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Computer‑aided design 
and 3‑dimensional artificial/
convolutional neural network 
for digital partial dental crown 
synthesis and validation
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The current multiphase, invitro study developed and validated a 3‑dimensional convolutional 
neural network (3D‑CNN) to generate partial dental crowns (PDC) for use in restorative dentistry. 
The effectiveness of desktop laser and intraoral scanners in generating data for the purpose 
of 3D‑CNN was first evaluated (phase 1). There were no significant differences in surface area 
[t‑stat(df) = − 0.01 (10), mean difference = − 0.058, P > 0.99] and volume [t‑stat(df) = 0.357(10)]. 
However, the intraoral scans were chosen for phase 2 as they produced a greater level of volumetric 
details (343.83 ± 43.52  mm3) compared to desktop laser scanning (322.70 ± 40.15  mm3). In phase 2, 
120 tooth preparations were digitally synthesized from intraoral scans, and two clinicians designed 
the respective PDCs using computer‑aided design (CAD) workflows on a personal computer setup. 
Statistical comparison by 3‑factor ANOVA demonstrated significant differences in surface area 
(P < 0.001), volume (P < 0.001), and spatial overlap (P < 0.001), and therefore only the most accurate 
PDCs (n = 30) were picked to train the neural network (Phase 3). The current 3D‑CNN produced a 
validation accuracy of 60%, validation loss of 0.68–0.87, sensitivity of 1.00, precision of 0.50–0.83, 
and serves as a proof‑of‑concept that 3D‑CNN can predict and generate PDC prostheses in CAD for 
restorative dentistry.

The development of artificial intelligence (AI) took place in 1943, but the term “artificial intelligence” was coined 
at a session in Dartmouth in  19561. Within this analogy, deep learning, neural networks, and machine learn-
ing are subsets of the AI. Machines can learn via building of algorithms solving predictive problems without 
human  insights2. The neural networks (NN) used are mathematical non-linear models mimicking the human 
brain in traits of learning and decision making, stimulating human cognitive  skills3. Such NNs can be complex 
with hidden layers can be trained to represent and predict multilayer perceptions processing data with deep 
 learning2. Convolutional neural networks and artificial neural networks are the most used designs to process the 
data in planning prophylaxis, pivotal therapies, and projecting treatment  costs3. Looking onto the near future, 
this technology will lead to the introduction of various new application areas within public domains in the form 
of smart  assistants4. One of the areas that would benefit would be the field of dental medicine opening diverse 
opportunities of routine tasks that were initially performed by dental staff with improved quality in  care5,6.

A priori, AI models have been commonly used for the mapping and finishing of tooth preparations and 
different prosthodontic applications. Computer-aided-design methods have also been used for tooth anatomy 
selection for automated dental restoration designs. Successful casting of metal frameworks, tooth shade selection 
and with porcelain shade matching have been recommended features of AI  models7. Indirect restorations, partial 

OPEN

1Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia. 2Department of Electrical 
and Computer Engineering, North South University, Dhaka, Bangladesh. 3Restorative Dentistry Division, School of 
Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, 
Wilayah Persekutuan Kuala Lumpur, Malaysia. 4School of Dental Sciences, Universiti Sains Malaysia, 16150 Kota 
Bharu, Kelantan, Malaysia. *email: umerdaood@imu.edu.my

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-28442-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1561  | https://doi.org/10.1038/s41598-023-28442-1

www.nature.com/scientificreports/

dental crowns or PDCs (inlays and onlays) have recently begun generating popularity in the ‘minimally invasive 
dentistry’ movement. Reinforcing their proposed advantages, it has been established that gold and ceramic onlay 
preparations resulted in significantly less coronal tooth structure reduction compared with their full-coverage 
equivalents on the same tooth when performed by undergraduate  students8,9. While commercially available 
digital solutions provided CAD assistance to dentists for digital inlay and onlay preparations, most free or open-
source implementation were documented for dentures and larger prostheses as opposed to  PDC10,11. Further-
more, the literature suggested that both the desktop laser scanners and intraoral scanners were accurate devices 
in their own rights and carried out specific features  effectively12–14. The documentations did not however specify 
the ideal device to record input data for digitally recording tooth preparations for PDC and machine learning 
purposes. Considering the missing specific literature, previous reports of open-source CAD design were analyzed 
and modified to develop novel reconstruction workflows suitable for the current research. The workflows were 
revised and simplified, to eliminate the steep learning curve that are commonly reported by dentists welcoming 
clinical  digitization15–17. Therefore, it was deemed appropriate that dentists designed the digital PDCs in CAD 
that would then be used in the machine learning process.

There are various impediments associated with AI or any other technology introduced. Recent medical and 
dental development of technologies have been expensive and were accompanied by unspecified patient compli-
ance and acceptance amongst dental  professionals18,19. Machine learning and neural networks have been proven 
to be successful in classifying and grouping data in a multitude of different fields of medicine and dentistry. In 
the past there have been a few documented methods of tooth preparation detection in teeth from radiographic 
image analysis using deep  learning20. However, the prospect of using 3-Dimensional (3D) data of partial dental 
tooth preparations until now has evaded translational possibilities with 3D medical machine learning still in 
its  infancy21.

The current study aimed to generate an accurate, novel 3D dental prosthetic dataset for 3D convolutional 
neural network (3D-CNN) training purposes. To generate a novel prosthetic dataset, the first challenge was to 
obtain accurate scans of prepared teeth. Based on past experiments, this can be achieved by both a desktop laser 
scanning system and intraoral scanner with no significant difference in surface topography and  precision12,13. 
While both devices use imaging, infrared, and laser sensors to take thousands of images in a fraction of a second 
and compile them into 3D meshes, the key difference lies in the level of triangulation or magnification, with 
intraoral scanners providing larger  magnification12,13. However, no study evaluated the system’s accuracy on 
partial dental crowns and therefore in phase 1, the two systems were virtually compared for which of the two 
generated more accurate 3D models relevant for the current prosthetic design.

The second challenge lay in that dental prostheses can be designed using both free and commercial software, 
with the most prominent differences being the number of features relevant to dentistry and ease of use for the 
human operator. As no previous study documented a comparison between the two options for partial dental 
crowns, in phase 2, the current study recruited two dentists with no previous computer aided design (CAD) 
experience and trained them on the workflows to design partial dental crowns on both the free and commercial 
CAD system. The scanned 3D models were augmented according to published medical AI  practices22 and super-
sampled to produce a larger dataset.

Therefore, the aim of the current study was to analyze different digital workflows to identify the most acces-
sible workflow that can generate accurate novel digital data of partial dental crowns for 3D machine learning 
purposes. It was hypothesized that digital workflows could generate accurate dental data of partial dental crowns 
for 3D machine learning purposes using the proposed workflows.

Results
The development of the convolutional neural network was possible using 3D STL models of tooth preparations 
of partial dental crowns.

Phase 1. All assumptions for normality were met and an independent sample t-test was carried out. There 
were no significant differences in surface area [t-stat(df) = − 0.01 (10), mean difference = − 0.058, P > 0.99] and 
volume [t-stat(df) = 0.357(10), mean difference = 21.25, P = 0.375]. HD values ranged between − 0.02 to 0.10 mm 
with DSC ranging between 0.90 to 0.98. Intraoral scans produced greater volumetric details (343.83 ± 43.52 
mm3) in comparison to desktop laser scanning (322.70 ± 40.15 mm3).

Phase 2. A 3-factor ANOVA produced significant differences for MSA (F-stat = 111.28, P < 0.001) (Table 1) 
and VV (F-stat = 112.91, P < 0.001) (Supplementary Table 1) when type of prosthesis was an independent factor 
with no significant differences in the other factors. There were no significant interaction effects among the 3 
independent factors. However, workflow 1 generated substantially larger surface area (129.63–140.30  mm2) and 
volumes (38.20–39.16  mm3) for inlays for both operators. Analyses of HD (Supplementary Table 2) and DSC 
(Supplementary Table 3) demonstrated significant interchangeable interactions between virtual workflow, clini-
cal operator and type of prosthesis being designed. Workflow 2 produced greater DSC (0.85–0.95) for onlays. 
One 3D model was digitally corrupted at the time of spatial overlap analysis, and therefore the mesh and its three 
counterparts generated by the clinicians from the other workflows were removed prior to statistical evaluation 
to maintain the integrity of the report.

Phase 3. The 30-specimen dataset produced a maximum validation accuracy of 60% in determining the 
type of prosthesis required for each tooth preparation. Validation loss of 0.8748 was seen in tooth preparation 
dataset and 0.6832 in prosthetic dataset. (Supplementary Fig. 1) Sensitivity was 1.00 for both datasets with 3D 
tooth preparation dataset producing a precision of 0.50 while 3D prostheses producing 0.83. Apart from preci-
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sion, every accuracy indicator of the automatic segmentation revealed a distinction between the groups that was 
statistically significant (P < 0.05).

Discussion
The current study aimed to investigate the most reliable workflows to generate novel 3D data for dental machine 
learning purposes and subsequently classify 3D models of partial dental crowns and their tooth preparations 
by training the model using multidisciplinary medical datasets. In addition, this was to validate an innovative 
AI-driven tool for time-efficient and precise automation. To the authors’ knowledge, this is the first study to have 
attempted the said approach. The AI-driven tool demonstrated high accuracy and a fast performance. While 
both scanning apparatuses in phase 1 are considered standard for their respective roles according to previous 
 literature20,21, the current study found substantial differences between intraoral scans and desktop scans indicat-
ing that intraoral scans are more appropriate to detect the line angles and finish lines on the prepared teeth. The 
thin layer of titanium oxide applied may have affected the outcomes, but further validation is required to confirm 
this hypothesis. Unlike radiomic datasets, where clinical experience is critical and dictate the overall success of 
machine  learning23, both workflows in phase 2 produced respectable results when operated by 2 dentists with 
little to no experience with dental CAD. however, surface reconstruction for inlays while Boolean subtraction 
for onlays generated more reliable outcomes supporting the age-old argument of commercial software being 
highly optimized for smaller details while open-source or crowd supported projects being more user accessible 
for general  projects9,10.

Accuracy metrics are widely acknowledged for assessing AI segmentation quality. However, the time as a fac-
tor has received less attention throughout the process, which makes it a pivotal influencer when considering 
its clinical applicability and relevance. The current study was greatly limited by the size of the original dataset 
(n = 6) and the fitting of data in GPU memory optimization. 3D neural network applications require substantial 
graphical computing periods that is still being optimized for the inevitable era of augmented reality and virtual 
metaverse. To tackle this, transfer learning of similar data was investigated with robust techniques like applica-
tion of 3D convolutional  networks24,25. The lack of 3D data for machine learning in dental restorative sciences 
encouraged transfer learning from multidisciplinary lung datasets to train smaller dental dataset. The current 
work demonstrated that 3D images obtained from .stl file data can be directly fed into a 3D neural network 
model instead of regarding the 3D spatial information as a stacked input of 2D based  methods26. A validation 
accuracy of 60% with a validation loss (the sum of errors made for each example in training or validation sets) 
below 1.00 on such a small dataset would indicate promising prospects for further development. Oversampling 
the data in CAD to increase sample size and appointing different practitioners to design the prostheses helped 
introduce minute variations on the 6 specimens which led to the production of 120 specimens. Future studies 
with increased dental sample size, with the current model transferred into the network, and application of the 
promising generative adversarial  networks21 can potentially increase accuracy, lower issues of overfitting, while 
clinically allowing for more targeted machine learning applications in dental diagnostics and treatment planning.

The findings of the current report suggest that the 3D STL models of tooth preparations of partial dental 
crowns can be analyzed and processed using neural networks. However, the main error identified during the 
process for all groups tested was instances of under-estimation or under-evaluation. Such limitations may be 
explained by the presence of artifacts that can produce higher false-positive voxels or wide parameter adjustments 
commonly accompanying neural  networks27,28. At the same time, these errors are unlikely to have detrimental 
impact in a clinical scenario and can be implemented in challenging and complex cases.

Table 1.  Analysis of variance (n = 116) for mesh surface area.

List of independent factors:

1. Type of Prosthesis: F(df) = 111.279(1), P < 0.001
Inlay = Mean ± SD = 112.44 ± 46.05
Onlay = Mean ± SD = 291.65 ± 117.62
2. Virtual Workflow: F(df) = 1.355(1), P = 0.247
Workflow 1 (3matics) = Mean ± SD = 214.59 ± 120.21
Workflow 2 (Meshmixer) = Mean ± SD = 195.68 ± 134.36
3. Clinical Operator: F(df) = 0.018(1), P = 0.894
Operator 1 = Mean ± SD = 206.21 ± 127.48
Operator 2 = Mean ± SD = 204.07 ± 128.19

Operator 1 (Mean ± SD) Operator 2 (Mean ± SD)

Inlay

 Workflow 1 140.30 ± 60.739 129.63 ± 40.131

 Workflow 2 90.298 ± 26.026 89.550 ± 27.355

Onlay

 Workflow 1 285.95 ± 122.64 291.87 ± 119.51

 Workflow 2 296.17 ± 117.45 292.62 ± 122.96

Interaction effect

1. Type of Prosthesis vs. Virtual Workflow: F(df) = 2.211(1), P = 0.140
2. Type of Prosthesis vs. Clinical Operator: F(df) = 0.041(1), P = 0.840
3. Virtual Workflow vs. Clinical Operator: F(df) < 0.001(1), P = 0.995
4. Type of Prosthesis vs Virtual Workflow vs Clinical Operator: F(df) = .081(1), P = 0.776
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The conversion of solid objects into 3D data matrices creates the potential for segmentation, classification, and 
analysis of dental cavities, oral cysts, and neoplastic lesion from models generated directly from 3D radiographic 
imaging. Finally, accurate generation of fillings and crowns through autoencoders (i.e., neural networks that can 
compress and create meaningful information for decoding later) can be performed just by analyzing the cavity 
itself, completely mitigating the need for operator intervention in designing the  prosthesis29. With the availability 
of a larger dataset and at a reduced graphics intensive workload, the use of autoencoders and 3D-CNNs can 
potentially negate the need for an expensive computer setup to run 3D machine learning application and make 
this technology commonplace.

Conclusion
Within the limitations of the study, the findings of the current in-vitro study are as below:

1. Intraoral scans can produce more accurate surface texture details of teeth prepared for partial dental crowns 
than laser scanner-derived 3D images.

2. The study demonstrated that clinicians do not require expensive computer setups or experience with CAD 
to design virtual crown prostheses that are fit to facilitate machine learning.

3. The study serves as a proof of concept that both open-source and commercial CAD workflows can process 
virtual data for tooth preparations which are acceptable for machine learning in restorative dentistry.

4. 3D deep learning can generate and predict partial dental crown restorations appropriate for tooth prepara-
tions in dentistry.

Materials and methods
This study was conducted in compliance with the World Medical Association Declaration of Helsinki on medi-
cal research. Informed consent was taken from all subjects providing tooth samples. All experimental protocols 
were approved by the Joint Ethical Committee/Institutional Review Board at International Medical University 
under Project No. 259/2020. The current experiment was designed and executed in 3 phases as summarized in 
Supplementary Fig. 2.

Phase 1: scanning. Six extracted natural teeth were prepared for inlay and onlay restorations following 
standardized methodology. A mesio-occlusal distal cavity was prepared on the proximal surfaces. The bur was 
kept at 90 degrees to occlusal plane and slightly tilted laterally. The bur was in rotation when applied and did not 
stop rotation until and unless was removed from the tooth. The marginal ridge was thinned out before dropping 
into the proximal box. For the occlusal segment, the line and point angles were defined with buccal and lingual 
walls parallel to each other and at 90 degrees to the occlusal plane. The mesial and distal walls were divergent 
pulpo-occlusally. The bur was moved facially and lingually along the dentino-enamel junction and oriented 
according to the proximal wall directions. The gingival margins were extended  gingivally30. The prepared teeth 
were coated in titanium dioxide spray to reduce surface reflection of ambient light for  scanning31,32.

Each preparation was scanned once using an intra-oral scanner (3Shape; Trios) and once using a desktop 
laser scanner (3D Scanner Ultra HD; Next Engine Santa Monica). The scans were exported as standard tessel-
lation language (STL) files and virtually quantitatively evaluated for likeness in surface contour, geometric and 
volumetric similarities by measuring four separate  parameters33,34: mesh surface area (MSA), virtual volume 
(VV), Hausdorff ’s distance (HD) and Dice Similarity co-efficient (DSC). MSA evaluated the surface contour, 
VV measured the volumetric similarities, HD broke the two objects into points and measured the number of 
interpoint mismatches while DSC measured the volumetric spatial overlap between the two objects. The scanning 
method that produced the best visual (Supplementary Fig. 3) and quantitative results was selected for phase 2.

Phase 2: restoration design. The tooth preparations were categorized according to the type of restoration 
(inlay or onlay) and two workflows were developed for each category of restoration: Workflow 1—Medical grade 
commercial software (3matics; Materialise NV); Workflow 2—Free software (Meshmixer; Autodesk Inc). Inlays 
for medical grade commercial software were designed following the ‘surface construction’ principles (Fig. 1), 
as documented in a previous  literature11,35. The inlay design for free software (Supplementary Fig. 4) and onlay 
designs for both commercial (Fig. 2) and free software (Supplementary Fig. 5) followed the ‘Boolean subtraction’ 
principles, as previously  documented36. Virtual crown templates were obtained from scanned physical restora-
tions on dental casts and were used to reconstruct the onlay  cusps9,10,37.

The process and commands for the restorations in both workflows were video recorded using low detail prac-
tice crown templates and documented in text (Supplementary file). The videos and template files were provided to 
two dentists with no prior experience in CAD-based rehabilitation to offset potential operator dependent  biases36. 
The dentists practiced digital rehabilitation using the templates at their convenience for one week before being 
introduced to the actual crown templates as selected and designed by a certified prosthodontist. This process was 
followed to discourage memorized familiarity-induced  fatigue38. The six specimens were digitally oversampled 
five times introducing incremental variations in tooth preparation size and depths to facilitate a machine learning 
model trained using a larger variation in tooth preparations. This resulted in 30 samples (Supplementary Fig. 6) 
assigned to each workflow, thereby producing 120 samples (60 from each dentist). This graphics intensive task of 
oversampling was undertaken on a computer (ROG Flow  X13; Asus) sporting an AMD Ryzen 7 5800HS proces-
sor, 16 GB of RAM, NVIDIA GTX 1650 max-Q design dedicated graphics and a thermal design power (TDP) 
of 30 W. However, to standardize the evaluation and keep it practically relevant, both practitioners designed all 
the prostheses on a personal computer (Idea pad Flex 5; Lenovo) with an intel Core i5 1135g7 processor, 8 GB 
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of RAM and 512 GB of NVM.e solid state drive, no dedicated GPU, and a TDP of 15 W, reflecting an average 
modern day laptop computer of 2022. The workflows with the most consistent and favorable MSA, VV, HD and 
DSC values were evaluated, and the best performing workflows as determined by greater surface area, volumetric 
similarities, and spatial overlap, were selected to train the machine learning model in Phase 3.

Phase 3: deep learning from 3D data. 30 specimens and their corresponding restorations from the 
best workflows were selected for transfer learning and machine learning application and sliced into 2D seg-
ments (Supplementary Fig. 7) and later appended into readable 3D matrix. A 17-layer 3D convolutional neural 
network (CNN) of four 3D layers implemented at a kernel size of 3 × 3 ×  339. The 17-layer CNN had a frozen 
feature extraction block consisting of 13 layers and a classification block consisting of four layers. The first two 
layers consisted of 64–128 and 256 filters with each CNN layer followed by a 2-stride max pool layer and a ReLU 
activation which ends with batch normalization (BN) layer. The classification block had 512 neurons of dense 
‘Flatten’ layer followed by a 60% ‘Dropout’ layer and finally ‘SoftMax’ layer. The primary dataset for training was 
obtained from the Image CLEF Tuberculosis 2019  dataset40 and frozen after obtaining a 73.3% validation accu-
racy. 132,097 trainable parameters were transferred to train the current dataset. The dental dataset was broken 
down to 2:1 ratio for training and validation. Training was done for 100 epochs with planned termination set 
should validation accuracy not improve beyond 15 epochs. The developed 3D network has been highlighted in 
Fig. 3.

Figure 1.  Workflow 1 for inlay design with respective commands: (A) 3D model loaded into 3-matics, (B) 
curvature analysis and curve creation on model surface, (C) surface reconstruction function to bridge defect , 
(D) hollow the model and trim down, (E) manual trimming of isolated segments, (F) apply wrap function, G) 
manually trim after wrapping, (H) manually trim any overhangs, (I) check fit onto 3D preparation model, (J) 
fine smoothing of edges, (K) final wrap and apply autofix function to fix any defects, (L) final output.
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Figure 2.  Workflow 1 for onlay design: (A) import 3D tooth preparation, (B) superimpose crown template, (C) 
import and scale block template, (D) perform Boolean union, (E) trim excess, (F) check contour for overhang, 
(G) perform Boolean intersection, (H) remove excess, (I) contour edges, (J) crown shaping through manual 
trim, (K) edge smoothing, (L) sculpt and smooth.

Figure 3.  The 3D neural network.
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Statistical analysis. Sample size estimation for a healthy evaluation for MSA, VV, HD, and DSC was car-
ried out using G*Power41. A large effect size f = 0.40, α = 0.05, power = 0.85 determined a minimum sample size of 
108 digital specimens. A 3-way analysis of variance (ANOVA) with pairwise comparison and interaction effects 
was applied to MSA, VV, HD, and DSC for the purpose of determining the best outcomes from Phase 2 from 116 
specimens. This was carried out using a statistical software (SPSS, IBM Corp.)

Data availability
The data supporting the findings of this study are available within the article and its Supplementary Information 
file. Source data are provided with this paper.
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