ranked considering their rele-
vance within each layer (e.g. number of mutations, P-values from
differential expression analysis), their network proximity to other
relevant genes as well as the layer-specific relevance of their neigh-
bours. Statistical significance of the gene scores defined by mND
(mND scores) is assessed by dataset permutations. To help unravel
the role of a gene in each layer, in addition to producing a global
gene ranking, mND classifies each gene as a member of a module of
high scoring genes, linker of high scoring genes or, lastly, high scor-
ing but isolated gene. Unlike current methods, mND can be used in
integrative analysis of different types of omics (e.g. mutation, CNV
and expression changes) or multiple samples of same omic type (e.g.
patient-level mutational analysis), without particular constraints on
the number of layers and layer type. We show that, taking into ac-
count ND scores of neighbouring genes, mND has a better ability in
finding high scoring genes in network proximity over multiple
layers. Furthermore, we account for good performances in recover-
ing known cancer genes in four cancer types, using two types of
omics and a single type of omics at patient-level. We show that the
application of mND to rank genes based on mutations and expres-
sion changes in breast cancer points to relevant pathways underlying
the disease, providing a more complete picture than each individual
omics on its own. Lastly, layer-specific gene classification suggests
functional roles and offers mechanistic insights in relation to the
datasets studied.

2 Materials and methods

2.1 mND
The calculation of mND score requires an undirected interaction
network G and a matrix of initial scores X ¼ x1; x2; . . . ; xL½ �, in
which each column (representing a layer) is a score vector xi over all
vertices of G.

The computation of mND consists of five steps (Fig. 1).
Network diffusion. Input scores (X) are smoothed by ND,

obtaining the corresponding network-constrained scores X*, using
the following iterative procedure, where the subscript q 2 0;1½ Þ
indicates the current iteration and X0 ¼ X :

Xqþ1 ¼ aWXq þ 1� að ÞX0 Xss ¼ lim
q!1

Xq (1)

where a 2 ð0; 1Þ is a scalar that weights the relative importance of
topology and input scores, and W is the symmetric normalized form
of the adjacency matrix A:

wij ¼
aijffiffiffiffi

di

p
�
ffiffiffiffi
dj

p (2)

where aij 2 A are the elements of the adjacency matrix, ðdi; djÞ are
the degrees of the corresponding genes. The final matrix Xss is the
matrix Xqþ1 that satisfies the termination criterion
max jXqþ1 � Xqj

� �
< 10�6. Parameter a was set to 0.7, a value that

represents a good trade-off between diffusion rate and computation-
al cost, and determined consistent results in previous studies
(Bersanelli et al., 2016a, b; Hofree et al., 2013; Mosca et al., 2014,
2017; Vanunu et al., 2010). We estimated the sensitivity of mND to
a and found that varying a by 610% resulted in highly correlated

mND scores and only a few different genes (6–8%) among the top
100 (Supplementary Fig. S1 and Table S1). To enable direct multi-
plication of values belonging to different layers, Xss is column-wise
normalized by the maximum of each column, obtaining the matrix
X*.

Neighbours selection. For each gene i, the top ki ¼ minðk; diÞ
first neighbours with the highest diffusion scores in each layer l are
selected as representatives of the network proximity of the neigh-
bourhood of i to the original scores in layer l, and their ND scores
are summed:

T i; lð Þ ¼ max
X

j2C
aijx

�
jl jC 2 S

n o
(3)

where x�jl 2 X* with j ¼ 1; 2; . . . ;Nf g is the network-constrained
value of j-th gene in l-th layer ðj 6¼ i), S is the set of all ki-subsets of
1; 2; . . . ;Nf g, and 0 < T � ki.

We explored the performance of mND at varying k and found
k¼3 to be a reasonable choice (see Section 3). Further, we evaluated
the sensitivity of mND to the value of k and found that varying k of
one unit had only minor effects on mND scores, which are highly
correlated and indeed differ of only a few (�4–6) genes among the
top 100 (Supplementary Fig. S2 and Table S2). An opportunity to
further optimize the value of k relies in selecting a value that yields
connected networks enriched in initial scores (Supplementary
Methods).

Integration. At this point, the mND score for gene i is calculated
as the product between the sum of its network constrained scores
(term g ið Þ) and the sum of the contributions of its top k first neigh-
bours (term t ið Þ):

mNDi ¼
1

ki
g ið Þ t ið Þ ¼ 1

ki

XL

l¼1

x�il

0
@

1
A XL

l¼1

T i; lð Þ

0
@

1
A (4)

where L is the total number of layers and 0 < mNDi � L2.
Significance assessment. The corresponding values of mND

†

i ,
obtained with permuted versions of X, are used to calculate empiric-
al P-values, i.e. the fraction of times mND

†

i � mNDi. The product
of pi and mNDi

mNDpi ¼ �log10 pið Þ �mNDi (5)

provides a gene score weighted by its estimated statistical signifi-
cance, as previously described (Bersanelli et al., 2016b; Xiao et al.,
2014).

Classification. Lastly, a gene i is classified by evaluating the
membership of the gene in two gene sets Hl and Nl which define, re-
spectively, the high scoring genes according to original data (X) and
neighbour information (T). The gene set Hl is composed of the high
scoring genes in layer l of X , defined using a layer-specific criterion
(e.g. the differentially expressed genes at P<0.05). The gene set Nl

is composed of the genes with the highest

tpil ¼ �log10 pt
il

� �
� T i; lð Þ (6)

where pt
il is the empirical P-value calculated comparing T to T†, the

latter obtained with permuted X. The use of empirical P-value to
scale T overcomes the issue of ties due to genes with equal values of
T. The cardinality of Nl can be defined several ways: considering an
ad hoc number of top values (e.g. in proportion to jHlj), on the basis
of pt

il or a combination of the two criteria. The gene i is ISOLATED
if it is in Hl but its neighbourhood is not in Nl. If both the gene and
its neighbourhood are in, respectively, Hl and Nl the gene is part of
a high scoring module and therefore termed MODULE. If the gene
is not in Hl but its neighbourhood is in Nl, then it is named as
LINKER.

The computational cost of mND depends on interactome size
(number of nodes and links), number of layers and number of per-
mutations used in significant assessment. In particular, ND is the
rate-limiting step, which is repeated several times during significance
assessment. For example, the computation of ND using STRING
(11 796 genes and 309 850 links) on two layers of initial scores
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required approximately 30 s on a server with dual Intel(R) Xeon(R)
CPU E5-2697 v3 @ 2.60 GHz, 64GB DDR4 2133 MHz memory
and disk storage on Lustre Filesystem; the whole analysis, involving
1000 permutations, took about 1 h and 50 min on 4 cores. See
Supplementary Table S3 for additional details and further examples.

2.2 Macromolecular interactions
Three sources of interactions were considered, abbreviated as
STRING (11 796 genes; 309 850 interactions) (Szklarczyk et al.,
2015), GH (13 244; 138 045) (Ghiassian et al., 2015) and WU
(6016; 128 150) (Wu et al., 2010). Native identifiers were mapped
to Entrez Gene (Brown et al., 2015) identifiers using the R package
‘org.Hs.eg.db’ (Carlson, 2018).

2.3 Analysis of somatic mutations and gene expression

variations
SMs and gene expression (GE) data from matched tumour-normal
samples (blood for SM and solid tissue for GE) were collected from
The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) for
breast invasive carcinoma (BC), lung squamous cell carcinoma
(LUSC), prostate adenocarcinoma (PRAD) and thyroid carcinoma
(THCA), using the R packages TCGAbiolinks (Colaprico et al.,
2016) and isma (Di Nanni et al., 2019) and considering the human
genome version 38 (hg38).

Mutation Annotation Format files were obtained from four pipe-
lines: Muse (Fan et al., 2016), Mutect2 (Cibulskis et al., 2013),
SomaticSniper (Larson et al., 2012) and Varscan2 (Koboldt et al.,
2012). Only mutation sites detected by at least two variant callers
were considered. Gene mutation frequencies were calculated as the
fraction of subjects in which a gene was associated with at least one
mutation. Gene expression data were obtained using the TCGA
workflow ‘HTSeq-Counts’. The R package limma (Ritchie et al.,
2015) was used to normalize and quantify differential expression in
matched tumour-normal samples, yielding log-fold changes, the cor-
responding P-values and FDRs (BH method).

The four cancer datasets were considered in two tasks: the ana-
lysis of two types of omics, mutations and expression changes, and
the analysis of mutation profiles of multiple patients. In the first
task, x1 was defined as gene mutation frequencies while x2 as –log10

(FDR). In the second task, each layer xi was represented by mutation
profiles of subjects, defined as the number of mutation sites in each
gene. In all analysis, empirical P-values were calculated on a total of
1000 permutations (the input matrix and 999 random permutations
of it).

In the joint analysis of mutations and expression changes in BC,
the two sets of high scoring genes (H1, H2) were defined considering,

respectively, all genes with at least one mutation (1238 genes) and the
top 1200 differentially expressed genes (FDR < 10�7). We observed
that k¼3 was a reasonable choice to obtain connected gene networks
enriched in genes with the highest mutation frequencies and expression
variations (Supplementary Methods and Fig. S3).

2.4 Signal assignment to gene modules and

performance assessment in finding significant genes

that lie in network proximity
Each gene module was defined as the largest connected component
obtained considering the genes associated with a biological pathway
(from KEGG database (Kanehisa et al., 2017)) and all interactions
among them in GH interactome (Supplementary Fig. S4). The high-
est and lowest values of gene mutation frequencies (x1) and fold
changes (x2) calculated from BC data (see above) were used to de-
fine, respectively, high scoring genes and low scoring genes
(Supplementary Fig. S5). High scoring values were randomly
assigned to genes of each module independently for x1 and x2, in
thus to obtain a specific percentage (e.g. 10%) of high scoring genes
within the module in each layer. Unused high scoring values were
assigned to genes outside the module and, lastly, low scoring values
were assigned to the remaining genes within and outside the module.
Recall was defined as the fraction of module genes ranked (by the
assessed method) among the top M genes, where M is the module
size. Recall was assessed using, beyond mND score, the product of
ND scores (‘NDPROD’) between the two layers (as in Ruffalo et al.
(2015)), the minimum of ND scores (‘NDMIN’) between the two
layers (as in TieDIE, Paull et al., 2013) and the rank product (‘RP’)
of initial scores.

2.5 Evaluating performance in recovering known cancer

genes
The partial area under the ROC curve (pAUC) was used to quantify
the performance of methods in recovering known cancer genes at
low false positive rates. This measure accounts for the number of
true positives that score higher than the n-th highest scoring nega-
tive, measured for all value from 1 to n:

pAUCn ¼
1

nTP

Xn

i¼1

TPi (7)

where TP is the total number of known cancer genes and TPi is the
number of true positives that score higher than the i-th highest scor-
ing negative (Scott and Burton, 2007). We calculated pAUCn to
evaluate which method had low false positive rates in prioritizing
genes whose mutation or differential expression was associated with
the considered cancer. Genes mutations associated with cancer were
collected from COSMIC (Tate et al., 2019) and previous studies
(Kandoth et al., 2013; in Lawrence et al., 2014). Differentially
expressed genes were derived from Bioexpress (Dingerdissen et al.,
2018), considering log2-fold change between matched primary tu-
mour-normal samples greater than or equal to 1 and FDR < 0.05.
NetICS was downloaded from https://github.com/cbg-ethz/netics.

2.6 Pathway analysis
Pathways were downloaded from the KEGG database (Kanehisa
et al., 2017). A total of 331 human pathways with at least five genes
were considered. The number of genes prioritized in each pathway
by mND, by gene expression (x2Þ, ND scores of gene mutation fre-
quencies (x�1) and gene expression (x�2Þ (Supplementary Table S4A–
D, respectively), were quantified for different numbers of top rank-
ing genes (n ¼{50, 100, 150, 250, 300}). For each pathway and
value of n, the difference DP(n) between the number of genes (D)
found by mND and the best of the other approaches was quantified
as (Supplementary Table S4E):

DPðnÞ ¼ DmNDðnÞ �max Dx
2
ðnÞ; Dx�

1
ðnÞ; Dx�

2
ðnÞ

� �
(8)

Fig. 1. Flowchart of the analysis pipeline with mND. (1) Network-diffusion is

applied to the original dataset, composed of multiple layers L1, L2, . . ., Ln (e.g. dif-

ferent types of omics or multiple samples of same omic type); (2) identification of

the top k neighbours for each gene in each layer; (3) calculation of mND score; (4)

empirical P-value assessment; (5) classification of genes across layers
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3 Results

Following is the presentation of the performance of mND in the gen-
eral problem of locating significant genes that lie in network prox-
imity, using random permutations of real omics data on gene
modules representing biological pathways. The assessment of its
ability in recovering known cancer genes, a problem considered by
recent network-based multi-omics methods (Dimitrakopoulos et al.,
2018; Paull et al., 2013; Ruffalo et al., 2015). Lastly, the description
of the results obtained applying mND on gene mutations and GE
changes observed in BC.

3.1 Finding significant genes that lie in network

proximity
To assess the ability of mND in finding high scoring genes in net-
work proximity across multiple layers, we assigned two types of real
signal (gene mutation frequencies and log-fold changes) to gene
modules of different size and modularity, corresponding to real
pathways (Fig. 2A, Supplementary Figs S4 and S5).

In each of the resulting configurations, we compared the recall
values (see Materials and methods) obtained by mND to those
obtained by other methods. The rank product (RP) was successful in
identifying genes with high scoring values in at least one of the two
layers (Fig. 2B), but typically missed other module genes with lower
values. NDPROD, a multi-omic approach described in Ruffalo et al.
(2015) and corresponding to using only the term gðiÞ in Equation
(4), led to better performance than RP in more than half of the cases,
and equal or even low performance in others, indicating the failure
to identify high scoring genes in favour of genes in network proxim-
ity to the module, but outside of it (Fig. 2B). Similarly, NDMIN, the
multilayer combination strategy underlying TieDIE method (Paull
et al., 2013), yielded recall values that are higher or lower than RP
depending on gene module and signal distribution. Instead, mND
determined the highest recall in almost all cases. This result under-
lines the importance of using gene neighbourhoods, i.e. the term tðiÞ
in Equation (4) (Fig. 2B). Importantly, the performance of mND is
the result of spotting both high scoring genes (almost all) plus other
module genes with low score, but relevant topological position
(Fig. 2C).

Overall, a small number of neighbours (parameter k in Equation
(4)) was sufficient to guarantee the highest performances (Fig. 2D),
which were observed around k¼3. We observed a similar trend
when finding significant genes lying in network proximity over three
layers (Supplementary Fig. S6).

To assess whether the results obtained in ranking high scoring
genes lying in network proximity (Fig. 2) were limited to the interac-
tome in use (GH), we repeated the same analyses using a different
interactome (STRING). We observed the same patterns in terms of
mND performance, types of genes found and the relation between
performance and k parameter (Supplementary Fig. S7).

3.2 Recovering known cancer genes
We evaluated the performance of mND in the problem of recovering
known cancer genes in four cancer types. Considering mutations
and expression changes as input, mND reported higher pAUC than
other network-based methods in all four cancer types considered
(Fig. 3). We also studied the performance using mutational profiles
only as input. In this case, mND reported better performance than
other methods in three out of four datasets in recovering genes
whose mutations are associated with cancer (Supplementary Fig.
S8), while it was the best method in using mutation profiles to re-
cover both mutated and differentially expressed genes involved in
cancer (Supplementary Fig. S9).

3.3 Gene networks enriched in mutations and

expression changes in BC
As a proof of principle, we applied mND to find functionally related
genes on the basis of gene mutation frequency (layer 1, L1) and GE
variation (layer 2, L2) in BC. Genes highly ranked by mND
(Fig. 4A) include those that were relevant according to initial scores

in both layers (Fig. 4B, e.g. CCNB1, TOP2A), as well as those that
were high scoring in one of them (Fig. 4B, e.g. EGFR and PIK3CA),
and linker genes (Fig. 4B, red circles), which have low initial values,
but lie in relevant network proximity to significantly altered genes.
Interestingly, top scoring linker genes include genes already known
to be involved in BC, such as CDC42 and BRCA1 (Fig. 4B and C).
To assess whether genes highly ranked by mND are in significant
network proximity, we used network resampling (Bersanelli et al.,
2016b): this computational approach calculates a network score
considering top ranking genes and shows to which extent such net-
work score is expected if links among genes are shuffled (keeping
the same degree distribution). This procedure confirmed that genes
highly ranked by mND are in significant network proximity
(Supplementary Fig. S10): in particular, a dense module of 123 genes
was identified (Fig. 4D).

Gene classification underlined gene roles in each layer, which
suggest possible underlying molecular mechanisms (Fig. 4E). For
instance, TP53 is classified as ‘isolated’ according to mutations
and ‘linker’ on the basis of GE, because it is highly mutated and its
interacting partners are mainly differentially expressed rather than
mutated. CDC42 is classified as linker in both layers: it neither
carries a relevant amount of mutations nor is among the top differ-
entially expressed genes, but its interacting partners are highly
enriched in both mutations and differential expression.
Interestingly, CDC42 is an important molecule in luminal BC,
with prognostic significance (Chrysanthou et al., 2017). Among
genes highlighted as modules, we found PIK3CA (a highly
mutated gene in BC (Mukohara, 2015)), highly ranked on the
basis of mutations.

We characterized the genes prioritized by mND in terms of bio-
logical pathways. Interestingly, among the pathways in which mND
found relatively more genes than each omics considered independ-
ently, we found KEGG ‘Breast Cancer’ and signal transduction ways
known to have a relevant role in BC (Fig. 5), like ‘Cell Cycle’ (Liu
et al., 2008), ‘Hippo signalling pathways’ (Wei et al., 2018), ‘FoxO

Fig. 2. Performance in ranking high scoring genes in network proximity. (A)

Example of a gene module with its high scoring genes (H, black) in each of the two

layers and the resulting mND score; only genes belonging to the module and links

occurring among such genes are reported. (B) Recall values for 10 signal permuta-

tions for each of the nine modules (P1, P2, . . ., P9), using mND score and other

methods; the number between parentheses after module id is module size. (C) Recall

values, shown separately for high scoring genes and other genes in each module. (D)

Recall values normalized by the highest recall found for each input configuration at

varying number of neighbours (k). (A–D) These results were obtained using interac-

tome GH
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Signalling pathways’ (Farhan et al., 2017), ‘p53 Signalling
pathways’ (Gasco et al., 2002), ‘PI3K-Akt signalling’ (Paplomata
and Regan, 2014) and ‘Proteasome’ (Mani and Gelmann, 2005).

4 Discussion

Multi-omics analyses, patient-level analyses and multi-classes analy-
ses (e.g. multiple cell clusters) demand methods to highlight the im-
portance of altered genes considering, respectively, different types of
summary information across subjects or subject-specific molecular
profiles. At the same time, to explain complex patterns in these data-
sets (e.g. the heterogeneity of mutation profiles of tumour samples)
it is important to consider the complex web of macromolecular
interactions, which provides known relations among the variables
(e.g. genes) under analysis. Recently, the use of first neighbours has
been proposed in network-based methods for the analysis of single
omics (Gwinner et al., 2017; Horn et al., 2018) and recommended
for multi-omics analyses (Modos et al., 2017).

The approach described in this work (mND) highlights genes
with a significant network position considering multiple types of
biological evidence. Importantly, since mND relies on the mathem-
atical machinery of ND, it prioritizes genes considering their own
importance (in proportion to original evidences) and the importance
of their network location. ND scores are used to quantify the topo-
logical relevance of a gene in the context of the distribution of the
considered evidences throughout the entire network and, in particu-
lar, mND uses layer-specific highly ‘informative’ first neighbours.

We have shown that mND has a good performance in the gen-
eral problem of locating significant genes in network proximity
using multiple evidences. This problem is involved in several appli-
cations in which multi-omics datasets are explained relying on the
architecture of intracellular circuits, underlying ‘hot’ gene modules
(e.g. disease modules) supported by multiple layers of information.

In the analysis of mutations and differential expression in BC—
two types of omics with relevant differences for data analysis in
terms of distribution and sparsity—mND prioritized genes carrying
both types of alterations, genes associated with one type of alter-
ation and linkers genes, extracting knowledge from both layers. If
this should not be the case, a simple solution could be to add the ap-
propriate coefficients in the two sums of Equation (4), in order to

weight each layer in relation to the research questions under investi-
gation. The joint analysis of the two omics led to enrichment in rele-
vant pathways, compared to single omics on its own, a result that
underlies the added value of combining multiple evidences with
mND.

Beyond gene global ranking, mND classifies genes in each layer
as members of a module, linkers or isolated genes, on the basis of
the amount of signal found in the genes themselves and their neigh-
bours. Complementing the global ranking with layer-by-layer infor-
mation on gene positions, such classification helps clarifying genes
role in the context of the alterations detected. For instance, TP53
clearly emerges as a gene with primary role in BC, not only because
of its mutation, but also because its functional partners are differen-
tially expressed (it is classified as linker in GE layer); CDC42 is con-
sidered important in the molecular mechanisms underlying BC
(Chrysanthou et al., 2017), despite being not reported as significant-
ly altered in the considered dataset: indeed, its functional partners
include both mutated genes and differentially expressed genes; other
genes play a role according to one type of alteration only, like
CDCA8 (Phan et al., 2018), which emerged as being involved specif-
ically in terms of differential expression, being a member of a differ-
ential expression module. In the analysis of mutation profiles at
single patient level, gene classification underlined the presence of
several linkers with a relevant role in BC (Supplementary Fig. S11).
For instance, the deletion of HIC-1, never found mutated in the
dataset under analysis but spotted as linker in 15 subjects, has been
demonstrated to promote BC (Cheng et al., 2014; Wang et al.,
2018); FYN has been proposed as a prognostic marker in ERþ BC
(Elias and Ditzel, 2015) and promotes mesenchymal phenotypes of
basal types BC cells (Lee et al., 2018).

mND introduces an important advance in the class of multi-
omics methods: the applicability of the approach is broad in terms
of data types and experimental designs. Indeed, mND works on a
general gene-by-sample input matrix, where each column is a vector
of scores representing different data types (e.g. genomics, transcrip-
tomics) or the same type (e.g. fold changes or P-values from single
cell clusters).

Fig. 3. Performance in recovering known cancer genes. Partial AUC (pAUC) at vary-

ing number of top false positive ranking genes (n) in the analysis of mutations and

expression changes in four cancer types. (A–D) These results were generated using

interactome WU

Fig. 4. Analysis of mutations and expression changes in BC. (A) mND score and em-

pirical P-value; the red dashed line indicates the top 123 genes (subplot); colours

and shapes have the same meaning of panel B. (B) Gene diffusion scores of the top

123 genes ranked by mND. (C) tp values (Equation 6) for the two layers. (D) Gene

network composed of the top 123 genes ranked by mND; colours and shapes have

the same meaning as in panel B. (E) Classification of genes across layers (only the

top 75 ranked genes are shown for clarity); brown: isolated; orange: linker; purple:

module; grey: not significant. (A–D) Layer 1 (L1): mutations; Layer 2 (L2): expres-

sion variations. H1, H2: sets of genes with high initial scores in respectively L1 and

L2. NS: not significant, genes not belonging to H1 and H2. Green rhombuses: genes

belonging to H1 and H2; blue triangles: genes belonging only to H1; yellow rectan-

gles: genes belonging only to H2; red shapes: genes neither in H1 nor in H2. These

results were generated using interactome STRING
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Interestingly, we reported good performance also in recovering
known cancer genes, a problem addressed by recent network-based
methods for the analysis of multi-omics datasets.

In conclusion, the results described in this article support the use of
mND for global ranking of genes considering multiple evidences. The
results generated by mND can be further processed with other existing
tools, for example to characterize the top ranking genes using current
annotations (e.g. pathways) or network theory (e.g. centrality meas-
ures). At present, mND applies to an interactome with a fixed top-
ology and without edge directions. The generalization of mND
pipeline to include layers with different topologies as well as the inclu-
sion of edge directions are interesting opportunities for future develop-
ments. However, the latter information is currently lacking for most
PPIs and would imply a significant reduction of coverage in terms of
the genes studied. As all network-based methods, the performance of
mND is bounded by the reliability of current models that describe
intracellular circuits. As the data about macromolecular interactions
will become more and more available and reliable, network-based
analyses will be less affected by the lack of a reference human interac-
tome (Luck et al., 2017). In this context, the impact of tools like mND
in molecular biology will presumably increase.
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