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Abstract

Motivation: Protein function prediction is one of the major tasks of bioinformatics that can help in

wide range of biological problems such as understanding disease mechanisms or finding drug tar-

gets. Many methods are available for predicting protein functions from sequence based features,

protein–protein interaction networks, protein structure or literature. However, other than sequence,

most of the features are difficult to obtain or not available for many proteins thereby limiting their

scope. Furthermore, the performance of sequence-based function prediction methods is often

lower than methods that incorporate multiple features and predicting protein functions may re-

quire a lot of time.

Results: We developed a novel method for predicting protein functions from sequence alone which

combines deep convolutional neural network (CNN) model with sequence similarity based predic-

tions. Our CNN model scans the sequence for motifs which are predictive for protein functions and

combines this with functions of similar proteins (if available). We evaluate the performance of

DeepGOPlus using the CAFA3 evaluation measures and achieve an Fmax of 0.390, 0.557 and 0.614

for BPO, MFO and CCO evaluations, respectively. These results would have made DeepGOPlus one

of the three best predictors in CCO and the second best performing method in the BPO and MFO

evaluations. We also compare DeepGOPlus with state-of-the-art methods such as DeepText2GO

and GOLabeler on another dataset. DeepGOPlus can annotate around 40 protein sequences per se-

cond on common hardware, thereby making fast and accurate function predictions available for a

wide range of proteins.

Availability and implementation: http://deepgoplus.bio2vec.net/.

Contact: robert.hoehndorf@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Prediction of protein functions is a major task in bioinformatics that

is important in understanding the role of proteins in disease pathobi-

ology, the functions of metagenomes, or finding drug targets.

A wide range of methods have been developed for predicting protein

functions computationally (Fa et al., 2018; Jiang et al., 2016;

Kahanda and Ben-Hur, 2017; Kulmanov et al., 2018; Radivojac

et al., 2013; You et al., 2018a,b; Zhou et al., 2019). Protein

functions can be predicted from protein sequences (Fa et al., 2018;

Jiang et al., 2016; Kulmanov et al., 2018; Radivojac et al., 2013;

You et al., 2018a, b; Zhou et al., 2019), protein–protein interactions

(PPI) (Kulmanov et al., 2018), protein structures (Yang et al., 2015),

biomedical literature and other features (Kahanda and Ben-Hur,

2017; You et al., 2018a). Sequence-based methods employ sequence

similarity, search for sequence domains, or multi-sequence align-

ments to infer functions. As proteins rarely function on their own,

protein–protein interactions can be a good predictor for complex

biological processes to which proteins contribute. Although it is
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experimentally challenging to identify protein structures, they are

crucial in understanding what proteins are capable of doing.

Literature may contribute to function predicting because it may con-

tain explicit descriptions of protein functions or describe properties

of proteins that are predictive of protein functions indirectly.

Overall, many of these features are available only for a small num-

ber of proteins, while a protein’s amino acid sequence can be identi-

fied for most proteins. Therefore, methods that accurately predict

protein functions from sequence alone may be the most general and

applicable to proteins that have not been extensively studied.

Proteins with similar sequence tend to have similar functions

(Radivojac et al., 2013). Therefore, a basic way of predicting func-

tions for new sequences is to find the most similar sequences with

known functional annotations and transfer their annotations.

Another approach is to search for specific sequence motifs which are

associated with some function; for example, InterProScan (Mitchell

et al., 2014) is a tool which can help to find protein domains and

families. The domains and families can be used to infer protein

functions.

Recent developments in deep feature learning methods brought

many methods which can learn protein sequence features. In 2017,

we developed DeepGO (Kulmanov et al., 2018) as one of first deep

learning models which can predict protein functions using the pro-

tein amino acid sequence and interaction networks. Since 2017,

many successor methods became available that achieve better pre-

dictive performance (You et al., 2018a, b).

DeepGO suffers from several limitations. First, it can only pre-

dict functions for proteins with a sequence length less than 1002 and

which do not contain ‘ambiguous’ amino acids such as unions or

unknowns. While around 90% of protein sequences in UniProt sat-

isfy these criteria, it also means that DeepGO could not predict func-

tions for about 10% of proteins. Second, due to computational

limitations, DeepGO can only predict around 2000 functions out of

more than 45 000 which are currently in the Gene Ontology (GO)

(Ashburner et al., 2000). Third, DeepGO uses interaction network

features which are not available for all proteins. Specifically, for

novel or uncharacterized proteins, only the sequence may be known

and not any additional information such as the protein’s interactions

or mentions in literature. Finally, DeepGO was trained and eval-

uated on randomly drawn training, validation and testing sets.

However, such models may overfit to particular features in the train-

ing data and may not yield adequate results in real prediction scen-

arios. Consequently, challenges such as the Critical Assessment of

Function Annotation (CAFA) (Jiang et al., 2016; Radivojac et al.,

2013; Zhou et al., 2019) use a time-based evaluation where training

and predictions are fixed and evaluated after some time has elapsed

on predictions that became available in that time. DeepGO did not

achieve the same performance in the CAFA3 (Zhou et al., 2019)

challenge as it had in our own experiments.

Here, we extend and improve DeepGO overcoming its main lim-

itations related to sequence length, missing features and number of

predicted classes. We increased the model’s input length to 2000

amino acids and now cover more than 99% of sequences in UniProt.

Furthermore, our new model’s architecture allows us to split longer

sequences and scan smaller chunks to predict functions. We also re-

move features derived from interaction networks because only a

small number of proteins have such network information. Instead,

we combine our neural network predictions with methods based on

sequence similarity to capture orthology and, indirectly, some inter-

action information. Through this step we also overcome the limita-

tion in the number of classes to predict and we can, in theory,

predict any GO class that has ever been used in an experimental

annotation. To avoid overfitting of our model, we substantially

decreased our model’s capacity by replacing the amino acid trigram

embedding layer with a one-hot encoding and removing our hier-

archical classification layer.

In our evaluation we exactly reproduce the CAFA3 evaluation

by training our model using only data provided by CAFA3 as train-

ing data and evaluating on the CAFA3 testing data. Using the pub-

licly available CAFA Assessment Tool, DeepGOPlus achieves an

Fmax of 0.390, 0.557 and 0.614 for BPO, MFO and CCO evalua-

tions, respectively. These results would have made DeepGOPlus the

one of three best predictors in CCO and the second best performing

method in the BPO and MFO evaluations.

We also compare DeepGOPlus with our baseline methods

including DeepGO and two of the best-performing protein function

prediction methods, GOLabeler (You et al., 2018b) and

DeepText2GO (You et al., 2018a), on another dataset. GOLabeler

mainly uses sequence-based features, DeepGO uses interaction net-

work features, and DeepText2GO uses features extracted from lit-

erature in addition to sequence-based ones. In terms of Fmax

measure, we outperform all methods in predicting biological proc-

esses and cellular components. Notably, our model significantly

improves predictions of biological process annotations with an Fmax

of 0.474.

To provide an insight into what kind of features our model uses

to predict functions, we analyze the convolutional filters of our

model to understand what type of feature they recognize. We found

that sequence regions that activate our filters are very similar to

seed sequences of protein families and domains in the Pfam database

(El-Gebali et al., 2019). We were able to associate protein sequences

in our test set with almost half of their InterPro (Finn et al., 2017)

annotations by using sequence regions which activate our convolu-

tional filters.

By using a single model with few parameters, we also significant-

ly improved the runtime of the model. In average, DeepGOPlus can

annotate 40 proteins per second on ordinary hardware. Overall,

with these improvements, our model can now rapidly perform

function prediction for any protein with available sequence. Our

online predictor is available at http://deepgoplus.bio2vec.

net and DeepGOPlus.

2 Materials and methods

2.1 Datasets and gene ontology
We use two datasets to evaluate our approach. Firstly, we down-

loaded CAFA3 challenge training sequences and experimental anno-

tations published on September, 2016 and test benchmark published

on November 15, 2017 which was used to evaluate protein function

prediction methods submitted to the challenge. According to

CAFA3, the annotations with evidence codes: EXP, IDA, IPI, IMP,

IGI, IEP, TAS, or IC are considered to be experimental. The training

set includes all proteins with experimental annotations known be-

fore September, 2016 and the test benchmark contains no-

knowledge proteins which gained experimental annotation between

September, 2016 and November 2017. Similar time based splits

were used in all previous CAFA challenges.

We propagate annotations using the hierarchical structure of the

Gene Ontology (GO) (Ashburner et al., 2000). We use the version of

GO released on June 1, 2016. The version has 10 693 molecular

function (MFO), classes, 29 264 biological process (BPO) classes

and 4034 cellular component (CCO) classes. This version is

also used to evaluate CAFA3 predictions. While propagating
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annotations, we consider all types of relations between classes. For

instance, if a protein P is annotated with a class C which has a part-

of relation to a class D, then we annotate P with the class D. This

procedure is repeated until no further annotation can be propagated.

After this step, we count the number of annotated proteins for each

GO class and select all classes with 50 or more annotations for our

prediction model. The statistics with the number of classes in

Table 1 represent how many classes we can predict using our deep

neural network model.

Secondly, to compare with other methods for function prediction

such as DeepText2GO (You et al., 2018a) and GoLabeler (You

et al., 2018b) we downloaded SwissProt reviewed proteins pub-

lished on January, 2016 and October, 2016. We use all experimental

annotations before January 2016 as a training set and experimental

annotations collected between January and October 2016 as testing

set. We filter the testing set with 23 target species which are in

CAFA3 evaluation set. Table 1 summarizes both datasets.

2.2 Baseline comparison methods
2.2.1 Naive approach

It is possible to get comparable prediction results just by assigning

the same GO classes to all proteins based on annotation frequencies.

This happens due to the hierarchical structure of GO which, after

the propagation process, results in many annotations at high-level

classes. In CAFA, this approach is called ‘naive’ approach and is

used as one of the baseline methods to compare function predic-

tions. Here, each query protein p is annotated with the GO classes

with a prediction scores computed as:

Sðp; f Þ ¼
Nf

Ntotal
(1)

where f is a GO class, Nf is a number of training proteins annotated

by GO class f and Ntotal is a total number of training proteins.

2.2.2 DiamondBLAST

Another baseline method is based on sequence similarity score

obtained by BLAST (Altschul et al., 1997). The idea is to find similar

sequences from the training set and transfer an annotation from the

most similar. We use the normalized bitscore as prediction score for

a query sequence q:

Sðq; f Þ ¼ maxs2Ebitscoreðq; sÞ � Iðf 2 TsÞ
maxs2Ebitscoreðq; sÞ (2)

where E is a set of similar sequences filtered by e-value of 0.001, Ts

is a set of true annotations of a protein with sequence s and I is an

identity function which returns 1 if the condition is true and 0

otherwise.

2.2.3 DiamondScore

The DiamondScore is very similar to the DiamondBLAST approach.

The only difference is that we normalize the sum of the bitscores of

similar sequences. We compute prediction scores using the formula:

Sðq; f Þ ¼
P

s2E bitscoreðq; sÞ � Iðf 2 TsÞP
s2E bitscoreðq; sÞ (3)

2.2.4 DeepGO

DeepGO (Kulmanov et al., 2018) was developed by us previously

and it is one of the first methods which learns sequence features

with a deep learning model and combines it with PPI network fea-

tures to predict protein functions. It also uses a hierarchical classifier

to output predictions consistent with structure of GO. Here we

trained three separate models for three parts of GO mainly because

of the computational costs involved in training larger models.

We use our previously reported optimal parameters and set of func-

tions to train new models with our current datasets. With DeepGO,

we trained and predicted 932 BPO, 589 MFO and 436 CCO classes.

2.2.5 GOLabeler and DeepText2GO

Currently the best performing methods for function prediction task

are GOLabeler (You et al., 2018b) and DeepText2GO (You et al.,

2018a), both developed by the same group. GOLabeler achieved

some of the best results in the preliminary evaluation for all three

subontologies of GO in the CAFA3 challenge. It is an ensemble

method which combines several approaches and predicts functions

mainly from sequence features. DeepText2GO improves the results

achieved by GOLabeler by extending their ensemble with models

that predict functions from literature.

Our second dataset is specifically designed to compare our

results with these two methods. Since we use same training and test-

ing data, we directly compare our results with the results reported in

their papers.

2.3 Model training and tuning
We use Tensorflow (Abadi et al., 2016) to build and train our neural

network model. Our model was trained on Nvidia Titan X and

P6000 GPUs with 12–24 Gb of RAM.

Our neural network model has many hyperparameters such as

convolutional filter lengths, number of convolutional filters, depth

of fully connected layers, loss functions, activation functions, opti-

mizers and learning rate. In addition, we use weighted sum model to

combine sequence similarity method score with neural network

model score which has a parameter to be tuned. In general, all

parameters were tuned depending on their performance on a valid-

ation set which is a randomly split 10% of our training set. Since the

parameter search space is quite large we evaluated several loss func-

tions, activation functions, optimizers and learning rate on a simple

model and selected binary cross-entropy loss and Adam (Kingma

and Ba, 2014) with learning rate of 0.0003. We selected ReLU (Nair

and Hinton, 2010) activations for intermediate layers and used

Sigmoid function for our final classification layer. Then, we ran an

extensive search for the other parameters. Our model uses multiple

1D convolutional layers with different filter lengths where the small-

est filter starts from length 8 and the following filter is increased by

8 units. The tested settings were {{8, 16, 24, 32}, {8, 16, 24,. . ., 64},

{8, 16, 24,. . ., 128}, {8, 16, 24,. . ., 256}, {8, 16, 24,. . ., 512}} where

each layer’s number of filters were selected from 32, 64, 128, 256,

512. The depth of fully connected layers were selected from {1, 2,

3}. We tested all combinations of these parameters (in total 75) and

Table 1. The number of protein sequences with experimental anno-

tations in CAFA3 and 2016 datasets grouped by sub-ontologies

Dataset Statistic MFO BPO CCO All

CAFA3 Training size 36 110 53 500 50 596 66 841

CAFA3 Testing size 1137 2392 1265 3328

CAFA3 Number of classes 677 3992 551 5220

2016 Training size 34 488 51 716 49 346 65 028

2016 Testing size 679 1434 1148 1788

2016 Number of classes 652 3904 545 5101
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the best performing parameters were convolutional layers with filter

lengths {8, 16, 24,. . ., 128} with 512 filters each and 1 fully con-

nected layer. This setting generated 8192 (16�512) convolutional

filter outputs which were used as a sequence features. The a param-

eter values which give best performance on a validation set are 0.55,

0.59 and 0.46 for MFO, BPO and CCO evaluations respectively.

To avoid overfitting we use an early stopping strategy depending

on the validation loss. Our CNN layers do not use any activation

function or dropout because we use MaxPooling layer with max-

imum pool size. This means that every filter will return only a single

value. The aim is to force the CNN filters to learn set of similar pat-

terns (motifs) and if the filter finds the pattern in the sequence it

returns a high value which is pooled with the MaxPooling layer. We

obtained our best model with only one fully connected layer after

the MaxPooling layer. This makes our model relatively simple and

less prone to overfitting.

2.4 DeepGOPlus versus DeepGO
There are three main differences of our model from the original

DeepGO model (Kulmanov et al., 2018). First, DeepGO uses a trigram

embedding layer to represent the sequence. The embedding layer has

vectors of size 128 for each trigram (20�20�20 in total). This layer

adds 128�8000 parameters to the model. We replaced this representa-

tion with a parameter-free one-hot encoding which allowed us to sig-

nificantly reduce the number of parameters of the new model. We

noticed during our experiments that the models with embedding layer

easily memorize the training data and overfit to it. Using one-hot encod-

ing helped to avoid this problem. Second, DeepGO has one CNN layer

with fixed a filter length which was extended to several CNN layers

with different filter lengths. Finally, in DeepGOPlus, we use a flat classi-

fication layer instead of hierarchical classifier in DeepGO. The reason

for this choice is that we built a single model for all three ontologies

with more than 5000 classes and we were not able to build a hierarchic-

al classifier due to memory limitations and time complexities.

2.5 Evaluation
To evaluate our predictions we use the CAFA (Radivojac et al.,

2013) evaluation metrics Fmax and Smin (Radivojac and Clark,

2013). In addition, we report the area under the precision–recall

curve (AUPR) which is a reasonable measure for evaluating predic-

tions with high class imbalance (Davis and Goadrich, 2006).

Fmax is a maximum protein-centric F-measure computed over all

prediction thresholds. First, we compute average precision and recall

using the following formulas:

priðtÞ ¼
P

f Iðf 2 PiðtÞ ^ f 2 TiÞP
f Iðf 2 PiðtÞÞ

(4)

rciðtÞ ¼
P

f Iðf 2 PiðtÞ ^ f 2 TiÞP
f Iðf 2 TiÞ

(5)

AvgPrðtÞ ¼ 1

mðtÞ �
XmðtÞ
i¼1

priðtÞ (6)

AvgRcðtÞ ¼ 1

n
�
Xn

i¼1

rciðtÞ (7)

where f is a GO class, Ti is a set of true annotations, Pi(t) is a set of

predicted annotations for a protein i and threshold t, m(t) is a num-

ber of proteins for which we predict at least one class, n is a total

number of proteins and I is an identity function which returns 1 if

the condition is true and 0 otherwise. Then, we compute the Fmax

for prediction thresholds t 2 ½0; 1� with a step size of 0.01. We count

a class as a prediction if its prediction score is higher than t:

Fmax ¼ max
t

2 � AvgPrðtÞ � AvgRcðtÞ
AvgPrðtÞ þAvgRcðtÞ

� �
(8)

Smin computes the semantic distance between real and predicted

annotations based on information content of the classes. The infor-

mation content IC(c) is computed based on the annotation probabil-

ity of the class c:

ICðcÞ ¼ �logðPrðcjPðcÞÞ (9)

where P(c) is a set of parent classes of the class c. The Smin is com-

puted using the following formulas:

Smin ¼ min
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruðtÞ2 þmiðtÞ2

q
(10)

where ru(t) is the average remaining uncertainty and mi(t) is average

misinformation:

ruðtÞ ¼ 1

n

Xn

i¼1

X
c2Ti�PiðtÞ

ICðcÞ (11)

miðtÞ ¼ 1

n

Xn

i¼1

X
c2PiðtÞ�Ti

ICðcÞ (12)

In our evaluation, we consider the complete GO ontology when

computing parent and child classes, and then separate classes into their

individual sub-ontologies (MFO, BPO, CCO) based on the namespace

attribute associated with classes in GO. This method is also used by

GOLabeler (You et al., 2018b) and DeepText2GO (You et al., 2018a).

In the CAFA3 evaluation (Zhou et al., 2019), individual classes are

first separated by their sub-ontology and parent and child classes are

then computed locally within the sub-ontology. GO has relations

between classes in the three sub-ontologies, and many MFO classes

stand in a ‘part-of’ relation to BPO classes or in ‘occurs-in’ relations

with CCO classes. For example, the MFO class acyl carrier activity

(GO: 0000036) stands in a ‘part-of’ relation to fatty acid biosynthetic

process (GO: 0006633) in the BPO ontology, and while we take this

class into account when computing our evaluation measures, the

CAFA3 evaluation does not. To compare our results with the CAFA3

evaluation results (Zhou et al., 2019), we perform the evaluation twice,

using the complete ontology and using the separate evaluation as in

CAFA3 (using the publicly available CAFA3 evaluation tool).

3 Results

3.1 DeepGOPlus learning model
In DeepGOPlus, we combine sequence similarity and sequence

motifs in a single predictive model. To learn sequence motifs that

are predictive of protein functions, we use one-dimensional convolu-

tional neural networks (CNNs) over protein amino acid sequence to

learn sequence patterns or motifs. Figure 1 describes the architecture

of our deep learning model. First, the input sequence is converted to

a one-hot encoded representation of size 21�2000, where a one-

hot vector of length 21 represents an amino acid (AA) and 2000 is

the input length. Sequences with a length less than 2000 are padded

with zeros and longer sequences are split into smaller chunks with

less than 2000 AAs. This input is passed to a set of CNN layers with

different filter sizes of 8, 16, . . ., 128. Each of the CNN layers has

512 filters which learn specific sequence motifs of a particular size.
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Each filter is scanning the sequence and their maximum score is

pooled using a MaxPooling layer. In total, we generate a feature vec-

tor of size 8192 where each value represents a score that indicates

the presence of a relevant sequence motif. This vector is passed to

the fully connected classification layer which outputs the predic-

tions. To select the best parameters and hyperparameters for our

deep learning model, we extensively searched for optimal combina-

tions of parameters such as filter sizes, number of filters and depth

of dense layers based on a validation set loss. We report the list of

parameters and validation losses in Supplementary Table S1.

DeepGOPlus combines the neural network model predictions

with predictions based on sequence similarity. First, we find similar

sequences from a training set using Diamond (Buchfink et al., 2015)

with an e-value of 0.001 and obtain a bitscore for every similar se-

quence. We transfer all annotations of similar sequences to a query

sequence with prediction scores computed using the bitscores. For a

set of similar sequences E of the query sequence q, we compute the

prediction score for a GO class f as

Sðq; f Þ ¼
P

s2E Iðf 2 TsÞ � bitscoreðq; sÞP
s2E bitscoreðq; sÞ ;

where Ts is a set of true annotations of the protein with sequence s. Then,

to compute the final prediction scores of DeepGOPlus, we combine the

two prediction scores using a weighted sum model (Fishburn, 1967):

S ¼ a � SDiamondScore þ ð1� aÞ � SDeepGOCNN;

where 0 � a � 1 is a weight parameter which balances the relative

importance of the two prediction methods.

3.2 Evaluation and comparison
We evaluate DeepGOPlus using two datasets. First, we use the latest

CAFA3 (Radivojac et al., 2013) challenge dataset and compare our

method with baseline methods such as Naive predictions, BLAST

and our previous deep learning model DeepGO. We use two

strategies for predicting functions based on sequence similarity com-

puted with the Diamond tool (Buchfink et al., 2015) (which is a

faster implementation of the BLAST algorithm). We call them

DiamondBLAST and DiamondScore. DiamondBLAST considers

only the most similar sequence whereas DiamondScore predicts

functions using all similar sequences returned by Diamond. We also

report the performance of using only our neural network model

(labeled as DeepGOCNN). We find that with the DiamondScore ap-

proach, we can outperform DeepGO predictions in MFO and

achieve comparable results in BPO and CCO evaluations while

DeepGOCNN gives better predictions in CCO. We achieve the best

performance in all three subontologies with our DeepGOPlus model

which combines the DiamondScore and DeepGOCNN. Table 2

summarizes the performance of the models.

To compare our approach with the state of the art methods

GOLabeler (You et al., 2018b) and DeepText2GO (You et al., 2018a),

we generate a second dataset which uses data obtained at the same

dates as the other methods so that we can generate a time-based split

of training and testing data. Both methods train on experimental func-

tion annotations that appeared before January 2016 and test on anno-

tations which were asserted between January 2016 and October 2016.

Furthermore, we use the same version of GO and follow the CAFA3

challenge procedures to process the data. As a result, we can directly

compare our evaluation results with the other methods. In this evalu-

ation, DeepGOPlus gives the best results for BPO and CCO in terms of

Fmax measure and ranks second in the MFO evaluation (after

DeepText2GO). However, it is important to note that DeepText2GO

uses features extracted from literature in addition to sequence based

features while DeepGOPlus predictions are only based on protein se-

quence. Notably, our method significantly increased performance of

predictions of BPO classes in both evaluation datasets (Table 3).

Due to large number of available sequences, analyzing sequences

require both accurate and fast prediction methods. Specifically,

function prediction is a crucial step in interpretation of newly

sequenced genomes or meta-genomes. While we have compared

DeepGOPlus in terms of prediction performance, we could not com-

pare the running time of the models because the runtime of predic-

tion models is rarely reported. With DeepGOPlus, 40 protein

sequences can be annotated per second using a single Intel(R)

Xeon(R) E5-2680 CPU and Nvidia P6000 GPU.

3.3 Comparison with CAFA3 methods
The CAFA3 challenge results (Zhou et al., 2019) became available

recently which allowed us to evaluate our method on the same

Fig. 1. Overview of the CNN in DeepGOPlus. The CNN uses multiple filters of

variable size to detect the presence of sequence motifs in the input amino

acid sequence

Table 2. The comparison of performance on the first CAFA3 challenge dataset

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.290 0.357 0.562 10.733 25.028 8.465 0.130 0.254 0.456

DiamondBLAST 0.431 0.399 0.506 10.233 25.320 8.800 0.178 0.116 0.142

DiamondScore 0.509 0.427 0.557 9.031 22.860 8.198 0.340 0.267 0.335

DeepGO 0.393 0.435 0.565 9.635 24.181 9.199 0.303 0.385 0.579

DeepGOCNN 0.420 0.378 0.607 9.711 24.234 8.153 0.355 0.323 0.616

DeepGOPlus 0.544 0.469 0.623 8.724 22.573 7.823 0.487 0.404 0.627

Best performance in bold. Fmax and AUPR, highest; Smin, lowest.
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dataset used in CAFA3. We use the method used by CAFA3 to

evaluate DeepGOPlus (see Methods) and compare against other

methods that were evaluated in CAFA3. According to the CAFA3

evaluation measures, DeepGOPlus achieves an Fmax of 0.390, 0.557

and 0.614 for BPO, MFO and CCO evaluations, respectively. These

results would have made DeepGOPlus one of the three best predic-

tors in CCO and the second best performing method in the BPO and

MFO evaluations. Figure 2 shows the comparison of DeepGOPlus

with all CAFA3 top performing methods.

Using our own evaluation (based on inferring parent and child

classes over the complete GO ontology instead of separately in the

sub-ontologies), we obtain similar results for MFO and CCO as

with the CAFA3 evaluation method while the difference in the BPO

evaluation is quite large.

3.4 Smin performance analysis
Although our method performed among the top-ranking methods in

several Fmax evaluations, both GOLabeler and DeepText2GO per-

form significantly better when considering the evaluation based on

the Smin measure. DeepGOPlus can potentially predict any GO class,

including classes that are very specific. The Smin evaluation depend

on the number of false negatives, false positives and the information

content (IC) of GO classes. Figure 3 shows the distribution of IC val-

ues for the classes that are predicted by the DeepGOPlus model. The

IC for general classes is close to zero and more specific classes have

IC values of close to 10. Consequently, the methods which attempt

to predict many specific classes will, in general, have a higher Smin.

To test if this is true for our method, we evaluated the false positive

predictions for the CAFA3 test set. In average, our method pre-

dicts 6.1 false positive classes per protein with a total IC of 8.3 for

MFO, demonstrating that our false positive predictions are quite

specific.

3.5 Convolutional filters
To understand what is being learned by the convolutional filters of

the CNN model we performed an experiment where we analyze se-

quence regions which activate our filters. We selected the specific

molecular function class ‘enzyme activator activity’ (GO: 0008047)

and filtered out all proteins annotated to this class. In total, 623 pro-

teins have been experimentally annotated to this class. The reason

we selected this class is that this class is very specific and it is refer-

enced by multiple InterPRO functional domains and families. Our

hypothesis is that our CNN filters recognize sequence regions that

are similar to sequence functional domains.

First, we extracted the scores of all 8192 filters and ordered

them in descending order for all sequences. We found that filter

number 8048 (0-based) gives the highest score for all sequences

and many other top 10 filters are active in more than 600 sequen-

ces. This shows that the filters learned similar motifs that are

related to our selected function. We then extracted sequence

regions which give the highest score for top 10 CNN filters and

compare them to Pfam (El-Gebali et al., 2019) protein families

database seeds. We use Diamond BLAST (Buchfink et al., 2015)

with an e-value of 0.001 and associate similar sequence regions to

Pfam families. Furthermore, we map Pfam family IDs to

InterPRO IDs. Through this process, we associated protein

sequences to InterPRO domains using sequence regions recog-

nized by our CNN filters. In total, 563 sequences have been asso-

ciated to at least one InterPRO ID. Finally, we compare the

InterPRO associations with InterPRO annotations in UniProt

(The Uniprot Consortium, 2007) database using a protein-centric

F measure and obtain an F-score of 0.62 with precision 0.9 and

recall of 0.47. This experiment demonstrates that our CNN filters

are learning meaningful sequence motifs and can, for enzyme acti-

vators, accurately recognize almost half of the currently known

functional domain annotations.

3.6 Implementation and availability
DeepGOPlus is available as free software at https://github.com/

bio-ontology-research-group/deepgoplus. We also publish

training and testing data used to generate evaluation and results at

http://deepgoplus.bio2vec.net/data/. Furthermore, Deep-

GOPlus is available through a web interface and REST API at

http://deepgoplus.bio2vec.net.

Fig. 2. Comparison of DeepGOPlus with CAFA3 top 10 methods

Table 3. The comparison of performance on the second dataset generated by a time-based split

Method Fmax Smin AUPR

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.306 0.318 0.605 12.105 38.890 9.646 0.150 0.219 0.512

DiamondBLAST 0.525 0.436 0.591 9.291 39.544 8.721 0.101 0.070 0.089

DiamondScore 0.548 0.439 0.621 8.736 34.060 7.997 0.362 0.240 0.363

DeepGO 0.449 0.398 0.667 10.722 35.085 7.861 0.409 0.328 0.696

DeepGOCNN 0.409 0.383 0.663 11.296 36.451 8.642 0.350 0.316 0.688

DeepText2GO 0.627 0.441 0.694 5.240 17.713 4.531 0.605 0.336 0.729

GOLabeler 0.580 0.370 0.687 5.077 15.177 5.518 0.546 0.225 0.700

DeepGOPlus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726

Best performance in bold. Fmax and AUPR, highest; Smin, lowest.
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4 Discussion

DeepGOPlus is a fast and accurate tool to predict protein func-

tions from protein sequence alone. Our model overcomes several

limitations of other methods and our own DeepGO model

(Kulmanov et al., 2018). In particular, DeepGOPlus has no limits on

the length of the amino acid sequence and can therefore be used for

the genome-scale annotation of protein functions, in particular in

newly sequenced organisms. DeepGOPlus also makes no assumptions

on the taxa or kingdom to which a protein belongs, therefore ena-

bling, for example, function prediction for meta-genomics in which

proteins from different kingdoms may be mixed. Furthermore,

DeepGOPlus is fast and can annotate several thousand proteins in

minutes even on single CPUs, further enabling its application in meta-

genomics or for projects in which a very large number of proteins

with unknown functions are identified. While we initially expected

the absence of features derived from interaction networks to impact

predictive performance, we found that we can achieve even higher

prediction accuracy with our current model; additionally, our model

is not limited by unbalanced or missing information about protein–

protein interactions.

In DeepGOPlus, we combine similarity-based search to proteins

with known functions and motif-based function prediction, and this

combination gives us overall the best predictive performance.

However, DeepGOPlus can also be applied using only sequence

motifs; in particular when annotating novel proteins for which no

similar proteins with known functions exist, our motif-based model

would be most suitable.

In the future, we plan to incorporate additional features and test

other types of deep neural network models. While related methods

use features that can be derived only for known proteins, such as in-

formation obtained from literature or interaction networks,

DeepGOPlus will rely primarily on features that can be derived from

amino acid sequences to ensure that the model can be applied as

widely as possible. Possible additional information that may im-

prove DeepGOPlus in the future is information about protein struc-

ture, in particular as structure prediction methods are improving

significantly (Wang et al., 2017). We have already experimented

with several types of neural networks such as recurrent neural net-

works, long-short term memory networks and autoencoders to learn

seqeunce features. However, our attempts were unsuccessful and

CNNs gave us the best results. Recently, attention networks have

been successfully applied to protein sequences (Rives et al., 2019)

and we plan to test them on function prediction.
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