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Abstract

Motivation: Mechanistic models of biochemical reaction networks facilitate the quantitative under-

standing of biological processes and the integration of heterogeneous datasets. However, some

biological processes require the consideration of comprehensive reaction networks and therefore

large-scale models. Parameter estimation for such models poses great challenges, in particular

when the data are on a relative scale.

Results: Here, we propose a novel hierarchical approach combining (i) the efficient analytic evalu-

ation of optimal scaling, offset and error model parameters with (ii) the scalable evaluation of

objective function gradients using adjoint sensitivity analysis. We evaluate the properties of the

methods by parameterizing a pan-cancer ordinary differential equation model (>1000 state varia-

bles, >4000 parameters) using relative protein, phosphoprotein and viability measurements. The

hierarchical formulation improves optimizer performance considerably. Furthermore, we show

that this approach allows estimating error model parameters with negligible computational over-

head when no experimental estimates are available, providing an unbiased way to weight hetero-

geneous data. Overall, our hierarchical formulation is applicable to a wide range of models, and

allows for the efficient parameterization of large-scale models based on heterogeneous relative

measurements.

Availability and implementation: Supplementary code and data are available online at http://doi.

org/10.5281/zenodo.3254429 and http://doi.org/10.5281/zenodo.3254441.

Contact: jan.hasenauer@uni-bonn.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In systems biology, mechanistic ordinary differential equation

(ODE) models are widely used to deepen the understanding of bio-

logical processes. Applications range from the description of signal-

ing pathways (Klipp et al., 2005) to the prediction of drug responses

(Hass et al., 2017) and patient survival (Fey et al., 2015). With the

availability of scalable computational methods and increasing com-

puting power, larger and larger models have been developed to cap-

ture the intricacies of biological regulatory networks more

accurately (Bouhaddou et al., 2018; Fröhlich et al., 2018). In

Fröhlich et al. (2018), we demonstrated how such a large-scale
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mechanistic model integrating various cancer-related signaling path-

ways is able to, e.g. predict the response of cancer cells to drug com-

binations based on measurements for single treatment responses, a

task which is commonly not possible with statistical models.

Overall, mechanistic models can pave the way to personalized medi-

cine by integrating patient specific information, and thus creating

virtual patients (Kühn and Lehrach, 2012; Ogilvie et al., 2015).

Mechanistic ODE models usually contain parameters such as re-

action rate constants and initial concentrations, which have to be

inferred from experimental data. Parameter estimation for larger

models is limited by (i) computational power for large numbers of

required model simulations and gradient evaluations, as well as by

(ii) the availability of data to infer parameter values. Scalable meth-

ods have been developed to address the problem of computational

complexity, e.g. adjoint sensitivity analysis (Fröhlich et al., 2017b;

Fujarewicz et al., 2005; Lu et al., 2013) and parallelization

(Fröhlich et al., 2018; Penas et al., 2015). Complementary, large-

scale transcriptomics, proteomics and pharmacological datasets

have been acquired and have been made publicly available in data-

bases such as the Cancer Cell Line Encyclopedia (CCLE) (Barretina

et al., 2012), the Genomics of Drug Sensitivity in Cancer project

(Eduati et al., 2017) and the MD Anderson Cell Lines Project

(MCLP) (Li et al., 2017).

The available databases are rather comprehensive and cover al-

ready hundreds of cell-lines. Yet, those datasets are usually relative

measurements and data often undergo some type of normalization,

which has to be accounted for when linking mechanistic model

simulations to the data. A commonly used approach is to introduce

scaling and offset parameters in the model outputs (Degasperi et al.,

2017; Raue et al., 2013; Weber et al., 2011). However, this

increases the dimensionality of the optimization problem and slows

down optimization. Indeed, even a small number of scaling factors

can result in a substantial drop of optimizer performance (Degasperi

et al., 2017). The precise reasons are yet to be understood.

To improve optimizer performance, Weber et al. (2011) devel-

oped a hierarchical optimization method which exploits the fact

that for given dynamic parameters, the optimal scaling parameters

can be computed analytically, which improved convergence and

reduced computation time. The approach was generalized by Loos

et al. (2018) to error model parameters and different noise distribu-

tions. However, the available approaches only considered scaling

parameters, but not offset parameters. In addition, those approaches

were not compatible with adjoint sensitivity analysis, but only with

forward sensitivity analysis, which is computationally prohibitive

for large-scale models.

Here, we (i) analyze the problems caused by the introduction of

scaling factors and (ii) extend the hierarchical optimization method

introduced by Loos et al. (2018) to be used in combination with ad-

joint sensitivity analysis. Furthermore, we derive the governing

equations to not only include scaling parameters, but also offset

parameters and the combination of both as well as error model

parameters in the case of additive Gaussian noise. Our method is

more general and achieves a better scaling behavior than the existing

ones (Loos et al., 2018; Weber et al., 2011). We apply it to estimate

parameters for the large-scale pan-cancer signaling model from

Fröhlich et al. (2018). First, we use simulated relative and absolute

data to compare the performance of the standard and the novel hier-

archical approach and to demonstrate the loss of information associ-

ated with using only relative data. Second, we use measured data to

estimate model parameters, compare the performance of different

optimization algorithms, and show how the performance of each of

them improves with our hierarchical optimization approach.

2 Materials and methods

2.1 Mechanistic modeling
We consider ODE models of biochemical processes of the form

_xðt; h; uÞ ¼ f ðxðt; h; uÞ; h;uÞ; xðt0; h;uÞ ¼ x0ðh;uÞ:

The state vector xðt; h; uÞ 2 R
nx denotes the concentrations of

involved species, the vector field f ðx; h;uÞ 2 R
nx describes the tem-

poral evolution of the states, the vector h 2 R
nh unknown parame-

ters, the vector u 2 R
nu differential experimental conditions and

x0 2 R
nx the parameter- and condition-dependent states at initial

time t0.

An observation function h maps the system states to observables

yðt; h; uÞ 2 R
ny , via

yðt; h; uÞ ¼ hðxðt; h; uÞ; h; uÞ:

Experimental data D ¼ f�yit ;iy ;iu
gðit ;iy ;iuÞ2I corresponding to the

observables are time-discrete and subject to measurement noise

� 2 R
ny ,

�yit ;iy ;iu
¼ hiy ðxðtit ; h;uiu Þ; hÞ þ �it ;iy ;iu ;

indexed over a finite index set I of time points it, observables iy and

experimental conditions iu. We assume the measurement noise to be

normally distributed and independent for all datapoints, i.e.

�it ;iy ;iu � Nð0; r2
it ;iy ;iu
Þ.

2.2 Relative measurements
Frequently, experiments provide measurement data only in a relative

form, in arbitrary units, rather than as absolute concentrations.

Thus, to compare model and data, the observables need to be

rescaled. While the rescaling is usually incorporated in h and h, here

we use an explicit formulation. Since these cover a broad range of

measurement types, we assume that we have scaling factors s and

offsets b such that simulations and measured data are related via

�yit ;iy ;iu
¼ sit ;iy ;iu � ~hiy ðxðtit ; h; uiu Þ; hÞ þ bit ;iy;iu þ �it ;iy ;iu ;

in which ~hðx; hÞ denotes the mapping to unscaled observables.

Scaling factors sit ;iy ;iu and offsets bit ;iy ;iu , but also noise parameters

rit ;iy ;iu , in the setting considered here the standard deviations of

Gaussian distributions, are often shared between some datapoints,

e.g. for time series measurements, or for data taken under the same

experimental conditions. In the following, we summarize all differ-

ent scaling, offset and noise parameters in vectors s 2 R
ns ; b 2 R

nb

and r 2 R
nr , respectively, and refer to them as static parameters, to

distinguish them from the original parameters h, henceforth called

dynamic parameters, since they affect the dynamics of the simulated

states. The static parameters are often unknown and thus have to be

estimated along with the dynamic parameters.

2.3 Parameter estimation problem with relative data
To infer the unknown parameters h, s, b and r, we maximize the

likelihood

Lðh; s; b; rÞ ¼
Y

i

pð�yi j si � ~hiðhÞ þ bi; riÞ;

of observing the experimental data D ¼ f�yigi2I given parameters

h; s; b; r, where for simplicity of presentation we employ a general

index set i 2 I over time points, observables and experimental condi-

tions. p denotes the conditional probability of observing �yi given
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simulation yi ¼ si � ~hiðhÞ þ bi and noise parameters ri. For Gaussian

noise, we have

pð�yi j yi; riÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

i

q exp �ð�yi � yiÞ2

2r2
i

 !
:

Instead of maximizing L directly, it is equivalent and numerically

often preferable to minimize the negative log-likelihood minh;s;b;r

Jðh; s; b;rÞ with J ¼ �log L. Assuming Gaussian noise, J becomes

Jðh; s; b; rÞ ¼ 1

2

X
i

logð2pr2
i Þ þ

ð�yi � ðsi
~hiðhÞ þ biÞÞ2

r2
i

" #
; (1)

which will henceforth be referred to as objective function.

2.4 Hierarchical optimization
In this section, we generalize the hierarchical optimization approach

introduced by Loos et al. (2018) to (1), allowing for scaling, offset

and noise parameters simultaneously, and we outline how hierarch-

ical optimization can be combined with adjoint sensitivities.

The standard approach to handle the static parameters is to con-

sider the extended parameter vector ðh; s; b; rÞ and to optimize all its

elements simultaneously. However, the increased dimension makes

the optimization problem in general harder to solve. Instead, we can

make use of the specific problem structure of (1) more efficiently by

splitting the optimization problem into an outer problem where we

optimize the dynamic parameters h, and an inner problem where we

optimize the static parameters s, b and r, conditioned on h. That is,

we compute

min
h

ĴðhÞ with ĴðhÞ :¼ Jðh; sðhÞ;bðhÞ;rðhÞÞ; (2)

in which

ðsðhÞ; bðhÞ; rðhÞÞ ¼ arg min
s;b;r

Jðh; s; b; rÞ: (3)

It can be shown that global optima of the standard optimization

problem are preserved in the hierarchical problem (Supplementary

Material, Section 1).

2.4.1 Analytic expressions for the optimal scaling, offset and

noise parameters

In general, an inner optimization problem like (3) needs to be solved

numerically. However, under certain conditions one can give

analytic expressions for the optimal static parameters, which renders

solving the inner problem computationally very cheap. The analytic

expressions are based on evaluating the necessary condition for a

local minimum in s; b;r given h,

rs;b;rJðh; s;b; rÞ ¼ 0: (4)

Here, we extend the available results by Weber et al. (2011) and

Loos et al. (2018).

We define index sets Is
a; I

b
b ; I

r
c � I for a ¼ 1; . . . ; ns; b ¼ 1; . . . ;

nb; c ¼ 1; . . . ; nr, with ns, nb and nr indicating the number of scal-

ing, offset and noise parameters. The index sets indicate which data-

points share static parameters, e.g. all datapoints �yi with i 2 Is
a share

a scaling parameter. In order to derive analytic formulas, we will in

the following assume that fIs
aga ¼ fIb

bgb, i.e. that scaling and offset

parameters are shared among the same datapoints, and that for all a
there exists c such that Is

a � Ir
c , i.e. that datapoints sharing the

scaling (and offset) parameter share also the noise parameter.

Furthermore, we also allow for any of the s, b or r to be fixed

(e.g. s¼1 when no scaling factor is necessary) or estimated as dy-

namic parameters. For an extended discussion and derivations of the

below formulas see the Supplementary Material, Section 3.

First, we consider single scaling parameters sa and offset parame-

ters bb. Without loss of generality, we reduce the objective (1) to

only include relevant summands. Then, (4) yields

saðhÞ ¼
X
i2Ia

~h
2

i

r2
i

0
@

1
A
�1 X

i2Ia

ð�yi � biÞ~hi

r2
i

 !
; (5a)

bbðhÞ ¼
X
i2Ib

1

r2
i

 !�1 X
i2Ib

�yi � si
~hi

r2
i

0
@

1
A: (5b)

If either the si or bi are no static parameters, we are done by just

inserting those values in the respective other formula. If both are to be

optimized as static parameters, in which case by assumption

si � sa; bi � bb, we can proceed by inserting (5a) into (5b), which

yields non-interdependent formulas, see the Supplementary Material,

Section 3.1. Note that the noise parameters drop out of the formulas

if all values coincide, as is our assumption in the case that we want to

estimate the noise parameters hierarchically as well. Thus, in either

case saðhÞ and bbðhÞ can now be readily computed. Note that for the

special case b¼0 we recover the formula from Loos et al. (2018).

Second, for a given single noise parameter rc, we consider without

loss of generality an objective function (1) reduced to indices Ic, while

si and bi can be arbitrary. The objective considered here will typically

contain multiple sums of the type discussed for the scalings and off-

sets. As s and b are known already at this stage, (4) immediately gives

r2
c ðhÞ ¼

X
i2Ic

1
� ��1 X

i2Ic

ð�yi � ðsi
~hi þ biÞÞ2

 !
:

Note that a problem occurs when the rescaled simulations match the

measured data exactly, since then r2 ¼ 0. In this case, the noise par-

ameter and thus the objective function is unbounded in the standard

and the hierarchical formulation, so that measures to deal with this

case have to be taken, e.g. by specifying a lower bound for rc.

Inspection of the Hessian r2
s;b;rJðh; s; b; rÞ shows that the found

stationary points indeed are minima (see Supplementary Material,

Section 3).

2.4.2 Combining hierarchical optimization and adjoint sensitivity

analysis

In optimization, the objective function gradient is of considerable

value, because it gives the direction of steepest descent in the object-

ive function landscape. Recent studies indicated that optimization

methods using gradients tend to outperform those which do not

(Schälte et al., 2018; Villaverde et al., 2018). In Loos et al. (2018),

hierarchical optimization was performed using objective gradients

computed via forward sensitivity analysis. However, for large-scale

models adjoint sensitivity analysis has shown to be orders of magni-

tude faster (Fröhlich et al., 2018), because essentially here the evalu-

ation of state sensitivities is circumvented by defining an adjoint

state p 2 R
nx which does not scale in the number of parameters

(Fröhlich et al., 2017b). For a derivation of the adjoint equation see

also the Supplementary Material, Sections 2.3 and 3.3.

Whether hierarchical optimization can be combined with adjoint

sensitivity analysis so far remained unclear. Unlike the forward sen-

sitivity equations, the adjoint state depends on the data and the

scaled observables and thus requires knowledge of the static param-

eters. Therefore, the approaches by Weber et al. (2011) and Loos
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et al. (2018) of first simulating the state trajectory xðt; h;uÞ as well

as all required sensitivities, and then computing optimal static

parameters in order to compute Ĵ and rĴ without further simula-

tions, are not applicable.

To combine hierarchical optimization and adjoint sensitivity

analysis, we derived the scheme illustrated in Figure 1.

In an outer optimization loop, iteratively new dynamic parame-

ters h are proposed. For each such h, in an inner loop we compute

the corresponding conditionally optimal static parameters

sðhÞ;bðhÞ;rðhÞ, which here involves just an analytic calculation.

Only after we have obtained the static parameters, do we simulate

the adjoint state p allowing to efficiently calculate the objective

function gradient. As the derivatives of the objective function with

respect to the optimal static parameters are zero, i.e. rs;b;rJ ¼ 0,

since we solve the inner subproblem exactly, we can prove that this

scheme provides the correct objective function gradient rĴ. For a

more detailed discussion and derivation of the adjoint-hierarchical

approach, we refer to the Supplementary Material, Section 2. An

overview over the properties of the different hierarchical optimiza-

tion approaches is provided in the Supplementary Table S1.

2.5 Implementation

We implemented the proposed method in MATLAB and Cþþ. A

custom parallelized objective function implementation was used to

decrease the wall time (see Supplementary Material, Sections 4.5.2

and 4.5.3). The modular implementation can be adopted to work

with other Systems Biology Markup Language (Hucka et al., 2003)

models as described in Supplementary Material, Section 4.6. Model

simulation and gradient evaluation using the proposed scheme were

performed using AMICI (Fröhlich et al., 2017a). Parameter estima-

tion was performed using multi-start local optimization. The start-

ing points were sampled from a uniform distribution. The initial

dynamic parameters were identical for the standard and hierarchical

optimization, where initial static parameters only had to be chosen

for the standard approach. We considered different local optimiza-

tion methods (see Section 3) and ran all for a maximum of 150 itera-

tions (see Supplementary Material, Section 4.5.1 for more details).

The complete code and data are available at http://doi.org/10.5281/

zenodo.3254429 and http://doi.org/10.5281/zenodo.3254441.

3 Results

In this study, we considered the pan-cancer signaling pathway model

developed by Fröhlich et al. (2018). This model comprises 1396

biochemical species (1228 dynamic states and 168 constant species)

and 4232 unknown parameters, and can be individualized to specif-

ic cancer cell-lines using genetic profiles and gene expression data.

Fröhlich et al. (2018) demonstrated a promising performance of the

model in drug response prediction, but molecular insights were lim-

ited by non-identifiabilities. Motivated by these results, we set out to

parameterize this model using additional data.

3.1 Mapping multiple datasets to a large-scale

model of cancer signaling
For model calibration, we considered two datasets. Dataset 1 is the

training data studied by Fröhlich et al. (2018). These are viability

measurements for 96 cancer cell-lines in response to 7 drugs at 8

drug concentrations available in the CCLE (Barretina et al., 2012).

The viability measurements are normalized to the respective control.

To account for this normalization, Fröhlich et al. (2018) simulated

the model for the treated condition and the control, and the simula-

tions were then divided by each other. This corresponds to the

method proposed by Degasperi et al. (2017). However, this

approach is not applicable if multiple observables need to be consid-

ered, e.g. when incorporating additional data types, or when more

complex data normalizations are applied. Therefore, we reformu-

lated the model output and replaced the normalization with the con-

trol by a cell-line specific scaling ðscell�linej
Þ. This yields the

observation model

yviabilityi
¼ scell�linej

~hviabilityi
þ �viabilityi

with i indexing the datapoints belonging to cell-line j. The measure-

ment noise is assumed to be normally distributed, �viabilityi
�

Nð0; r2
viabilityÞ.

We complemented the viability measurements employed with

molecular measurements to refine the parameter estimates. Dataset

2 contains reverse phase protein array (phospho-)proteomic data for

various cancer cell-lines taken from the MCLP (Li et al., 2017).

We developed a pipeline which (i) maps the measured protein levels

to the state variables of the model and (ii) employs the mapping to

construct observables (see Supplementary Material, Section 4.1 for

more details). We identified 32 proteins and 16 phosphoproteins

measured that were also covered by the model. In total, 54 out of

the 96 considered cell-lines were included in the MCLP (dataset 2 in

Table 1). In the MCLP database, measurements are normalized

across cell-lines and across all proteins by subtracting the respective

median from the log2-transformed measured values (see Level 4

data in https://tcpaportal.org/mclp/#/faq). Therefore, we included

Fig. 1. Illustration of the hierarchical optimization scheme using adjoint sensitivities. In the outer loop, h is updated by the employed iterative gradient-based opti-

mization method. When a new value of h is proposed, an inner loop is entered, in which the optimal static parameters are computed for the given h, and objective

function value and gradient are returned before exiting the inner loop. Here, the solution of the inner problem is shown in detail. The red boxes involve the simu-

lation of ODEs and are thus usually computationally more expensive. If the gradient is not required in some optimizer iteration, the adjoint and gradient steps can

be omitted. Note that the dependence of s, b, r, p, J and rJ on h is in the setting considered in this study only indirect via ~h, while in general also an explicit de-

pendence is possible. (Color version of this figure is available at Bioinformatics online.)
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one cell-line specific offset ðbcell�linej
Þ and one protein specific offset

ðbproteini
Þ, yielding the observation model

yproteini ;cell�linej
¼ log 2ð~hproteini ;cell�linej

Þ þ bcell�linej
þ bproteini

þ �proteini ;cell�linej
;

normally distributed measurement noise �proteini;j
� Nð0;r2

proteini
Þ

and the simulated absolute protein level

~hproteini ;cell�linej
¼

X
l2Iproteini

klxl:

The index set Iproteini
refers to the species that include proteini and kl

is the respective stoichiometric multiplicity.

The integration of viability and molecular measurements pro-

vides information on two different levels, which potentially

improves the reliability of the model. However, it requires a sub-

stantial number of observation parameters (Table 1).

3.2 Evaluation of standard and hierarchical

optimization using simulated data
A priori it is not clear which influence scaling, offset and noise par-

ameter have on optimizer performance. However, Degasperi et al.

(2017) observed in two examples that the use of scalings lead to

inferior optimizer behavior compared to the normalization-based

approach which was also used by Fröhlich et al. (2018). Thus, be-

fore estimating parameters using real measured data from CCLE

and MCLP, we first used simulated data. To get realistic data, we

simulated the model for the same experimental conditions that were

provided in dataset 1 and added normally distributed noise to the

simulations (see Supplementary Material, Section 4.7 for a detailed

description of the data generation and an analysis of the

simulated data). The simulation of experimental data allowed us to

(i) compare the goodness-of-fit of estimated and true parameter and

to (ii) assess the information associated with relative data.

3.2.1 Hierarchical optimization facilitates convergence

To compare standard and hierarchical optimization, we employed

both approaches for the analysis of simulated, noisy relative data.

For local optimization we employed the Interior Point OPTimizer

(Ipopt) (Wächter and Biegler, 2006). As metric we considered the

Pearson correlations between data and simulation for each of

the optimized parameter vectors and the true parameter vector. The

Pearson correlation reflected the objective function value

(Supplementary Fig. S3) but was easier to interpret.

The hierarchical optimization achieved substantially better cor-

relations between simulation and data than the standard optimiza-

tion (Fig. 2A). Furthermore, variability between different local

optimization runs was reduced. Indeed, all but two optimizer runs

using hierarchical optimization achieved correlations similar to the

correlation observed for the true parameters, indicating a good

model fit and—in contrast to the standard optimization—a good

convergence. No run found a substantially better scoring fit than the

true parameters, which would indicate over-fitting.

3.2.2 Scalings have a pronounced influence on the objective

function value

Hierarchical optimization decreases the effective dimension of the

optimization problem. However, as the number of parameters

decreases for the considered problem only by 2%—this does not ex-

plain the substantially improved convergence—the scaling factors

might be particularly relevant. To assess this, we evaluated the aver-

age absolute values of the objective function gradient for scaling

Table 1. Datasets used for parameter estimation

Dataset 1 (CCLE) Dataset 2 (MCLP)

# datapoints 5281 1799

# cell-lines 96 54

# observables 1 48

# scalings 96 (96) 0

# offsets 0 102 (48)

# noise parameters 1 (1)a 48 (48)

Note: The number of static parameters of certain classes is indicated, fol-

lowed by the number of parameters which are computed analytically in the

hierarchical setting in parentheses.
aThe noise parameter is set to one if dataset 1 is considered individually.

A B

C

D

Fig. 2. Convergence of standard and hierarchical optimization. Parameter estimation results using a simulated version of dataset 1 from Table 1 with the Ipopt

optimizer. For all evaluations 20 optimizer runs were performed. (A) Pearson correlation of relative training data and corresponding model simulation after train-

ing on relative data using standard and hierarchical optimization. Dashed line shows the correlation that is achieved using the true parameters used to generate

the training data. (B) Ratio of the average gradient contribution for scaling parameters against dynamic parameters using the standard optimization for all opti-

mizer runs along their trajectory. (C) Expected gradient for standard and hierarchical optimization. Only the parameters, that were optimized numerically, were

taken into account. (D) Pearson correlation of absolute data and corresponding model simulation after training on (left and middle) relative data and (right) on ab-

solute data
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parameters ðE½jrsJj�Þ and dynamic parameters ðE½jrhJj�Þ. Indeed, the

evaluation of the ratio ðE½jrsJj�=E½jrhJj�Þ revealed that the objective

function is in most optimizer runs 10 times more sensitive to scaling

parameters than to dynamic parameters (Fig. 2B). This indicates that

the elimination of the scaling factors will improve the conditioning of

the optimization problem. As the condition number of an optimization

problem has a pronounced influence on the convergence rate (Boyd

and Vandenberghe, 2004, Chapter 9.3), the removal of the scaling fac-

tors can substantially improve the convergence rate. Accordingly, the

average absolute value of the gradient decreases for the hierarchical op-

timization faster than for the standard optimization (Fig. 2C).

An inspection of the optimizer trajectories revealed that for the

standard optimization some optimizer runs show flat trajectories of

the objective function, while still having a comparably large gradient

(Fig. 2C and Supplementary Fig. S4). For these runs, the contribu-

tion of the scalings became small (flat lines in Fig. 2B), which might

be due to a valley in the objective function landscape defined by the

scaling parameters, where the optimizer got stuck. Such valleys are

eliminated in the hierarchical optimization.

3.2.3 Normalization results in information loss

To assess the influence of information loss associated with the use of

relative data, we performed optimization using simulated absolute

data. For comparison, we predicted the absolute values using the

parameters inferred with relative data (see Supplementary Material,

Section 4.7.3). As expected, we found that the prediction of absolute

data from relative data yields a correlation far from one (Fig. 2D),

implying that information is lost in the normalization process.

Interestingly, hierarchical optimization again outperformed stand-

ard optimization. A potential reason is that the improved conver-

gence of the optimizer allows for the extraction of more information

from the relative data.

3.3 All tested local optimization methods profit from

hierarchical formulation
To provide a thorough comparison of the performance of standard

and hierarchical optimization, we assessed it for different local opti-

mization algorithms on the measured viability data (dataset 1).

We considered four commonly used or open-source optimizers:

Ipopt (Wächter and Biegler, 2006), Ceres (http://ceres-solver.org),

sumsl (Gay, 1983) and fmincon (https://de.mathworks.com/help/

optim/ug/fmincon.html). These optimizers use different updating

schemes, e.g. based on line-search or trust-region methods.

We assessed the performance by studying the evolution of object-

ive function values over computation time and optimizer iterations.

Given the same computational budget, the hierarchical optimization

consistently achieved better objective function values for all consid-

ered optimization algorithms and for almost all runs (Fig. 3A and

Supplementary Fig. S5). Furthermore, the objective function at the

maximum number of iterations was substantially better for hierarch-

ical optimization than standard optimization, and there was in gen-

eral a lower variability (Fig. 3B). Given this result, we determined

the computation time required by the hierarchical optimization to

achieve the final objective function value of the standard optimiza-

tion and computed the resulting speed-up (Fig. 3C). Except for one

start of Ipopt, the hierarchical optimization was always faster with a

median speed-up between one and two orders of magnitude. Since a

single local optimization run required several thousand hours of

computation time, the efficiency improvement achieved using hier-

archical optimization is crucial. Indeed, the hierarchical optimiza-

tion only needed tens to hundreds of computation hours to find the

same objective function values for which the standard optimization

required thousands of computation hours (Supplementary Fig. S6).

As the performance of optimization algorithms has so far mostly

been evaluated for ODE models with tens and hundreds of unknown

parameters (Hass et al., 2019; Villaverde et al., 2018), we used our

results for a first comparison on a large-scale ODE model. We found

that for the considered problem (i) Ceres always stopped prematurely,

(ii) sumsl progressed (at least for the standard optimization) slower than

Ipopt and fmincon and (iii) fmincon and Ipopt reached the best object-

ive function values and appeared to be most efficient (Fig. 3A and B).

3.4 Hierarchical optimization enables integration of

heterogeneous data
As the information about molecular mechanisms provided by viabil-

ity measurements (dataset 1) are limited, we complemented it using

A B C

Fig. 3. Computational efficiency of standard and hierarchical optimization for multiple optimization algorithms. (A) Optimizer trajectories for fmincon, Ipopt,

Ceres and sumsl using standard and the hierarchical optimization. Since the noise parameter was set to 1 for these runs, the constant term in the objective

function was omitted. dataset 1 from Table 1 was used. Fmincon runs were performed on different systems and using a different implementation than the

other optimizers, so that absolute computation times are not comparable. (B) Boxplots of final objective function values obtained after 150 iterations by the

different optimizers using standard and hierarchical optimization. (C) Speed-up of the hierarchical optimization compared to the standard optimization.

The speed-up is defined by the computation time the hierarchical optimization required to find the final objective function value of the standard optimization for

every local optimization (or vice versa if the standard optimization finds a better final value). The dashed red line shows the point at which standard and hierarch-

ical are equally fast. (Color version of this figure is available at Bioinformatics online.)
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the (phospho-)protein measurements (dataset 2). An unbiased

weighting was ensured by introducing error model parameters (i.e.

standard deviations) for the individual observables and estimating

them along with the remaining parameters. In hierarchical optimiza-

tion, (i) the error model parameters, (ii) the cell-line specific scaling

of the viability measurements and (iii) the observable-specific offsets

of the log-transformed protein measurements are optimized analyt-

ically (Table 1). The analytic optimization of the cell-line specific

offsets of the log-transformed protein measurements is not sup-

ported by the approach as the error model parameters and the off-

sets have to share the same datapoints.

We performed multi-start local optimization for the combined

dataset using Ipopt. Again, the hierarchical optimization was com-

putationally much more efficient and reached better objective func-

tion values than the standard optimization (Fig. 4A). For the

standard optimization, all starts yielded objective function values of

�104. For the hierarchical optimization, we observed runs yielding

objective values similar to those for standard optimization denoted

by Group 1, with J � 104 as well as runs which provided much bet-

ter objective function values, i.e. Group 2, J < 3	 103. The opti-

mized parameter vectors obtained using standard optimization runs

and hierarchical optimization runs in Group 1 were able to fit the

viability measurements but failed to describe the protein data

(Fig. 4B). In contrast, the optimized parameter vectors obtained

using hierarchical optimization runs in Group 2 show a good fit for

viability and most protein measurements (Fig. 4B). Accordingly,

only hierarchical optimization runs managed to balance the fit of

the datasets, thereby achieving an integration and a better overall

description of the data.

While the computation time for forward sensitivities scales lin-

early with the number of parameters, it stays constant for adjoint

sensitivities, leading to an approximately 2700-fold speed-up for the

here considered model (Supplementary Fig. S1A). With this, we esti-

mated the computation time of a full optimization using a forward-

hierarchical approach (Loos et al., 2018; Weber et al., 2011) to be

in the order of 106–107 h (>1000 years) (see Supplementary Fig.

S1B), which is roughly three orders of magnitude slower than the

adjoint-hierarchical approach. In summary, the adjoint-hierarchical

approach outperformed in all regards standard and forward

optimization.

4 Discussion

Parameterization of large-scale mechanistic models is a challenging

task requiring new approaches. Here, we combine the concept of

hierarchical optimization (Loos et al., 2018; Weber et al., 2011)

with adjoint sensitivities (Fröhlich et al., 2017b; Fujarewicz et al.,

2005; Lu et al., 2013). This is crucial when parameterizing large-

scale models for which the use of forward sensitivities is computa-

tionally prohibitive. Additionally, we derived more general formulas

for hierarchically optimizing a combination of scaling and offset

parameters as well as noise parameters.
The proposed method is intended for cases where relative meas-

urements are available or measurement uncertainties are not known.

We would like to emphasize that it is neither able to, nor meant to,

make absolute measurements or assessment of measurement uncer-

tainties obsolete. It comes as no surprise that absolute measurements

contain much more information than relative measurements, as we

illustrated using a synthetic dataset. Introducing additional output

parameters will increase degrees of freedom, and therefore, should

be a deliberate modeling decision, based on the requirements of the

data at hand. Whenever it is possible to obtain absolute measure-

ments with manageable overhead, this would be the preferred way

to go. In cases where calibration curves or similar data are available,

relative data can and should be converted to absolute data before

parameter estimation. Along the same lines, all measurement uncer-

tainties would ideally be known beforehand. However, in many

datasets this information is absent or only inaccurate estimates

based on very low sample sizes are available (Raue et al., 2013). A

common approach is then estimating error model parameters along

with kinetic model parameters. However, this will blur inadequacies

of the model and the data. Independently of the hierarchical ap-

proach, such estimates for noise parameters provide the noise level

under which the given model and data would be the most plausible,

but not necessarily an accurate estimate of the true levels of meas-

urement noise. Therefore, in an ideal world, the proposed method

would not be necessary, and offset, scaling and noise parameter

would be known prior to parameter estimation. However, in reality

this is not the case for most current (large-scale) datasets, and thus,

the respective parameters need to be estimated.
For this reason, we developed this hierarchical optimization ap-

proach and demonstrated its advantages using a recently published

A B

Fig. 4. Integration of heterogeneous data using hierarchical optimization. (A) Optimizer trajectories for standard and hierarchical optimization with dataset 1 and

2 from Table 1 using Ipopt. The two groups found by the hierarchical optimization are indicated by different shades of blue. (B) Pearson correlations for all observ-

ables with at least 55 datapoints for all runs of the standard optimization and for the two groups found by the hierarchical optimization. For all observables, see

Supplementary Figure S7. (Color version of this figure is available at Bioinformatics online.)
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large-scale pan-cancer model and two published large-scale datasets.

We obtained median speed-ups of more than one order of magni-

tude as compared to the conventional approach, irrespective of the

employed optimizer. Given that the overall computation time is

thousands of CPU hours, this improvement is substantial.

Compared to simulating the ODE, the computation time needed to

calculate the analytical formulas of the inner problem was five

orders of magnitude faster, and therefore, negligible. While previous

studies had already shown a reduced convergence rate when cali-

brating models to relative data (Degasperi et al., 2017), we identi-

fied the large gradients with respect to the scalings as a possible

explanation and established a flexible and easy way to circumvent

them. The numerical stiffness which can arise from this for numeric-

al optimization methods is the first conceptual explanation of the

large improvements achieved by hierarchical methods (Loos et al.,

2018; Weber et al., 2011).

In addition to the methodological contribution, we provide here

the first proof-of-principle for the integration of multiple datasets

using large-scale mechanistic models of cancer signaling. We showed

for the example of viability and (phospho-)proteomic measurements

that our optimization approach facilitates (i) data integration—

where other methods failed—and (ii) an easy weighting of datasets.

This is possible without computational overhead. The optimized

noise parameters provide estimates for the measurement noise when

no or only low numbers of replicates are available, as it is the case in

many large-scale databases (e.g. CCLE and MCLP).

In this study, we used hierarchical optimization to estimate indi-

vidual static parameters per observable. However, measurements

may require multiple scaling and offset parameters per observable

(e.g. the protein observables considered here), as well as arbitrary

combinations thereof. In general, the problem of multiple scalings

or offsets will always exist when multiple non-mutually inclusive

normalizations need to be applied to model simulations, accounting

for different experimental covariates like, e.g. output types, replica-

tion index, day-to-day variability or experimental devices. The cur-

rent hierarchical framework cannot account for such settings. An

extension to efficiently estimate all such parameters would thus pre-

sumably yield an even improved performance. Similarly, extending

the optimization approach to other noise models would be of inter-

est, even when the inner subproblem lacks an analytical solution. Of

particular interest are distributions that are more robust to outliers,

while still maintaining the good optimization convergence (Maier

et al., 2017).

Large-scale mechanistic models are of high value for systems bio-

medicine, since, as opposed to machine learning methods, they allow

for mechanistic interpretation, analysis of latent variables and ex-

trapolation to unseen conditions (Baker et al., 2018; Fröhlich et al.,

2018). We consider this study to be a proof-of-concept for the inte-

gration of heterogeneous datasets into a mechanistic model and the

efficient estimation of the unknown parameters. However, the here

considered datasets are not sufficient to obtain high-quality esti-

mates of the model parameters. Therefore, for future biology-driven

analyses it will be valuable to include additional molecular measure-

ments to improve the predictive power and the mechanistic inter-

pretation of the model. With the advance of high-throughput

technologies, more and more such large-scale datasets have been

published. For example, the cancer proteomic atlas (Li et al., 2013)

or the datasets provided by Frejno et al. (2017) or Gholami et al.

(2013) constitute rich sources of training data for future analyses.

Our hierarchical optimization now allows for a much more efficient

calibration of large-scale mechanistic models using heterogeneous

datasets.
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