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Summary

Recent advancements in computational tools have allowed protein structure prediction with high 

accuracy. Computational prediction methods have been used for modeling many soluble and 

membrane proteins, but the performance of these methods in modeling peptide structures has not 

yet been systematically investigated. We benchmarked the accuracy of AlphaFold2 in predicting 

588 peptide structures between 10 and 40 amino acids using experimentally determined NMR 

structures as reference. Our results showed AlphaFold2 predicts α-helical, β-hairpin, and disulfide 

rich peptides with high accuracy. AlphaFold2 performed at least as well if not better than 

alternative methods developed specifically for peptide structure prediction. AlphaFold2 showed 

several shortcomings in predicting Φ/Ψ angles, disulfide bond patterns, and the lowest RMSD 

structures failed to correlate with lowest pLDDT ranked structures. In summary, computation can 

be a powerful tool to predict peptide structures, but additional steps may be necessary to analyze 

and validate the results.
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eTOC Blurb

McDonald et al. investigate the performance of AlphaFold2 in comparison to other peptide and 

protein structure prediction methods. Root mean square deviation analyses show deep learning 

methods like AlphaFold2 and OmegaFold perform the best in most cases but have reduced 

accuracy with non-helical secondary structure motifs and solvent-exposed peptides.
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Introduction

Peptides can be loosely defined as polyamides that consist of 2 to 50 amino acids, though 

this is an arbitrary definition and many molecules accepted to be peptides rather than 

proteins are larger than this cutoff, in particular if they fail to form tertiary structure 1. Often, 

the amount of secondary and tertiary structure formed influences whether a polyamide is 

classified as peptide (less structure) or protein (more structure), in addition to its length. 

A large number of peptides play important roles in nature as hormones 2,3, antimicrobials 
4, and many synthetic peptides are being investigated as drug candidates 5. In addition 

to these roles, many toxins are peptides 6. While flexible, peptides adopt a variety of 

conformations on varying timescales that interact with binding partners and can be sensitive 

to environmental factors or interactions with lipids or proteins. Typically, solution or solid-

state NMR spectroscopy are used for the determination of small peptide structures 7,8. NMR 

spectroscopy allows the determination of peptide structures under different experimental 

McDonald et al. Page 2

Structure. Author manuscript; available in PMC 2024 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions, shedding light on how peptides may behave in different environments including 

different lipid compositions, temperatures, and pH values. However, variable environmental 

conditions may deviate NMR peptides models from functional conformations. Alternatively, 

computational methods pose a plausible approach for the prediction of the most stable 

potentially bioactive conformation of peptides. However, performance of prediction methods 

diminishes with peptide length. Considering these challenges, we benchmarked AlphaFold2 

(AF2) on 588 peptides across six distinct groups of peptides to determine the utility and 

shortcomings of computational prediction on peptide structural biology.

There are multiple methods to predict peptide structures including de novo folding, 

homology modeling, molecular dynamics (MD) simulations, and deep-learning-based 

methods 9–11. PEP-FOLD3 is a peptide specific de novo folding based method that can 

be used to model peptides between 5 and 50 amino acids 12. APPTEST is a peptide 

specific protocol that utilizes a neural network architecture combined with Molecular 

Dynamics, which can be used to model peptides that are between 5 and 40 amino acids 
13. AF2 is a deep learning-based protein prediction method that uses Multiple-Sequence 

Alignments (MSAs) to predict the structure of a protein based on co-evolving residues 

[24]. RoseTTAFold works through a similar logic but different deep learning arcitecture14. 

OmegaFold is a deep-learning-based method that uses only sequence and no MSAs for 

predictions based on a Natural Language Model 15. OmegaFold excelled in cases where 

high-quality MSAs cannot be obtained due to lack of close homolog sequences. In addition 

to these methods, homology modeling can be used with or without experimental restraints 

when there is a homologous peptide or protein structure available 16 or used to model 

protein mutant structure using wild-type experimental data 17. While this method is 

typically preferred for larger proteins, it was also applied to modeling peptide structures 
18. However, homology modeling requires the presence of template structures with high 

sequence homology to the target protein. Considering that only sequence information is 

likely to be available for most natural peptides, sequence-based methods have advantages 

over structure-based methods. Understanding the weaknesses of current peptide prediction 

methods will guide development of future approaches by elucidating the contributions of 

specific training metrics (e.g. MSAs, sequence, experimental constraints) and informing on 

difficult-to-predict structural features that should be included in future training sets.

The availability of AF2 was a big step towards the prediction of protein structures with 

high accuracy. While AF2 can be used for the modeling of shorter peptides in theory, the 

benchmark set used to train AF2 excluded shortest peptide structures since the method 

of determination for these peptides is NMR spectroscopy in general, although it remains 

unclear why NMR structures were excluded from the AF2 training set. Some of the 

relatively poor predictions made by AF2 in CASP14 included protein structures determined 

by NMR 19, raising the question whether a similar pattern would be observed for flexible 

peptide structures as well. Therefore, comprehensive benchmarks are necessary to evaluate 

the utility of AF2 in modeling peptide structures. Although there are ongoing works on 

assessing the performance of AF2 in predicting peptide – protein complex structures 20–22, 

the performance of AF2 on small peptide structure prediction remains unexplored.
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In this work, our aim was to lay the foundation for the use of AF2 to predict the structure 

of peptides that are between 10 and 40 amino acids long and compare AF2 performance 

with other peptide prediction methods. We sought to understand if AF2 was useful for 

large scale modeling of peptide structures that are hard to obtain through experimental 

methods. To achieve this goal, we selected 588 peptides from the Protein Data Bank 

(PDB) 23 and ran calculations to predict their structures with AF2 (Figure 1A). Next, we 

compared the predicted and experimental structures to calculate AF2 prediction performance 

as measured by root mean square deviation (RMSD) and Φ/Ψ angle recovery. We plotted 

the distribution of RMSD values to determine outliers where AF2 struggled to predict 

experiment accurately. We examined on case-by-case basis the inaccurately predicted AF2 

models by looking at the lowest RMSD overlapping AF2 and NMR structures to better 

understand AF2 limitations in modeling peptides. Finally, alternative prediction methods 

PEPFOLD3, OmegaFold, RoseTTAFold, and APPTEST were used to predict the 588 

peptide models and the performance of each method was evaluated on a statistical bases 

compared to AF2.

Results

Structure selection and statistical analysis

The structure selection and analysis are described in the Methods section. Briefly, we 

selected 588 peptides (Table S1) with experimentally determined NMR structures that 

included both well-defined secondary structure elements and disordered regions. The 

peptides were split into the following benchmark sets: α-helical membrane-associated 

peptides (AH MP), α-helical soluble peptides (AH SL), mixed secondary structure 

membrane-associated peptides (MIX MP), mixed secondary structure soluble peptides (MIX 

SL), β-hairpin peptides (BHPIN), and disulfide-rich peptides (DSRP). For each peptide, the 

ensemble of NMR structures was compared pairwise with all five AF2 structures and the 

distribution of all pairwise Cα RMSD was plotted to determine outliers and examine poorly 

predicted structures (Figure 1B). The Cα RMSD was calculated only for the secondary 

structural region of the peptide (Table S1) and normalized to the residue number within the 

region considered to prevent any biases caused by size variations of different peptides.

α-Helical membrane-associated peptides were predicted with good accuracy and very few 
outliers

These peptides are defined as polyamides that fold into a predominantly α-helical structure 

in the presence of a membrane environment. This group covers peptides including 

transmembrane helices, amphipathic helices, structures with a helix-turn-helix motif, and 

monotopic helices that partially span the membrane. This group was the second largest of all 

the investigated groups, consisting of 187 peptides. A histogram of normalized Cα RMSDs 

demonstrates a unimodal gaussian with a mean at 0.098 Å per residue for all pairwise 

comparisons between AF2 and NMR models (Figure 2A). We examined individual outliers 

based on the number of standard deviations (σ) above the mean to understand the structure 

shortcomings of AF2 predictions. In some cases, AF2 failed to predict the end of helices 

and helix-turn-helix for α-helical peptides (Figure 2B). Although AF2 predicted AH MPs 
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well as measured by Cα RMSD, it failed to recover Φ and Ψ angles, especially for low Cα 
RMSD pairs (Figure S1A)

α-Helical soluble peptides showed outliers and performed worse compared to their 
membrane-associated counterparts

The α-helical soluble peptide group was defined as α-helical peptides whose structures 

were not identified in a membrane environment, had no remarks regarding membrane 

interactions in the original publication, but fulfilled the remaining secondary structure 

conditions previously described for α-helical membrane peptides. 41 peptides belonged 

to this group. The distribution of normalized Cα RMSDs demonstrates a bimodal gaussian 

with a mean at 0.119 Å per residue and a second peak between 2σ and 3σ above the mean 

(Figure 2C). The outliers for soluble α-helical peptides again suggested AF2 struggled to 

predict helix-turn-helix structures (Figure 2D). Furthermore, AF2 failed to predict α-helical 

structure at all for 1AMB with an RMSD of 0.369 Å per residue (Figure 2D). Finally, AF2 

also failed to recover Φ and Ψ angles for AH SL peptides, suggesting AF2 prediction lacked 

α-helical ideality (Figure S1B).

Mixed secondary structure membrane-associated peptides showed the largest variation 
and RMSD values among all the benchmark sets

The mixed secondary structure peptides were identified to interact with membranes like 

the α-helical membrane peptides, but they consisted of more than one secondary structure 

region (e.g., multiple α-helices separated by a turn, α/β or α/coil mixed secondary structure, 

etc.). 14 peptides belonged to this group and the normalized Cα RMSD histogram showed 

a multi-modal distribution with a mean of 0.202 Å per residue (Figure 3A). No AF2 

models deviated from corresponding NMR models by more than 2σ above the mean, but 

rather the whole distribution skewed the mean with poor performing predictions. Illustrative 

models indicated AF2 predicted secondary structure correctly but failed to overlap with less 

structured regions of the peptides (Figure 3B). On the other hand, AF2 failed to predict any 

secondary structure for 1SOL (Figure 3B). In contrast to α-helical peptides, AF2 recovered 

Φ and Ψ angles for low Cα RMSD comparisons of mixed membrane peptides (Figure S2A).

Mixed secondary structure soluble peptides showed moderate accuracy

Mixed secondary structure soluble peptides group was defined as peptides that have the 

same secondary structure properties as their membrane counterparts, but for the peptides 

whose structures were not identified in a membrane environment. 21 peptides belonged 

to this group with a normalized Cα RMSD histogram showing a modestly multi-modal 

gaussian with peaks at 1σ, 2σ, and 3σ above the mean of 0.107 Å per residue (Figure 3C). 

Outliers suggested AF2 failed to predict the orientation of secondary structure-unstructured 

boundary (Figure 3D). For example, AF2 predicted 2BBL as a completely unstructured 

peptide, despite the NMR model consisting of a well-defined compact structure throughout 

the entire ensemble (Figure 3D). Again, in contrast to α-helical peptides, AF2 Φ and Ψ 
angle RMSD compared to NMR structures correlated well with Cα RMSD for MH SL 

peptides (Figure S2B).
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β-hairpin peptides were predicted with good accuracy for both stapled and non-stapled 
peptides

The β-hairpin peptides group includes peptides that have a single β-hairpin motif. Members 

of this group may or may not be stapled by the presence of a disulfide bond. There was 

a total of 59 peptides in this group (26 stapled by disulfide bonds and 33 non-stapled). 

Overall AF2 performed well on BHPIN peptides. A histogram of all pairwise Cα RMSD 

comparisons between AF2 and NMR models demonstrates a bimodal distribution with a 

peak at 1σ above the mean of 0.146 Å per residue (Figure 4A). Illustrative structures above 

the mean indicated AF2 predicts some BHPIN models as α-helical, subsequently leading to 

poor RMSD values (Figure 4B). Interestingly, all models above the mean were unstapled. 

Φ and Ψ angle recovery was predicted better than mixed secondary structure peptides but 

worse than α-helical peptides for BHPIN (Figure S3A) indicating AF2 has learned β-sheet 

Φ/Ψ ideality better than α-helix phi psi ideality.

Disulfide-rich peptide structures were predicted with high accuracy, but with variation in 
disulfide bonding patterns

Disulfide-rich peptides (DSRP) were defined in the context of this work as any peptide that 

had two or more disulfide bonds. This group included toxin peptides such as α-conotoxins, 

β-hairpins cyclized by multiple disulfide bonds, and some hormone peptides. DSRPs were 

the largest group in our benchmark set, containing a total of 266 peptides. DSRPs showed 

a tight, slightly bimodal gaussian histogram with a peak two standard deviations above 

mean of 0.068 Å per residue (Figure 4C) – the lowest mean of any group. Outliers failed 

to predict the correct disulfide bonding pattern. With 3BBG predicting one correctly and 

placing most remaining cysteine residues in proximity, 2MSF misplaced two disulfides and 

failed to predict bonding of another, and 7L7A failed to predict any disulfide bonding 

(Figure 4D). Like BHPIN, DSRPs recovered Φ/Ψ angles better than mixed and worse than 

α-helical (Figure S3B). Interestingly, AF2 failed to predict the correct disulfide bonding 

pattern of 25 DSRPs (Table S2). These peptides frequently contained consecutive cysteines 

or the predicted AF2 model showed a loss in disulfide bonding. Strangely, only 10 out of 25 

were statistical outliers by normalized Cα RMSD (Table S2) mean AF2 predicted structure 

correctly while still missing the correct disulfide bonding pattern.

Statistical evaluation of computational structure prediction methods on peptides

We sought to understand whether AF2 has an advantage over other deep-learning and de 
novo protein/peptide prediction methods in predicting the experimental structure of peptides. 

Predictions were generated for all 588 peptides in our benchmark set using PEPFOLD3, 

OmegaFold, RoseTTAFold, and APPTEST (see Methods). PEPFOLD3 and APPTEST 

were designed for peptide structure prediction, whereas OmegaFold and RoseTTAFold 

were designed for general protein structure prediction. AF2 accurately predicted peptide 

structures better than all alternative methods for peptide groups AH MP, AH SL, BHPIN, 

and DSRP as measured by length normalized Cα RMSD (Figure 5A-D). Interestingly, 

AF2 only outperformed APPTEST on MIX MP (Figure 5E). Finally, AF2 outperformed 

PEPFOLD3, RoseTTAFold, and APPTEST, but performed just as well as OmegaFold for 

MIX SL peptides (Figure 5F).
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There is poor correlation between the predicted rank and prediction accuracy

A standard AF2 run generates five structures as output. These structures are ranked by the 

program based on their predicted local distance difference test (pLDDT) values, which is 

a metric that estimates how well a predicted structure would agree with an experimental 

structure based on backbone carbon coordinates 24. The lowest-ranking structure represents 

the best prediction of a given sequence. However, this assumption may not always be true. 

All five AF2 structures generated were compared pairwise with the corresponding NMR 

reference ensemble in this study to allow better structural sampling. In theory, the structures 

with lower ranks should give the lowest Cα RMSD values in our calculations. To test 

whether this assumption is true, we enumerated the lowest Cα RMSD pairwise comparisons 

of each rank (Figure S5). Based on these summations, there was no correlation between 

the first three ranks assigned by AF2 and the structure that gave the lowest Cα RMSD. 

However, ranks four and five were represented less in lowest Cα RMSD pairs (Figure S5). 

Therefore, our results suggest that the pLDDT metric that AF2 used to assess globular 

protein structures was not a meaningful metric to classify peptide conformations.

Limitations of the study

The first limitation of the study is caused by the intrinsic flexibility of many peptides in 

general. Peptides can have highly flexible regions including coils or turns that may result 

in multiple conformations for the same structure. NMR structures typically consist of an 

ensemble of conformations, which makes an exact comparison between the predicted and 

experimental structures challenging. To address this point, an ensemble of NMR models was 

compared pairwise to all predicted outputs for each method, resulting in a distribution of 

comparisons, and the lowest Cα RMSD was selected for illustrative purposes and statistical 

comparison between methods. Further, comparison of the NMR and X-ray structures of 

the peptides for which such data are available showed no significant difference in terms of 

AF2’s performance.

Another point related to flexibility is that alternative low-energy conformations to the 

structures identified by NMR may exist. Especially with helices that have multiple domains 

connected by turns or coils, the structures captured by experimental methods may represent 

only one of the multiple conformations the peptides. From that perspective, the structures 

predicted by AF2 may not necessarily be wrong, but they may simply correspond to an 

alternative conformation of the peptide, although AF2 predicted X-ray structures just as 

accurately (Figure S4). A study aimed at comparing the quality of AF2-predicted structures 

with experimental structures determined by NMR in solution identified that structures 

predicted by AF2 can be more energetically stable and therefore feasible compared to 

NMR structures in some cases 25. More systematic studies that focus on peptide dynamics 

through experimental and computational methods will be necessary to understand whether 

the AF2-predicted peptide structures that showed great variation from the experimental 

predictions are likelier to represent the actual structure of these peptides.

Finally, some peptides may fold into different secondary structures depending on the 

environmental conditions including pH, temperature, and the presence of a membrane. 

Because the structures from NMR experiments are obtained with a single set of 
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experimental parameters, AF2 predictions may represent alternative conformations of the 

peptides that could have been obtained under different conditions. This may particularly 

be an issue when AF2 over- or underestimates the secondary structure of peptides, which 

may indeed be more or less disordered depending on environmental conditions. Therefore, 

it is necessary to investigate whether AF2 has a bias towards structures determined under 

particular conditions.

Discussion

Peptides comprise a class of 2 to 50 amino acid long polyamides that function naturally in 

signaling, toxicity, and hormones. Additionally, synthetic peptides are being pursued as drug 

candidates and cell biologists have probed subcellular localization with de novo designed 

peptides 26. Peptide structures were traditionally determined by NMR with draw backs 

in sensitivity to environmental conditions. Recent advances in protein structure prediction 

bore the opportunity to evaluate these methods in predicting NMR determined peptide 

models. We benchmarked 588 peptide across six groups and showed AF2 demonstrated 

strength in secondary structure predictions and peptide with increased residue contact, 

while demonstrating short comings in solvated peptides and helix-turn-helix structures. 

These shortcomings suggested AF2 peptide prediction may benefit from addition difficult to 

predict structures.

The α-helical membrane peptide structures were predicted overall with good success except 

for a few outliers. Outliers showed no single reason for the deviations, but the inability 

of AF2 to predict the secondary structure of some peptides and the inaccurate prediction 

of the kink angles accounted for most deviations. The mixed secondary structure peptides 

were also predicted with varying accuracy. In the case of the membrane-associated peptides, 

deviations were caused mostly by the errors in prediction of the angles between α-helical 

regions, but the secondary structure predictions were overall accurate with few exceptions.

When we compared α-helical membrane protein to α-helical solvated proteins, it was 

clear membrane solvated protein predicts performed better (RMSD average of 0.092 Å vs. 

0.130 Å). By contrast, when we compared mixed membrane protein vs. mixed solvated 

proteins, the later performed better (RMSD 2.17 Å vs. 1.26 Å respectively). This suggested 

secondary structure drives AF2 accuracy more than solvation state. However, AF2 increased 

performance on less solvated BHPIN and DSRP supports the notion that highly solvated 

peptides remain difficult to predict (Figure 3 and 4). Solvated peptides may not require MSA 

based deep-learning models at all, as OmegaFold performance matched AF2 on soluble 

peptides and is solely sequenced based. This suggests solvated peptide structure prediction 

gains little benefit from evolutionary data inherent in MSAs.

On the other hand, β-hairpin peptides and DSRPs are more compact, less solvent exposed 

peptides and AF2 performance outstrips OmegaFold and all other alternatives in this group. 

DSRPs had the highest degree of accuracy among the tested peptides, potentially thanks to 

their constrained structures due to the presence of multiple disulfide bonds. These structures 

also had regions with well-defined secondary structures that make predictions easier for AF2 

compared to coiled regions where multiple degrees of freedom are present. AF2 predicted 
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DSRPs better statistically significantly better than any other computational method test. 

On the other hand, the results demonstrated that the lowest-RMSD AF2 predictions had 

different disulfide bonding patters or no disulfide bonding at all in some cases (Table S2). 

This suggested that special care must be shown when predicting DSRP structures that may 

have alternative disulfide bonding patterns, and the use of additional tools may be necessary 

to remodel the disulfide bonds following AF2 runs.

Poor Φ/Ψ angle recovery was observed for most the tested peptide groups except for 

solvated peptides. This is surprising considering the overall success of AF2 with globular 

proteins for which the calculated rotamer recoveries were over 80 % in another study 
27. The reason for this discrepancy may be that the investigated peptides have mostly 

solvent-exposed residues with few buried amino acids due to the small and extended 

structures that prevent close interactions between the different domains. While this may 

be related to AF2’s inability to capture the right geometry of these flexible regions, it 

is also possible that the NMR structures were not solved under experimental conditions 

that would be more consistent with the geometries calculated by AF2. We looked for 

correlations between the calculated Φ/Ψ recovery percentages and parameters like RMSD 

(Figure S1-S3), but we only found correlation for solvent-exposed peptides (Figure S2). 

Considering the large deviation in Φ and Ψ angles in globular proteins, additional tools may 

be necessary to optimize the secondary structure regions or side chain conformations of the 

peptides generated through AF2. Additional tools such as Rosetta Disulfidize, side chain 

optimization, or simple potential energy function minimization28 may help optimize initial 

AF2 models.

Lastly, our analysis shows that pLDDT, which is the main metric used by AF2 to rank 

the generated structures is not a good measure of whether a peptide structure is accurately 

predicted. Rank one, two and three by pLDDT are represented relatively equally among 

lowest RMSD pairwise comparisons with NMR ensemble, while rank four and five were 

represented less (Figure S5). A study investigating multiple aspects of protein folding with 

AF2 involved testing of pLDDT values for proteins of varying lengths, which showed that 

shorter sequences tend to have larger pLDDT values in general 29. This may reduce the 

utility of this metric for small peptide structures by narrowing the gap between good and 

bad predicted structures. In the absence of a clear selection criterion for the AF2-generated 

structures, it may be necessary to increase the number of output structures generated and 

use approaches such as clustering to narrow down the conformations that are sampled more 

frequently or show more consistent patterns to select the accurate structure.

All these data raise the question of whether the issues regarding the shortcomings of AF2 

identified in this study are unique to peptides, or are general issues associated with AF2 

making predictions on structures on which it was not trained 30,31. It is unsurprising, AF2 

demonstrates flaws with predicting for a class of systems e.g. peptide which were excluded 

from the initial training set and indicates that inclusion in future training data may improve 

performance on such systems. However, AF2 still outperformed peptide specific methods for 

high contact peptide categories. Strangely, AF2 performed better on short peptides than long 

peptides (Figure S6). Ever since the release of AF2, the focus of the benchmark studies has 

been what AF2 is capable of doing with little focus on its shortcomings. Our work presents a 
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glimpse into limiting factors that should be considered when modeling peptides, but similar 

studies that investigate these elements in globular proteins are also necessary in the future.

Conclusions

AF2 can be used for the modeling of peptide structures smaller than 40 amino acids if the 

target peptide is anticipated to have a well-defined secondary structure and lacks multiple 

turn or flexible regions that may assume different conformations. AF2 is particularly 

successful in the prediction of α-helical membrane-associated peptides and DSRPs but 

has reduced accuracy in the cases with extended coiled or flexible regions. Even for the 

DSRPs, which predicted accurately overall, issues with disulfide bonding patterns may result 

in errors in modeling peptides. In addition, AF2 predictions showed no correlation between 

the predicted ranks and prediction accuracy, therefore alternative metrics to select from 

the AF2-generated structures may be necessary. Overall, use of AF2 for peptide structure 

prediction will require development of additional metrics and controls to improve their 

accuracy.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Dr. Alican Gulsevin (alican.gulsevin@vanderbilt.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All the PDB structures curated from the PDB for the calculations are available 

upon request.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data are generated from the datasets provided in the Key resources table.

METHOD DETAILS

Structure selection criteria—A PDB search was done to select peptides smaller 

than 60 amino acids whose structures were determined through solid-state or solution 

NMR. Peptides cyclized through their backbones, that have floppy termini, predominantly 

lacking a secondary structure, lacking side chain conformations, and peptides bearing non-

canonical amino acids were excluded from the set. For the peptides with multiple reported 

conformations in different media, the PDB entry that had the most secondary structure was 

selected if the conformations were similar, and the entry was excluded if the secondary 

structure elements showed variability among the different entries. A total of 588 peptides fit 
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these criteria and were used for the benchmark calculations. The benchmark set was divided 

into further groups to facilitate analysis of the results. These groups are α-helical membrane 

peptides, α-helical soluble peptides, mixed secondary structure membrane peptides, mixed 

secondary structure soluble peptides, β-hairpin peptides, and disulfide-rich peptides (DSRP).

AF2 calculations—AF2 calculations were run locally in the monomer mode starting 

from the sequences of each entry as extracted from the PDB. Terminal modifications were 

removed from the sequence files prior to the calculations. For each entry, five structures 

were generated with AF2 and the best-ranking structure according to the LDDT scores was 

selected as the representative pose for the entry. All the analyses were done with these 

representative poses.

RoseTTAFold and OmegaFold Calculations—RoseTTAFold was run locally with 

default parameters for the MSA generation and secondary structure prediction steps, and the 

three-track prediction method for the structure prediction step. Individual calculations were 

set for each peptide for the RoseTTAFold calculations. A single structure was generated 

as the result of each calculation. A single sequence input file including all the peptide 

sequences were inputted for OmegaFold, and the resulting predicted structure file was used 

for all the comparisons with the AF2-predicted and experimental peptide structures.

APPTEST and PEPFOLD-3 Calculations—For predicting peptide structures 

with online servers, we used APPTEST and PEPFOLD3. For APPTEST (https://

research.timmons.eu/apptest) we entered the peptide sequence and set simulated annealing + 

molecular dynamics to none - so just the neural network deep learning-based prediction 

produced results. APPTEST performance would be greatly improved with addition of 

Molecular Dynamics simulations steps, but at the cost of computational speed. Disulfide 

bonds was left blank, the job name was set to PDB ID and the prediction run and results 

downloaded. The PDB contained in folder cyana and subfolder with the sequence was 

used as the final prediction for APPTEST. For PEPFOLD3 found (https://mobyle.rpbs.univ-

paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD3), we pasted in the peptide sequence, 

changed the run label to PDB ID, set number of simulations to 100 (default), and sorted by 

sOPEP. No reference structure, mask, receptor structure, or residues defining an interaction 

patch with a receptor were entered. Demonstration mode was set to “No”. The prediction 

was run and resultant PDB downloaded and used as final prediction of PEPFOLD3.

QUANTIFICATION AND STATISTICAL ANALYSIS

RMSD calculations—RMSD values were calculated as the average root mean squared 

distance between the coordinates of Cα atoms of all five AF2-generated structures and each 

model contained in the corresponding PDB NMR ensemble. The structures were aligned 

based on Cα coordinates to eliminate translational differences between the reference and 

AF2 coordinates. A histogram of all pairwise Cα RMSD comparisons was plotted with 50 

bins and fitted with a gaussian using kernel density estimation. The standard deviation (σ) 

was calculated for the distribution and histogram was colored blue (1σ above the mean), 

yellow (2σ above the mean), and red (3σ above the mean). AF2 predicts with RMSD values 

above the mean were selected for illustrative purposes to determine how AF2 failed with 
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these structures. Only the lowest-RMSD AF2 structure was used illustrative purposes. Φ/Ψ 
angle recovery was calculated in the same manner using PyRosetta.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Performance of AlphaFold2 was compared with other protein or peptide 

folding methods.

• Deep-learning-based methods outperformed dedicated peptide structure 

prediction tools.

• Prediction accuracy is affected by peptide secondary structure.
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Figure 1. Workflow for benchmarking AlphaFold2 on peptide structure prediction.
A. We used AlphaFold2 (AF2) to predict the structures of 588 peptide sequences across six 

peptides classes with experimentally determined NMR models. B. We compared the five 

AF2 output models to each NMR ensemble by calculating the Cα RMSD exhaustively 

pairwise. The distribution of RMSD for each class of peptides was then plotted as a 

histogram and models with an RMSD one standard deviations (σ), two standard deviations 

(σ), or three standard deviations (3 σ) above the mean were examined to understand how 

AF2 failed to predict the experimental model.
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Figure 2. α-helical peptides predictions perform better for membrane associated peptides.
A. A histogram of Cα RMSDs for all comparisons between NMR ensembles and AF2 

predictions for α-helical membrane peptides (AH MP) normalized to residue number. The 

mean and median are shown in black. A multimodal Gaussian was fit to the data using 

kernel density estimation. One, two and three standard deviations above the mean are shown 

in blue, yellow, and red respectively. B. Three example models of AF2 predictions that 

show an RMSD one, two, and three standard deviations above the mean. NMR models are 

shown in light grey and AF2 models depicted in blue (one standard deviation), yellow (two 

standard deviations), or red (near three standard deviations). The PDB ID and normalize 

RMSD value is provided for clarity. C. For comparison, the distribution of α-helical 

soluble peptides (AH SL) Cα RMSDs between AF2 and NMR plotted as a histogram 

and normalized to residue number. The mean and median are shown in black. Again, a 

multimodal Gaussian was fit to the data using kernel density estimation and one, two and 

three standard deviations above the mean are shown in blue, yellow, and red respectively. 

D. Example models portraying predictions one, two, and three standard deviation above the 

mean. The lowest pairwise RMSD is shown for each model. NMR model shown in light 

grey and the AF2 model is depicted in blue (σ), yellow (2σ), or red (3σ). Note, here 1AMB 

RMSD falls slightly below the 3σ, but represents the greatest outlier among the AH SL data.
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Figure 3. AlphaFold2 poorly predicts mix membrane peptides and mix soluble peptides.
A. Mix membrane protein (MIX MP) histogram depicting the Cα RMSDs for all pairwise 

comparisons between AF2 and NMR models normalized to residue number. The mean and 

median are shown in black. A multimodal Gaussian was fit to the data using kernel density 

estimation. One, two and three standard deviations above the mean are shown in blue, 

yellow, and red respectively. Interestingly, no models fell above two standard deviations for 

this peptide class. B. Three example models of AF2 predictions that show an RMSD one 

standard deviation above the mean. NMR models are shown in light grey and AF2 models 

depicted in blue, and the PDB ID and normalize RMSD is shown. C. A histogram of mixed 

soluble peptides (MIX SL) residue number normalized Cα RMSDs between AF2 and NMR. 

The mean and median are shown in black. We fit a multimodal Gaussian to the data using 

kernel density estimation and one, two and three standard deviations above the mean are 

shown in blue, yellow, and red respectively. D. Illustrative models portraying predictions σ, 

2σ, 3σ above the mean. The lowest pairwise RMSD is shown for each model. NMR model 

shown in light grey and the AF2 model is depicted in blue (one standard deviation), yellow 

(two standard deviations), or red (three standard deviations).
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Figure 4. AlphaFold2 predictions of β-hairpin and disulfide rich peptides.
A. β-hairpin peptides (BHPIN) histogram showing the distribution the Cα RMSDs for all 

pairwise comparisons between AF2 and NMR models normalized to residue number. Mean 

and median are shown in black. A multimodal Gaussian was fit to the data using kernel 

density estimation and one, two and three standard deviations above the mean are shown in 

blue, yellow, and red respectively. B. Three example models of AF2 predictions that showed 

an RMSD at least one standard deviation above the mean for the BHPIN class. NMR models 

are shown in light grey and AF2 models depicted in blue (σ), yellow (2σ), and red (3σ). The 

PDB ID and normalize RMSD is shown. C. The distribution of disulfide residue number 

normalized Cα RMSDs normalized to residue number between AF2 and NMR plotted as a 

histogram. The mean and median are shown in black. We fit a multimodal Gaussian to the 

data using kernel density estimation and σ, 2σ, and 3σ above the mean are shown in blue, 

yellow, and red respectively. D. Illustrative models portraying predictions one, two, and three 

standard deviation above the mean (blue) The lowest pairwise RMSD is shown for each 

model. Cysteines shown in light yellow and disulfide bonds shown. NMR model shown in 

light grey and the AF2 model is depicted in blue (σ), yellow (2σ), or red (3σ).
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Figure 5. AlphaFold2 predicts peptide structures better than alternative computational methods 
PEPFOLD-3 (PF), OmegaFold (OF), RoseTTAFold (RF), and APPTEST (AT).
A-F. Distributions of average Cα RMSD per residue between the secondary structural 

regions of the NMR ensemble compared to each alternative computational prediction 

method. Peptide groups (A) α-helical membrane protein (AH MP), (B) α-helical soluble 

(AH SL), (C) β-hairpin peptides (BHPIN), (D) disulfide rich peptides (DSRP), (E) mixed 

membrane peptide (MIX MP), and (F) mixed soluble peptide (MIX SL) are shown. 

AlphaFold2 performed statistically significantly better than PEPFOLD3, OmegaFold, 

RoseTTFold and APPTEST, in all peptide classes except for MIX MP and MIX SL. For 

MIX MP, all methods perform with similar accuracy except for APPTEST. Interestingly, 

OmegaFold performed just as well as AF2 for MIX SL, and both outperformed the other 

methods. A paired two-side student t-test was used to calculate the statistical difference of 

each distribution with respect to AF2 and p value depicted by * < 0.05, ** < 0.01, *** < 

0.001, and **** < 0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

PDB structures and sequences used for the prediction and 
RMSD calculations

Protein Data Bank (PDB)32 www.rcsb.org

Software and Algorithms

Software used for peptide structure prediction AlphaFold224 https://alphafold.ebi.ac.uk/

Software used for peptide structure prediction OmegaFold15 https://github.com/HeliXonProtein/OmegaFold

Software used for peptide structure prediction RoseTTAFold14 https://github.com/RosettaCommons/
RoseTTAFold

Software used for peptide structure prediction PEP-FOLD312 https://bioserv.rpbs.univ-paris-diderot.fr/
services/PEP-FOLD3/

Software used for peptide structure prediction APPTEST13 https://research.timmons.eu/apptest

Data processing and analysis Python33 https://www.python.org/

RMSD calculations PyRosetta34 https://www.pyrosetta.org/
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