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Abstract

Summary: Metagenomics and single-cell genomics have revolutionized the study of microorganisms, increasing
our knowledge of microbial genomic diversity by orders of magnitude. A major issue pertaining to metagenome-
assembled genomes (MAGs) and single-cell amplified genomes (SAGs) is to estimate their completeness and re-
dundancy. Most approaches rely on counting conserved gene markers. In miComplete, we introduce a weighting
strategy, where we normalize the presence/absence of markers by their median distance to the next marker in a set
of complete reference genomes. This approach alleviates biases introduced by the presence/absence of shorter
DNA pieces containing many markers, e.g. ribosomal protein operons.

Availability and implementation: miComplete is written in Python 3 and released under GPLv3. Source code and

documentation are available at https://bitbucket.org/evolegiolab/micomplete.
Contact: hugoson@evolbio.mpg.de or lionel.guy@imbim.uu.se
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The developments of high-throughput sequencing have led to an
ever-increasing affordability and availability of large-scale sequenc-
ing projects. Vast amounts of metagenomic data is generated, lead-
ing to the publication of thousands of metagenome-assembled
genomes (MAGs) from uncultured microorganisms (e.g. Parks et al.,
2017). Genomes from uncultured microorganisms may also be
obtained by sorting cells on a flow cytometer, amplifying and
sequencing their DNA. The resulting single-cell amplified genomes
(SAGs) have also contributed to widely increase our knowledge of
microbial diversity (e.g. Rinke et al., 2013).

Assessing the quality of MAGs and SAGs has become para-
mount. Metagenomic data is difficult to correctly assemble and bin
into MAGs, with most MAGs missing contigs and/or being contami-
nated with foreign contigs. As for SAGs, their completeness varies
widely, with virtually no SAG being 100% complete. Most methods
estimate level of completeness and contamination (or redundancy)
of SAGs and MAGs by identifying single copy, conserved marker
genes. The fraction of identified markers corresponds to genome
completeness, while additional copies represent either contamin-
ation or redundancy (Rinke et al., 2013). This approach is imple-
mented e.g. in CheckM (Parks ez al., 2015) and BUSCO (Simao
etal.,2015).

So far, all markers are considered as equally contributing to com-
pleteness or redundancy. However, markers are not uniformly dis-
tributed around prokaryotic chromosomes, and a certain amount of
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linkage is conserved even across long evolutionary distances (e.g.
Rogozin et al., 2002; Lathe et al., 2000). This is especially important
since commonly used marker sets often include ribosomal protein
genes, which are organized in conserved operons: thus, the presence
or absence of ribosomal protein genes (or of other markers generally
close to others) should contribute to completeness and redundancy
less than that of other non-clustered genes.

2 Materials and methods

In miComplete, we implement a method to reduce potential bias
introduced by the presence or absence of genetically linked markers.
The selected set of markers is first identified in a set of representa-
tive, complete, closed chromosomes. For each marker in each gen-
ome, half the distance to the next marker upstream and downstream
is recorded, and the sum of the two is normalized to the genome
size. The median over all genomes is then used as weight when cal-
culating the completeness or redundancy for query genomes. In a set
of 105 highly conserved bacterial markers, the weights, inferred
from a set of 1 175 genomes representative of all bacteria (see
below), ranged over three orders of magnitude, from 1.02e-5
(Ribosomal protein 1L22) to 3.17e-2 (RecR). The distribution of
weights for this particular set is shown in Supplementary Figure S1.
The square root of the sum over the weights’ standard deviations is
used as a measure of the uncertainty attached to a particular set of
weights.
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3 Implementation

miComplete is written in Python 3, and relies, among others, on
Numpy and Biopython (Cock et al., 2009). To identify completeness
and redundancy, miComplete aligns a set of Hidden Markov
Models (HMM) derived from single copy markers to the genomes of
interest. First, prodigal (Hyatt et al., 2010) is used to identify
protein-coding genes in unannotated genomes. Second, HMMER3
(Mistry et al., 2013) identifies hits to the set of HMM among the
annotated genomes, employing both a simple e-value cutoff for ini-
tial matching as well as a combination of bias- and best single do-
main score to evaluate the quality of matches. HMM sets can be
either provided by the user or selected from the (currently) two pre-
built sets, one for bacteria and one for archaea, derived from previ-
ous work (Guy, 2017; Rinke et al., 2013). Completeness is the
fraction of markers identified and redundancy the fraction of add-
itional copies of markers.

miComplete calculates the weights of a marker set in a set of
complete genomes, using then these weights to infer weighted com-
pleteness and redundancy in a query set of MAGs or SAGs.
Alternatively, the user may use the precalculated weights associated
with the inbuilt marker sets. Results are output in a tabulated list
format, including the estimated weighted completeness and redun-
dancy and a list of assembly statistics (genome length, GC-content,
N- and L50, etc.). The estimated error attached to the weights and
other metadata are also part of the output.

4 Benchmarking

To estimate the effectiveness of the new weighted approach, we
simulated a set of MAGs from complete genomes into contigs, with
varying completeness and redundancy. To obtain realistic contig
lengths, a distribution of contig lengths was built from 2631 draft
MAGs (Tully et al., 2018) recovered from the Tara Oceans dataset
(Karsenti et al., 2011). The resulting distribution was used to ran-
domly sample contig lengths to split a genome into. Contigs were
then randomly removed to meet desired completeness level. To
simulate redundancy, all other contigs were pooled and randomly
added to each artificial MAG up to the desired level. The code used
to calculate the contig length distribution and to simulate MAGs is
freely available from https://bitbucket.org/EricHugo/randmag.

Levels of completeness were simulated (0.1-0.9, increment 0.1)
using this method, along with levels of redundancy (1.05-1.2, incre-
ment 0.05). For each increment, 10 000 MAGs were simulated from
1175 complete, representative genomes. These genomes were chosen
with phyloSkeleton (Guy, 2017) to select one genome from each
genus across all bacteria containing at least one complete genome
(Supplementary Table S1). Results from miComplete and CheckM
were then compared, employing the same set of markers on the
same artificial MAGs. CheckM was run with the resource-intensive
default settings for a subset of 1000 MAGs (Fig. 1).

Across all levels of completeness tested, the weighting strategy of
miComplete yields an observed median completeness closer to the
expected value than without weighting, when using the same set of
markers (Fig. 1A). The distribution of estimated completeness also
showed a lower variance with the weighting strategy than without.
Redundancy estimations showed a similarly reduced variance with
the weighting strategy, although the median is similarly close to the
expected value for both strategies, only slightly favouring the
weighted approach (Fig. 1B). Running the largest dataset of the esti-
mations (1.2 redundancy) from the set above required an average of
9.81s per simulated MAG for CheckM (fixed marker set) and 2.72 s
for miComplete, on the same node using 12 threads for execution. It
should be noted that CheckM contains a very large range of other
features, among others automatically selecting markers, explaining
its higher runtime and its generally better results with default
settings.

Fig. 1. Ridgeplots of errors in estimating (A) completeness and (B) redundancy with
CheckM, using a fixed marker set (orange) or default settings (purple) and
miComplete (blue). Each stapled plot represents the distribution of error (difference
between observed and expected value) for increments of simulated completeness (A)
or redundancy (B)

In summary, miComplete allows a rapid and robust quality evalu-
ation of MAGs and SAGs. Through weighting markers according to
their conserved genetic linkage yields completeness and redundancy
estimations that are less biased and have narrower distributions.
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