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A B S T R A C T

Background: During the COVID-19 pandemic, there is a global demand for intelligent health surveillance
and diagnosis systems for patients with critical conditions, particularly those with severe heart diseases.
Sophisticated measurement tools are used in hospitals worldwide to identify serious heart conditions. However,
these tools need the face-to-face involvement of healthcare experts to identify cardiac problems.
Objective: To design and implement an intelligent health monitoring and diagnosis system for critical cardiac
arrhythmia COVID-19 patients.
Methodology: We use artificial intelligence tools divided into two parts: (i) IoT-based health monitoring; and
(ii) fuzzy logic-based medical diagnosis. The intelligent diagnosis of heart conditions and IoT-based health
surveillance by doctors is offered to critical COVID-19 patients or isolated in remote locations. Sensors, cloud
storage, as well as a global system for mobile texts and emails for communication with doctors in case of
emergency are employed in our proposal.
Results: Our implemented system favors remote areas and isolated critical patients. This system utilizes an
intelligent algorithm that employs an ECG signal pre-processed by moving through six digital filters. Then,
based on the processed results, features are computed and assessed. The intelligent fuzzy system can make
an autonomous diagnosis and has enough information to avoid human intervention. The algorithm is trained
using ECG data from the MIT-BIH database and achieves high accuracy. In real-time validation, the fuzzy
algorithm obtained almost 100% accuracy for all experiments.
Conclusion: Our intelligent system can be helpful in many situations, but it is particularly beneficial for
isolated COVID-19 patients who have critical heart arrhythmia and must receive intensive care.
1. Introduction, nomenclature, and objectives

The nomenclature used in the present article is reported in Table 1.
Early detection, identification, and treatment of substantial irreg-

ular heartbeats are the most critical factors for the patient’s survival.
Patients with arrhythmias may succumb quickly due to the dangerous
condition of irregular heartbeats [1]. Researchers have extensively
studied electrocardiogram (ECG) signals using various methods for
the peak recognition of Q, R, and S waves (QRS). These methods
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correspond to: (i) adaptive matched filter approaches for the QRS de-
tection [2]; (ii) heartbeats variations with blood glucose levels [3]; (iii)
hemodialysis influence on heartbeats alteration [4]; (iv) pre-processing
approaches to detect the QRS complexity [5]; (v) microprocessing sys-
tems for online ECG analysis [6]; (vi) optimum complex pre-detectors
with a matched filter approach [7]; (vii) QRS detection employing an
algorithm based on multi-frame and multi-scale morphology [8]; (viii)
QRS detection based on the wavelet transform [9]; and (ix) complex
QRS detection algorithms based on nonlinear transformations [10].
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Table 1
Nomenclature employed in the present article

Abbreviation Description

App Application of a software program
CK Coefficient of kurtosis
COVID-19 Coronavirus disease 2019
CoV-2 Coronavirus 2
CS Coefficient of skewness
DC Direct current
E Energy
ECG Electrocardiogram
FIR Finite impulse response
GPS Global positioning system
GSM Global system for mobile communication
HM Harmonic mean
Hz Hertz
IoT Internet of things
KF Kurtosis feature
LCD Liquid crystal display
MATLAB Matrix laboratory software
MD Mean deviation
MIT-BIH Massachusetts Institute of Technology – Beth Israel Hospital
NET Type of internet (wired, that is,

local area networks –LAN–, or wireless fidelity –Wi-Fi–)
NodeMCU Node microcontroller unit
QRS Q, R and S (shear) waves
SARS Severe acute respiratory syndrome
SD Standard deviation
SF Skewness feature
WHO World Health Organization

Patients suffering from critical cardiac arrhythmia have a high risk
f mortality. Accurate detection of acute arrhythmic disease has been
challenge for researchers, who have worked on numerous time-

omain [11], and frequency-domain algorithms [12] to achieve high
ccuracy.

For classification and analysis of ECG signals, different methods,
uch as hidden Markov models [13], Hilbert transform [14], Her-
ite adaptive estimation [15], and wavelet transform [16], have been
roposed.

Researchers have focused on diverse artificial intelligence tech-
iques for discriminating and classifying critical cardiac arrhythmia [1,
7,18]. Mainly, intelligent systems based on fuzzy logic are utilized
n many practical and industrial applications, such as aircraft control,
irship control, control of electrohydraulic systems, pattern recognition
mage retrieval, precise control of motors, robot control, and speech
ecognition [19,20]. Due to the high accuracy of fuzzy intelligent
ystems, they are being considered in medical applications as well [21,
2].

The internet-of-things (IoT) has become capable of helping to per-
orm surgery, plan pre-operation, and remove live monitoring of the
atients [23]. IoT developments in hospitals have reduced administra-
ive duties, and enhanced clinical outcomes with IoT-enabled equip-
ent [24]. Health parameters can be accessed and monitored from

emote locations using IoT platforms with high accuracy [25]. The main
dvantage of an IoT platform for health monitoring is its capability
o measure readings of a large number of sensors connected with
rduino microcontrollers [26]. It is possible to apply intelligent tools

or critical arrhythmia detection in patients, providing IoT-based health
onitoring. To the best of our knowledge, this type of tool has been no

pplied to critical arrhythmia detection in patients.
COVID-19 is a severe acute respiratory syndrome (SARS) produced

y coronavirus 2 (CoV-2) that was discovered on December 2019 in
uhan, China, and declared by the World Health Organization (WHO)

s a pandemic in March 2020. Different types of SARS-CoV-2 have been
2

dentified [27]. Available data on the WHO’s website (COVID19.who.
Table 2
Comparison of functionality for existing health monitoring systems.

Reference NET System Heart App ECG GSM LCD Email Room GPS
rate alert control

Guk et al. [39] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Manas, et al. [40] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Khan et al. [41] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Queralta et al. [42] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Bhardwaj et al. [43] ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Dampage et al. [44] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Our proposal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

int) report millions of people affected by COVID-19 worldwide, and
many have lost their lives due to this pandemic [28,29]. SARS-CoV-
2 has revolutionized the globe, as well as the economy and finance
[30,31], obliging us to a new way of life that will keep its mark on
society forever. The spread of COVID-19 was so rapid that almost all
countries imposed either partial or complete lockdowns in affected
areas to curb its spread [32]. Precautionary measures imposed by dif-
ferent governments direct their masses to follow the standard operating
procedure to control its spread [33].

The WHO says that maintaining a social distance and isolating
patients can prevent the rising incidence of COVID-19 cases. The WHO
has also declared that heart failure, cardiac arrest for unexplained or
unrelated causes, and other cardiovascular illnesses are the leading
causes of mortality [34,35]. In [36], COVID-19 viruses were identified
in heart tissues of several deaths from this virus. Hence, SARS-CoV-2
can cause cardiac damage. Furthermore, COVID-19 infects heart cells
and provokes arrhythmia and heart failure. Researchers have utilized
cloud computing as artificial intelligence-based detection of various
cardiovascular illnesses [37,38].

Our critical analysis of the literature on the topic reveals that
diverse systems have been developed. Nevertheless, they employ the
IoT or fuzzy logic, but not both simultaneously. Table 2 compares
functionality for different health monitoring systems. To the best of
our knowledge, the development of such hybrid systems that simul-
taneously combine the IoT and fuzzy logic to make efficient patient
monitoring has been no introduced until now. Patients in remote zones,
where the doctor’s presence is uncommon, can benefit from this system,
particularly COVID-19 patients.

Consequently, the primary motivation for the present investiga-
tion is to provide timely medical treatment and diagnosis using an
intelligent system based on current digital technologies, combining
the IoT and fuzzy logic. This system besides makes efficient patient
monitoring. Therefore, the main objective of the present investigation
is to design and put into practice an IoT-based fuzzy intelligent health
monitoring system. This system allows us to analyze and diagnose
life-threatening situations when heartbeat irregularity is observed in
COVID-19 patients.

The system transfers the patient’s data online to doctors and permits
clinical personnel to prescribe drugs to the patients when doctors are
not logged into the internet on a webpage, with a minimum cost and
good accuracy. The doctor can check the data whenever he/she wants
by logging into the web application, which can be accessed from any In-
ternet browser. Also, the intelligent system makes it easier for clinicians
to monitor vulnerable patients, mainly if they are isolated or remotely
located. It is challenging to train the suggested fuzzy system intelli-
gently while maintaining a low computational cost and obtaining about
100% accuracy for all real-time experimental validations. This enables
the detection of critical cardiac conditions in COVID-19 patients by
employing locally available low-cost sensors. To obtain the desired ac-
curacy, ECG signals of different critical cardiac arrhythmia patients are

https://covid19.who.int/
https://covid19.who.int/
https://covid19.who.int/
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collected from the Massachusetts Institute of Technology–Beth Israel
Hospital (MIT-BIH) database (physionet.org/content/mitdb/1.0.0). In
this study, ECG and heartbeat sensors are interfaced with an Arduino
microcontroller and internet module to record the patient’s data and
transmit them to a webpage. The doctor can see the data online and
provide feedback to the patient, for example, during an emergency for
COVID-19 patients.

The rest of this article is organized as follows. The methodology
proposed for the present study is introduced in Section 2. The results
obtained from this study about the calculation of standard features,
the choice of training features, and the accuracy of the proposed
intelligent system are stated in Section 3. Finally, Section 4 provides
the conclusions of our research.

2. Methodology

In this section, the methodology of our intelligent health system is
presented for IoT-based continuous monitoring and diagnosis of critical
and isolated cardiac arrhythmia COVID-19 patients. Here, we describe
aspects related to IoT gateway and network, ECG signal processing,
fuzzy logic, its membership functions, as well as training of the system.
The methodology is summarized at the end of this section.

2.1. IoT gateway and network

To record the critical cardiac patient’s data, an ECG sensor is
connected to his/her body, and then an ECG signal is delivered to the
intelligent diagnostic system for autonomous arrhythmic detection. A
NodeMCU ESP8266 microcontroller [45] provides serial communica-
tion with our critical arrhythmia diagnostic system. NodeMCU ESP8266
is a low-cost microcontroller that plays an essential role in IoT-based
real-time monitoring [41]. In the proposed system, the NodeMCU mi-
crocontroller collects data from the sensor, and so the system transmits
them to the IoT-Blynk platform via Wi-Fi. This platform displays such
data to the doctor for examination. Any cloud data history can be
accessed by employing a mobile application connected to the Blynk
platform. Hence, doctors can state critical indications or thresholds
regarding the patient’s health on the Blynk platform to get emergency
alerts via emails or messages on a mobile application. Doctors may
also make live communications with the patients for prescriptions and
guidance. Fig. 1 displays the proposed cost-effective experimental setup
using locally available sensors for remote areas and isolated patients.

When building a monitoring and diagnosis system based on an
IoT platform, the first and foremost parts are to design, analyze, and
implement a network that can be used for this platform. Next, we
provide technical information about a potential network for our system
using an IoT gateway. In Table 3, the steps and interactions that occur
within a network proposed for our system are reported. In Fig. 1,
we can see, among other components, the ECG sensor, the microcon-
troller, and the local computer. In addition, Fig. 2 shows the network
components and their relationships. It is important to mention the
client process that runs on the local computer, from where the ECG
signal is received, is an HTTP client that sends requirements via Wi-
Fi to the IoT-Blynk web platform. This platform receives the client
process’s requirements through a web server. The doctor analyzes the
ECG signal and connects to this platform through a mobile device. For
alert/warning messages, the SMTP protocol is configured. While the
doctor may be geographically far away, medical staff are close to the
patient, receive alert messages, and care for the patient.
3

Table 3
Steps of the proposed network of our system.

Step Description

1 The ECG signal is generated from an ECG sensor connected to the
patient.

2 The microcontroller receives the ECG signal and delivers it to a client
process running on a local computer.

3 The client process starts a timer, transmits the ECG signal to the
IoT-Blynk web platform, sends an SMTP message to the patient’s
doctor, and moves to a waiting state.

4 The doctor receives a warning message and connects to the IoT-Blynk
web platform to analyze the ECG signal.

5 The doctor, from a mobile application, generates a diagnosis and sends
the alert message to the patient’s medical staff (the client process
receives a copy of the message).

6 If after a predetermined time there is no alert message from the
doctor, the client process sends a request to the intelligent system.

7 The intelligent system, using fuzzy logic, analyzes the ECG signal,
generates a diagnosis, and sends the alert message to the patient’s
medical staff.

8 In either case, the patient’s medical staff receives the alert message and
takes the necessary medical actions to benefit the patient’s health.

2.2. ECG signal processing

Next, we describe our proposed system from a signal-processing
perspective. To train and test the system, the MIT-BIH database is used.
From this database, the ECG signal of a healthy patient and three ECG
signals of patients with arrhythmia are received. These four signals
are standardized to compare them. To standardize a one-dimensional
data set, we must carry out two steps. The first step is calculating the
mean and standard deviation of the data set. The second step consists
of subtracting the mean from each data set and then dividing this
subtraction by the standard deviation. This is what we do with the four
ECG signals. We call this stage the standardization of the ECG signals.

Each ECG signal in the database is sampled at 128 Hz. Half of
this 128 Hz is used to train the fuzzy system, and the other half to
evaluate its accuracy (testing). The 64 Hz is divided into six filters of
approximately 10 Hz each to train the system. The filtering is done
to eliminate high-frequency noise elements. For each filtered output,
eight indicators/features are determined, such as mean, SD, median,
energy (E), coefficients of skewness (CS; asymmetry) and kurtosis (CK),
harmonic mean (HM), and mean deviation (MD).

Table 4 recalls the mathematical formulations of all these indicators
computed for both original and filtered output signals of each ECG
signal. The computed statistical indicators are used to train the fuzzy
system.

The use of Butterworth filters enhances the pre-processing of sig-
nals [46], and the MATLAB software [47] may be used to produce
low-pass and bandpass filters. The lowpass filter, which is the standard
prototype for all filters, can be utilized to build high-pass, bandpass,
and band-stop filters. Therefore, six Butterworth filters are used, the
first of which is a lowpass filter, whereas the others are bandpass filters.
This filtering is also carried out with the real-time ECG signals of the
patients who use the system that we propose to determine if the patient
is healthy or has cardiac arrhythmia. The mathematical description of
the 𝑚th order low-pass Butterworth filter is given by

𝐺2(𝑗𝑤) = |𝐻(𝑗𝑤)2| =
𝐺2
0

1 + (𝑗𝑤∕𝑗𝑤𝑐 )2𝑚
,

where 𝑤𝑐 is the cutoff frequency (about the 3 dB frequency, that is, the
cutoff frequency of an electronic amplifier stage at which the output
power has dropped to half of its mid-band level); 𝑚 is the order of the
filter; and 𝐺0 is the DC gain (direct current gain at zero frequency).
Then, a Butterworth filter of order 𝑚 = 3 is chosen.

https://physionet.org/content/mitdb/1.0.0/
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Fig. 1. Hardware setup of the proposed methodology.
Fig. 2. Proposed network for our system using an IoT gateway.
ECG signal standardization and filtering are critical in fuzzy system
training and testing. The fuzzy sets are built on these first two stages of
signal processing. These sets in our proposal have a triangular shape,
and standardization and filtering are two fundamental stages of fixing
the vertices of the triangles that define the membership functions. Once
the fuzzy sets are defined through their membership functions, the
fuzzy rules are defined. As mentioned, half of the 128 Hz ECG signals
are used for training the fuzzy system and the other half for testing.
Fig. 3 shows the stages related to ECG signal processing when they are
collected from the MIT-BIH database to test our fuzzy system. These
seven stages summarize all the tasks that are carried out during the
4

processing of the ECG signal. The good treatment of ECG signals is
the most important part of our proposal. For more details on system
training, see Section 2.5. For more details on the processing of ECG
signals and their plots, see Section 3.1.

2.3. Fuzzy logic

Fuzzy logic allows us to represent the common knowledge, mainly
of the qualitative linguistic type, in a mathematical language through
the theory of fuzzy sets and membership functions associated with
them [19]. Classical mathematical logic is binary, that is, a statement
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Fig. 3. Stages in ECG signal processing.

Table 4
Statistical indicators and their mathematical expression for designing the fuzzy
rules.

Indicator Mathematical expression

Mean 𝑥 =
∑𝑛

𝑖=1 𝑥𝑖
𝑛

Standard deviation SD =

√

∑𝑛
𝑖=1 (𝑥𝑖−𝑥)

2

𝑛−1

Median median =
(

𝑛+1
2

)

th ordered observation

Energy E =
∑𝑛

𝑖=1
∑𝑛

𝑗≠𝑖=1 |𝑥𝑖−𝑥𝑗 |

𝑛2

Coefficient of skewness CS = 𝑛
∑𝑛

𝑖=1 (𝑥𝑖−𝑥)
3

[SD]3

Coefficient of kurtosis CK = 𝑛
∑𝑛

𝑖=1 (𝑥𝑖−𝑥)
4

[SD]4
− 3

Harmonic mean HM = 𝑛
∑𝑛

𝑖=1 1∕𝑥𝑖

Mean deviation MD =
∑𝑛

𝑖=1 |𝑥𝑖−𝑥|
𝑛

Where 𝑛 represents the sample size corresponding to each one-dimensional array
data set, and 𝑥𝑖 is observation 𝑖 of each ECG data set (sample), while �̄� is the
mean value of each data set.

is either true or false, but the real world does not work in that way.
Fuzzy (or non-crisp) logic is a multivalued paraconsistent logic in which
the true values of linguistic variables can be transformed into any real
number between zero and one through degrees of membership of an
element to a set. Therefore, it is employed to handle the concept of
partial truth, where the truth value may range between entirely true
and completely false. By contrast, in the Boolean (traditional or crisp)
logic, the truth values of variables may only be the integer values
5

a

zero or one. Such logic is better suited to our real world, where our
opinions are relative. Fuzzy logic is based on the fact that people
make decisions using imprecise and non-numerical information. This
logic allows decisions to be made based on intermediate degrees of
compliance with a premise.

Example 2.1. Let us present an example illustrating the difference
between Boolean and fuzzy logic. If one is asked whether the climate
is cold or not, in binary logic, one only has two possible answers: ‘‘yes,
it is cold’’ or ‘‘no, it is not cold’’. However, in fuzzy logic, one has more
options with answers such as: ‘‘it is a very cold’’, or ‘‘it is cold, but not
that much’’, or ‘‘it is neither cold nor hot; the temperature is nice’’, or
‘‘it is very hot’’. Note that the answer is subjective because it depends
on the person. From what temperature does a person feel cold? The
answer is nuanced.

Fuzzy models or sets are mathematical descriptions representing
vagueness and imprecise information (from where the term fuzzy orig-
inates) using ‘‘degrees of membership’’ as a mathematical model of
uncertainty. The fuzzy models can recognize, represent, interpret, and
use data and information that are vague and lack certainty. In fuzzy set
theory, we can also define the union, intersection, difference, negation,
and complement operations, as well as other operations on sets. Each
fuzzy set has an associated membership function for its elements,
indicating to what extent the element is part of that fuzzy set.

The most typical membership function shapes are triangular, trape-
zoidal, linear, and curved [19].

Example 2.2. Let us continue with our ‘‘climate example’’. Suppose we
have three fuzzy sets: 𝐴, 𝐵, and 𝐶, where 𝐴 is the set that represents a
low temperature (cold), 𝐵 is the medium temperature (warm), and 𝐶
is the high temperature (hot). The temperature is measured in degrees
Celsius. For each fuzzy set, we have the corresponding membership
function: 𝜇𝐴(𝑥), 𝜇𝐵(𝑥), and 𝜇𝐶 (𝑥). When a membership function is
valuated on a temperature value, the degree of membership of that
emperature to the corresponding fuzzy set is obtained as a result.
onsider the membership functions given by

𝐴(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, 𝑥 ≤ 20;
25 − 𝑥

5
, 20 < 𝑥 ≤ 25;

0, 𝑥 ≥ 25;

(1)

𝐵(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 − 20
5

, 20 < 𝑥 ≤ 25;
30 − 𝑥

5
, 25 < 𝑥 ≤ 30;

0, 𝑥 ≤ 20, 𝑥 ≥ 30;

(2)

𝜇𝐶 (𝑥) =

⎧

⎪

⎨

⎪

⎩

0, 𝑥 ≤ 25;
𝑥 − 25

5
, 25 < 𝑥 ≤ 30;

1, 𝑥 ≥ 30.

(3)

In (1), we can see the membership function for the fuzzy set 𝐴, in (2)
or the fuzzy set 𝐵, and in (3) for the fuzzy set 𝐶. Fig. 4 shows the plot
f the three membership functions defined above. Note the trapezoidal
hape of the membership functions for sets 𝐴 and 𝐶, and the triangular
hape of the membership function for set 𝐵.

Table 5 shows the degrees of membership for three different values
f temperature: 21, 23, and 29 degrees Celsius. Hence, the temperatures
f 21, 23, and 29 degrees Celsius should be considered low, medium,
nd high, respectively. Fig. 5 shows the values of Table 5.

Fuzzy logic is based on heuristic rules of the form IF (antecedent)

nd THEN (consequent), where the antecedent and consequent are
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Fig. 4. Plot of the membership functions of the climate example.
Fig. 5. Plot of the membership functions of the climate example, highlighting temperature values: 21, 23 and 29 degrees Celsius.
Table 5
Different temperature values and their corresponding degrees of
membership.

Temperature(𝑥) 𝜇𝐴(𝑥) 𝜇𝐵 (𝑥) 𝜇𝐶 (𝑥)

21 0.8 0.2 0.0
23 0.4 0.6 0.0
29 0.0 0.2 0.8

also fuzzy sets: pure or resulting from operating on them. Examples

of its heuristic rules are the words: ‘‘extremely’’, ‘‘very’’, ‘‘moderately’’,
6

‘‘slightly’’, and ‘‘not at all’’. The inference methods for this rule base
must be simple, versatile, and efficient. These methods result in a final
common area, corresponding to a set of overlapping areas, where each
area results from an inference rule. To choose a specific output from
many diffuse premises, the most used method is the centroid, in which
the final output is the center of gravity of the resulting final area.
Experts can formulate rules for the inference engine of a fuzzy system.
Input data are usually collected by sensors that measure the input

variables of a system.



Computers in Biology and Medicine 154 (2023) 106583M.Z. Rahman et al.

l
f
p
f
a
f
e

f
a
n
a
w
i
s
(
e
f
o

s
[
t
t
f
t
n

c
i
c

𝑆

w

Fig. 6. Block diagram of the fuzzy logic.
Fuzzy logic is an essential concept in medical decision-making. Such
ogic may be employed in many aspects of the medical decision-making
ramework. Since medical and healthcare data can be subjective, ap-
lications in this domain have a great potential to benefit by using
uzzy logic-based approaches. The biggest question in this application
rea is how much helpful information can be derived when employing
uzzy logic. A significant challenge is how to obtain the required data,
specially when one has to elicit such data from humans.

In fuzzy logic applications, non-numeric values are often utilized to
acilitate the expression of rules and facts. A linguistic variable such
s age may accept values such as young and its antonym old. Because
atural languages do not always contain enough value terms to express
fuzzy value scale, it is a common practice to modify linguistic values
ith adjectives or adverbs. For example, we can employ the hedges

nstead and somewhat to construct the additional values rather old or
omewhat young. The most known system uses the following rules:
i) to fuzzify all input values into fuzzy membership functions; (ii) to
xecute all applicable rules in their base to compute the fuzzy output
unctions; and (iii) defuzzify the fuzzy output functions to get crisp
utput values; see Fig. 6.

Fuzzification assigns a numerical input of a system to fuzzy sets with
ome degree of membership, which may be any value in the interval
0, 1]. Any value between 0 and 1 represents the degree of uncertainty
hat the value belongs to the set. If it is zero, the value does not belong
o the given fuzzy set; if it is one, the value entirely belongs within the
uzzy set. Words typically describe these fuzzy sets, and so by assigning
he system input to fuzzy sets, we can reason with it in a linguistically
atural manner.

As mentioned, fuzzy sets are often defined as triangularly-shaped
urves, as each value has a slope where it is increasing, a peak where
t is equal to 1, and a slope where the value is decreasing. These values
an be defined using a standard logistic function given by

(𝑥) = 1∕(1 + exp(−𝑥)), (4)

hich has the symmetry property stated as 𝑆(𝑥) + 𝑆(−𝑥) = 1, and is
obtained from (4). Fuzzy logic works with membership values in a way
that mimics Boolean logic. To this end, basic operators like AND, OR,
and NOT must be available. There are also other linguistic operators
called hedges that can be applied. These are generally adverbs such
as ‘‘very’’ or ‘‘somewhat’’, which modify the meaning of a set using a
7

mathematical formula. Given any two of AND/OR/NOT, it is possible
to derive the third. When an output variable occurs in several THEN
parts, the values from the respective IF parts are combined using the
OR operator.

Defuzzification gets a continuous variable from fuzzy truth values.
This would be easy if the output truth values were precisely those
obtained from the fuzzification of a given number. However, as all
output truth values are computed independently, they do not represent
such a set of numbers in most cases. Thus, we can choose a number that
best matches the ‘‘intention’’ encoded in the truth value. A standard
defuzzification method is described in Algorithm 1.

Algorithm 1 Defuzzification method.
1: Cut the membership function at each truth value.
2: Combine the resulting curves using the OR operator.
3: Find the center-of-weight of the area under the curve.
4: The x-position of this center is the final output (centroid).

Since the fuzzy system output is a consensus of all of the inputs
and rules, fuzzy logic systems can be well-behaved when input values
are not available or are not trustworthy. Weightings can be optionally
added to each rule in their base, and they can regulate the degree to
which a rule affects the output values. These rule weightings could be
based on each rule’s priority, reliability, or consistency. Such weight-
ings may be static or changed dynamically, even based on the output
from other rules.

Our intelligent system is designed to classify different critical car-
diac arrhythmia conditions of isolated COVID-19 patients. Due to the
advantage of fuzzy systems over conventional binary logic systems,
they have been adapted for many practical applications. Fuzzy systems
are also helpful tools in artificial intelligence and control theory. The
main reason behind the vast practical applications of fuzzy logic-based
systems is their structure as a powerful, complete, and intelligent tool
with simple reasoning functionality.

This owerful tool takes the heuristics from human intelligence in a
specific practical field. Hence, the fuzzy logic structure translates all
heuristics, taken from human intelligence, into tangible values [19].
The block diagram of the intelligent system to classify critical arrhyth-
mia patients is given in Fig. 7. This system is based on feature extraction

and training of rules based on fuzzy logic.
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Fig. 7. Block diagram of the intelligent system.
2.4. Fuzzy membership functions and defuzzification

As mentioned, fuzzy systems utilize linguistic variables to state rules
and facts employing degrees of membership (in the [0, 1] range) rather
than the yes-or-no range, contrary to typical binary systems. As they
work in the [0, 1] range rather than the yes-or-no range, the mini-
mum, and maximum values are set to 0 and 1, respectively. As earlier
indicated, triangular membership functions are widely employed in
real-time applications of fuzzy systems. The proposed methodology
also uses these triangular membership functions, and it provides a
mathematical representation of them in the form given by

𝜇𝐴(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 − 𝑎
𝑚 − 𝑎

, 𝑎 < 𝑥 ≤ 𝑚;
𝑏 − 𝑥
𝑏 − 𝑚

, 𝑚 < 𝑥 ≤ 𝑏;
0, 𝑥 ≤ 𝑎, 𝑥 ≥ 𝑎;

(5)

where 𝑎 is the minimum value, 𝑚 is the median value, and 𝑏 is the
maximum value for each triangular membership function, as defined in
the expression stated in (5). The fuzzifier component of this intelligent
system determines the membership functions for the linguistic variables
that it receives as inputs.

The specified membership functions are applied using the true
values of the input variables. The truth values are computed in the
second phase by applying the fuzzy inference rules. Table 6 defines the
fuzzy inference based on the minimum rule for the input variables 𝑥,
𝑦, and output variable 𝑧 in the range [0, 1]. Only one output variable
is subject to each rule’s application of a single fuzzy subset. Defuzzifi-
cation, which turns fuzzy outputs into crisp outputs, is the final stage
of the fuzzy system. This system is consensual with input and output
variables. The most widely utilized defuzzification method is called the
centroid.

A fuzzy set exists if 𝑋 is a group of elements indicated by the generic
symbol 𝑥. An ordered pair set 𝐴 in 𝑋 is defined as

𝐴 ≡ {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑋}, (6)

where the set 𝜇𝐴(𝑥) is called the membership function as defined in
(6). Defuzzification is a technique for converting a fuzzy output set into
a crisp output. For triangular linear functions, the centroid method is
created as

𝑧 =

∑𝑚
𝑗=1 𝑧𝑗𝜇(𝑧𝑗 )
∑𝑚

𝑗=1 𝜇(𝑧𝑗 )
, (7)

where 𝑧𝑗 defines output 𝑗 in the universe of discourse and 𝜇(𝑧𝑗 ) is its
membership value, with 𝑧 being a unique centroid crisp output value
8

Table 6
Structure for minimum fuzzy inference rules.

Rule Input(𝑥) Input(𝑦) Output(𝑧)

1 if 𝑥 = low if 𝑦 = high then 𝑧 = low
2 if 𝑥 = low if 𝑦 = low then 𝑧 = low
3 if 𝑥 = high if 𝑦 = high then 𝑧 = high
4 if 𝑥 = high if 𝑦 = low then 𝑧 = low

as stated in (7). MIN fuzzy inference rules for input variables 𝑥, 𝑦,
and output variable 𝑧, in the interval [0,1], are presented in Table 6.
Similarly, MAX inference rules are defined based on OR logic. This
system was implemented in MATLAB with the help of the fuzzy toolbox.

Example 2.3. Fig. 8 shows three output membership functions. By
considering Fig. 8’s ‘‘likely’’ membership function, the value of lower-
end parameter 𝑎 is 0.1 or 10%; the value of middle parameter 𝑚 is 0.5
or 50%; and the value of the upper-end parameter 𝑏 is 0.9 or 90%.

Example 2.4. Now, we use an academic example to illustrate the rules
and defuzzification process.

Suppose one patient stays one night in a hospital. The next day,
the patient receives a medical discharge and is asked to rate the
accommodation from 0 to 10, understanding that 0 means the hospital
was lousy and that 10 means the hospital was fabulous. The patient
decides to perform the rating considering two components: (i) the
service received by the medical staff and (ii) the quality of the room.
Then, the patient decides to use the following rules: (i) if the care of the
medical staff is ‘‘bad’’ or the room quality is ‘‘poor’’, then the hospital’s
rating is ‘‘low’’; (ii) if the care of the medical staff is ‘‘good’’, then the
rating of the hospital is ‘‘normal’’; (iii) if the care of the medical staff
is ‘‘outstanding’’ and the room quality is ‘‘high’’, then the rating of the
hospital is ‘‘high’’. Note that we have two input variables: 𝑥 (care of
medical staff) and 𝑦 (room quality). We have an output variable: 𝑧
(hospital rating).

For the variable 𝑥, we have three fuzzy sets: 𝐴 (bad), 𝐵 (good), and
𝐶 (outstanding), with membership functions 𝜇𝐴(𝑥), 𝜇𝐵(𝑥), and 𝜇𝐶 (𝑥),
respectively.

For the variable 𝑦, we have two fuzzy sets: 𝐷 (poor quality) and
𝐸 (high quality), with membership functions 𝜇𝐷(𝑦) and 𝜇𝐸 (𝑦), respec-
tively.

For the variable 𝑧, we have three fuzzy sets: 𝐹 (low), 𝐺 (normal),
and 𝐻 (high), with memberships 𝜇𝐹 (𝑧), 𝜇𝐺(𝑧), and 𝜇𝐻 (𝑧), respectively.

Suppose the patient rates medical care and room quality from 0
to 10, where 0 is the lowest rate and 10 is the highest rate. If the
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Fig. 8. Output membership functions and assignments.
Fig. 9. Plot of the membership functions of the output variable 𝑧 in the hospital example.
patient rates the medical care with 𝑥 = 3 and the room quality with
𝑦 = 8, how would the patient rate the hospital? The first step is to
evaluate the membership functions of all the input variables with the
corresponding values. Suppose also that, after evaluating, the values
that we see in Table 7 are obtained. Furthermore, assume that the
membership functions of the output variable 𝑧 behave as in Fig. 9.

The second step is to apply the fuzzy rules. The first rule tells us
that if the medical staff’s care is ‘‘bad’’ or the room quality is ‘‘poor’’,
then the hospital’s rating is ‘‘low’’.

Let us look at the antecedent of the rule. Note that 𝜇𝐴(3) = 0.2
and 𝜇𝐷(8) = 0.6. Thus, we take the maximum of these two values, 0.6
namely, due to fuzzy disjunction. With the value of 0.6, we apply a cut
to the fuzzy set 𝐹 with membership function 𝜇𝐹 (𝑧), as shown in Fig. 10.

The second rule tells us: if the care of the medical staff is ‘‘good’’,
then the rating of the hospital is ‘‘normal’’. The antecedent of impli-
cation only has a single fuzzy proposition. Hence, we take the value
𝜇𝐵(3) = 0.7 and cut the membership function of the fuzzy set 𝐺, as
shown in Fig. 11.

Then, the third rule tells us: if the care of the medical staff is
‘‘outstanding’’ and the room quality is ‘‘high’’, then the rating of the
hospital is ‘‘high’’.
9

Let us look at the antecedent of this last rule. Note that 𝜇𝐶 (3) = 0.1
and 𝜇𝐸 (8) = 0.8. Thus, we take the minimum of these two values, 0.1,
due to fuzzy conjunction. With the value of 0.1, we apply a cut to the
fuzzy set 𝐻 with membership function 𝜇𝐻 (𝑧), as shown in Fig. 12.

The outputs obtained by the three fuzzy rules are combined by the
union of the three regions obtained previously. This union of regions is
shown in Fig. 13. To finish the defuzzification process, a value for the
variable 𝑧 is calculated using the centroid method. The value of 3.66 is
obtained by computing the centroid. Thus, the hospital’s rating is 𝑧 = 4.
Therefore, using fuzzy logic, from the values 𝑥 = 3 and 𝑦 = 8, the value
𝑧 = 4 is obtained.

2.5. Training and summary of the methodology

As mentioned, our research also provides training in a fuzzy system
to achieve high accuracy in real-time critical heart condition detection.

In Fig. 14, we can see the stages that are carried out to train the
fuzzy system. The critical part of the training occurs when the mem-
bership functions are constructed, and the fuzzy rules are generated.
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Fig. 10. Cut of the membership function of the fuzzy set 𝐹 in the hospital example.
Fig. 11. Cut of the membership function of the fuzzy set 𝐺 in the hospital example.
.

Table 7
Evaluation in the membership functions of the input variables in the hospital example

Variable Membership functions

𝑥 = 3 𝜇𝐴(3) = 0.2 𝜇𝐵 (3) = 0.7 𝜇𝐶 (3) = 0.1
𝑦 = 8 𝜇𝐷(8) = 0.6 𝜇𝐸 (8) = 0.8

We work with the original ECG signals and the subsamples of

pproximately 10 Hz each to build the membership functions. For
10
both the original ECG signals taken from the MIT-BIH database and
corresponding subsamples, the statistical indicators that allow us to
build the membership functions of the fuzzy sets are computed and
selected.

The designed methodology of our intelligent fuzzy system is shown
in Figs. 15, 16 and 17. As mentioned, the recorded ECG data pre-
processing is required before the feature extraction. The features with
maximum information and maximum diversity are then selected for the
training of the fuzzy system. The accuracy of the trained model is tested
in real-time signals of critical cardiac arrhythmia patients. Algorithm 2
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Fig. 12. Cut of the membership function of the fuzzy set 𝐻 in the hospital example.
Fig. 13. Region over which the centroid method is applied in the hospital example.
shows the system’s steps to provide the corresponding medication to
a patient. Output results provided almost 100 percent accuracy of the
proposed intelligent system.

Recall that 50% of the ECG signal data are used for model de-
velopment (training), and 50% remaining are employed for accuracy
evaluation of intelligent fuzzy system (testing). About 100 experi-
ments are conducted to evaluate the algorithm’s precision. We conduct
numerous trials to verify the accuracy of the designed system. Astute
11
human observations reduce the computational cost by limiting the
training set to the most crucial elements.

3. Results

In this section, the results obtained from our study about the cal-
culation of standard features, the choice of training features, and the
accuracy of the proposed intelligent system are presented.
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Fig. 14. Stages of the system training.

Algorithm 2 System steps
1: Gather highly accurate data from the MIT-BIH database and prepare a

database.

2: Standardize the data by sustracting the mean and dividing by the SD.

3: Preprocess the data through the one lowpass, and five band passes
Butterworth filters.

4: Split the data into two parts, where a data subset is used to develop/train
the proposed methodology, and another data subset is employed to
evaluate/test its accuracy.

5: Extract features for both data sets: the data set utilized for training and
the data set used for testing.

6: Decide by involving human intelligence, with the selected features
containing the complete information.

7: Incorporate fuzzy logic to develop an intelligent decision-making system.

8: Evaluate the proposed model with different MIT-BIH data sets.

9: Assess the proposed system using runtime ECG data, but for this purpose,
the ECG signal is first processed and passed through the lowpass filter,
selecting the filter’s cutoff frequency.
12
3.1. Extraction and calculation of features

The behavior of its QRS peaks characterizes each ECG. An ECG
signal is shown in Fig. 18 and labeled with its Q, R, and S peaks.
Accurate detection of QRS peaks, as labeled in Fig. 18, has been a
challenge for researchers, as discussed in [7–10].

QRS complexes determine the rhythm of normal and critical condi-
tions of arrhythmia patients [48].

The accuracy of critical arrhythmia diagnosis entirely depends on
the intelligent selection of quantitative and qualitative features [49,50].
The proposed fuzzy system requires an intelligent selection of these
features for high accuracy. This high level is achieved by recording
different samples of four ECG signals of arrhythmia patients from the
MIT-BIH database. The first ECG signal is recorded as normal, and the
remaining ECG data are selected from different arrhythmia patients
utilizing the MIT-BIH database.

All normal and arrhythmia patient’s signals are shown in Fig. 19,
where Fig. 19(a) represents the normal status, and Fig. 19(b)(c)(d)
show the different arrhythmia patients. Amplitudes of all ECG signals
are represented in millivolts on the vertical axis without normalization.

Next, as mentioned, each ECG signal is adjusted by subtracting
the mean and then dividing by the SD [51]. Observe that all ECG
signals are sampled at 128 Hz. The equal bandwidth of each filter is
considered in the design of all six finite impulse response (FIR) filters.
This approximated 10 Hz bandwidth is obtained by dividing 64 Hz into
six parts.

Each filter is a second-order system. The following ranges are con-
sidered in the design of all six FIR filters: (i) the first FIR filter is lowpass
and ranges from 0–10 Hz; (ii) the second FIR filter is bandpass with a
range from 10–20 Hz; and, similarly, (iii) third, fourth, fifth and sixth
FIR filters are also bandpass with ranges from 20–30 Hz, 30–40 Hz,
40–50 Hz, and 50–60 Hz, respectively. All ECG data from the MIT-BIH
database are moved through these six designed filters.

The output results are evaluated for feature calculation, which is an
important part of the training of the fuzzy system. Figs. 20 to 23 show
the original ECG signal and their filter outputs.

The pre-processed normalized data are considered for calculating
the features presented in Table 4. The vertical axis of Figs. 24 to 27
represents the magnitude values of all features, while the horizontal
axis states the features in the same sequence as mentioned in Table 4.
Features that exhibit variable and different behavior for the origi-
nal signal and filtered outputs contain more information and help in
intelligent training of the proposed fuzzy systems.

Fig. 28 compares features for all original signals and six filter banks.
This comparison helps to make wise observations and to choose the
most important features when training the our fuzzy system. In Fig. 28,
note that features 4, 5, 6, and 7 provide a complete information about
the original signals. Similarly, in filter bank 1, features 5, 6, and 7 give
full information related to this bank.

Table 8 reports the details of all informative and valuable features.
They are enough for intelligent training of the fuzzy system. Tables 8
and 9 show how each signal and its subsamples are related to the
calculated statistical indicators. In addition, Figs. 24, 25, 26, 27, and
28, illustrate with plots this important stage of training. Regarding
fuzzy rules, where IF-THEN statements are used, Section 3.2 presents
all the details. In this last stage, the membership functions previously
built and the participation of the human being are fundamental.

After calculating the features, intelligent selection of them for train-
ing purposes is a difficult and sensitive task. This selection is only
possible by involving human intelligence when observing the calculated
features.
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Fig. 15. Design of the intelligent system.
Fig. 16. Proposed IoT-based intelligent methodology.
Now, by analyzing the results of Figs. 24 to 28, different features,
with maximum information and diversity, are chosen for original sig-
nals and all filter banks. The intelligent classification of different critical
arrhythmia conditions of all the recorded signals is made employing a
selection of calculated feature values.

A few important measures are taken for all filter banks to differen-
tiate all four ECG signals. For all original and filter banks of signals, an
intelligent selection of all calculated features is presented in Table 8.
For example, observe that, by the magnitude of features of Fig. 28, filter
bank 6 contains a complete information for features 4 and 6. These
features are selected by using human intelligence from the calculated
standard features for filter bank 6.
13
Note that features can be applied separately for all six FIR filters,

which causes a high computational cost. We observe the features com-

bined plot in Fig. 28 and choose the four filters that provided complete

information. Thus, our results proved the accuracy at a meager compu-

tational cost. The information about the data sets (MIT-BIH arrhythmia)

that were used, including the number of instances of each category

(normal ECG signal, first arrhythmia ECG signal, second arrhythmia

ECG signal, and third arrhythmia ECG signal), type of data, and total

number of characteristics, among others, are described in Table 9.
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Fig. 17. Flowchart of the proposed system.
.2. System evaluation using rules and membership functions

The intelligent fuzzy system for critical arrhythmia detection is
esigned and evaluated using the following inputs, outputs, and rules:

(i) Human intelligence is applied to the space of features, where
the input variables related to skewness (SF) and kurtosis (KF)
14
features, denoted by SF0, KF0, SF1, and KF1, are selected intel-

ligently from the space of calculated features. Note that SF0 and

KF0 are the skewness and kurtosis feature variables of the original

signal, respectively, whereas the variables SF1 and KF1 take the

values of features for filtered outputs.
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Fig. 18. The QRS peaks of the ECG of signal.

Fig. 19. Recorded normal ECG signal with 1000 samples (a); recorded first arrhythmia ECG signal (b); recorded second arrhythmia ECG signal (c); and recorded third arrhythmia
ECG signal (d).
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Fig. 20. The filtered outputs for normal status.
Fig. 21. The filtered outputs for first arrhythmia.
(ii) Diagnosis of the critical arrhythmia condition is carried out,
where four variables of output membership functions are selected.
Observe that the first output membership function variable is
chosen for normal condition patients, and the other three output
membership function variables are defined for critical arrhythmia
patients.

(iii) Reduction of the complexity and computational burden of the
proposed design is performed, where five rules are defined. In
this way, we get high accuracy with fewer rules, and then an
16
intelligent and heuristic understanding of calculated features is

applied.

Fig. 29 shows the assignment of membership functions for input

features SF0, KF0, SF1, and KF1. This figure also sketches four in-

put features and three membership functions assigned to each input

variable. Similarly, three membership functions are chosen for each

output variable.



Computers in Biology and Medicine 154 (2023) 106583M.Z. Rahman et al.
Fig. 22. The filtered outputs for second arrhythmia.
Fig. 23. The filtered outputs for third arrhythmia.
Human intelligence is involved in selecting training features that
increase the proposed system’s accuracy and reduce the computational
burden.

Inference rules using the AND operation are applied to the intelli-
gent fuzzy system. Then, the performance of this system is evaluated
under different conditions. The degree of membership of critical ar-
rhythmia conditions is determined utilizing the AND operation, where
four features are combined for each rule. To evaluate the accuracy
of the fuzzy algorithm, the recorded ECG signal sample of a third ar-
rhythmia patient is moved through all designed digital filters and then
17
features SF0, SF1, KF0, and KF1 are calculated. Table 10 reports the
intelligently selected features for the ECG signals of a third arrhythmia
patient, with the following five rules being considered in this table:

(i) If (SF0 = high) and (SF1 = medium) and (KF1 = low) and (KF0
= high), then a normal signal is highly likely.

(ii) If (SF0 = high) and (SF1 = high) and (KF1 = high) and (KF0 =
high), then the first arrhythmia signal is highly likely.

(iii) If (SF0 = medium) and (SF1 = low) and (KF1 = low) and (KF0 =
low), then the second arrhythmia signal is highly likely.
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Fig. 24. Features plot for the normal signal.
Fig. 25. Features plot for the first arrhythmia.
(iv) If (SF0 = low) and (SF1 = low) and (KF1 = medium) and (KF0 =
medium), then the third arrhythmia signal is highly likely.

(v) If (SF0 = low) and (SF1 = low) and (KF1 = medium) and (KF0
= low), then the second arrhythmia signal is likely, and the third
arrhythmia signal is highly likely.

As the above rules (i)–(v) are established, evaluation and implemen-
tation of the proposed intelligent fuzzy system are made for a recorded
ECG sample of a third arrhythmia signal from the MIT-BIH database.
18
The implementation results are shown in Figs. 30 and 31, while
multi-dimensional subset decision surfaces are shown in Figs. 32 and
33 for third arrhythmia signals against four selected features SF0, KF0,
SF1, and KF1.

To illustrate the proposed methodology, numerical values of all
four features are calculated for real-time data of a third arrhythmia
signal as reported in Table 10. Fig. 30 shows that 4th and 5th rules
are evaluated for feature SF0, with its calculated value of −2.77. The
linguistic variable ‘‘low’’ defines the first membership function of input
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Fig. 26. Features plot for the second arrhythmia.
Fig. 27. Features plot for the third arrhythmia.
Table 8
Intelligent selection of features for fuzzy rules design.

Signal Selected features

Original 4, 5, 6, 7
Filter bank 1 5, 6, 7
Filter bank 2 6, 7
Filter bank 3 4, 6
Filter bank 4 5, 6, 7
Filter bank 5 4, 6, 7
Filter bank 6 4, 6

feature SF0 of our proposed fuzzy intelligent system as displayed in

Fig. 29(a). If we see all five rules, only the fourth and fifth rules have
19
the feature SF0 = low, and are evaluated under AND operation. All
defined rules are based on AND logic. Hence, these rules are evaluated
only when all the conditions are true. For the particular case of Fig. 30,
a total of eight rules are evaluated for all four features of Table 10. The
MAX inference rule is then applied to get a unique and highest value at
the output. Note that a third arrhythmia signal is highly likely for both
the fourth and fifth rules. Defuzzification results are shown in Fig. 31.

The results presented next define the overall high accuracy of the
proposed intelligent system. This system was also applied to different
recorded samples of the same patients, where the proposed system was
performed with total efficiency. Fig. 34 shows the last 1000 samples of
third arrhythmia patients.
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Table 9
Information about different aspects of the data sets.

Data set Type of data Total of Total of Intelligently selected
instances calculated features features for training

Normal status One-dimension array 36 8 4
First arrhythmia One-dimension array 36 8 4
Second arrhythmia One-dimension array 36 8 4
Third arrhythmia One-dimension array 36 8 4
Fig. 28. Plot for features values of original signals and six filter banks.
Table 10
Features calculation and selection for real-time implementation.

Features for third arrhythmia signal Calculated values

SF0 −2.77
SF1 −2.59
KF0 11.80
KF1 10.60

Features calculation and results from implementation for the last
1000 samples of third arrhythmia patients are presented in Figs. 35
and 36, respectively.

To add more comprehensive evaluations of the results, we have
also considered different portions of the second arrhythmia patient.
The resulting figures with the corresponding degree of membership are
displayed below.

Calculated feature values of the last 1000 samples of the second
arrhythmia patient as input are presented in Fig. 40. Fig. 37 shows
the first 1000 samples of the second arrhythmia patient, and Fig. 38
provides the results where the second arrhythmia patient is highly
likely for the first 1000 samples. Similarly, Fig. 39 sketches the last
1000 samples of the second arrhythmia patient.

Fig. 41 provides the results where the second arrhythmia patient
is also highly likely for the last 1000 samples. Analogously, for the
second arrhythmia patient and the first 1000 samples, the value of
highly likely was 0.818, while for the last 1000 samples, it increased to
0.823. Experiments were repeated 100 times to evaluate the algorithm’s
accuracy, and each time we found reliable results, as reported by
20
the comparison above. We can conclude that our system performs
flawlessly.

4. Conclusions

In this investigation, we have proposed an IoT-based intelligent
health monitoring and diagnosis system for critical cardiac arrhythmia
COVID-19 patients. Our system is divided into two parts: (i) IoT-
based health monitoring/surveillance; and (ii) intelligent design based
on a fuzzy diagnosis system. The intensive care of isolated COVID-
19 patients with critical heart conditions is achieved by designing an
autonomous intelligent feature based on fuzzy logic to detect critical
arrhythmia conditions accurately.

The proposed intelligent system diagnoses different critical arrhyth-
mia conditions for recording different samples of real-time ECG data.
The results have proved the high accuracy of the proposed intelligent
system in detecting critical conditions of third arrhythmia patients. Our
intelligent algorithm has the advantage of its simple structure because it
performs simple calculations. Its practical importance increases because
no complex mathematics is involved in the algorithm’s design. Due
to the reasons mentioned earlier, only a few resources and very little
time is required to complete the detection process in real time, which
minimizes its computational complexity and execution cost.

The proposed algorithm is beneficial for detecting QRS peaks of
ECG data. Another advantage of the proposed algorithm is its ability to
perform various analyses on ECG data. In a real-time implementation,
our intelligent system has obtained satisfactory results for interpreting
the critical variability of heartbeats. Due to all the above advantages,
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Fig. 29. Assignment of membership functions to SF0 (a), SF1 (b), KF0 (c), and KF1 (d).

Fig. 30. Features of the third arrhythmia signal as input.
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Fig. 31. Results of arrhythmia signals being highly likely.
Fig. 32. Decision surface between SF1-SF0 (a) and SF0-KF0 (b).
Fig. 33. Decision surface for diagnosis of arrhythmia patients between SF1 and KF1.
22
the practical importance of the proposed system is justified. This
system is interfaced with low-cost microcontrollers to develop
IoT-based intelligent monitoring for arrhythmia patients. The design
of a fuzzy system in combination with an IoT-based methodology is
helpful for doctors and intensive care personnel of critical COVID-19
patients with cardiac arrhythmia.
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Fig. 34. Last 1000 samples recorded for the third arrhythmia ECG signal.
Fig. 35. Features of the last 1000 samples of the third arrhythmia patient as input.
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Fig. 36. Results of the third arrhythmia patient being highly likely for the last 1000 samples.

Fig. 37. Results of the second arrhythmia patient for the first 1000 samples.
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Fig. 38. Results of the second arrhythmia patient being highly likely for first 1000 samples.

Fig. 39. Results of the second arrhythmia patient for the last 1000 samples.
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Fig. 40. Features values of the last 1000 samples of the second arrhythmia patient as input.

Fig. 41. Results of the second arrhythmia patient being highly likely for the last 1000 samples.
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