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Abstract

BACKGROUND—The DNA-repair enzyme Artemis is essential for rearrangement of T- and
B-cell receptors. Mutations in DCLREIC, which encodes Artemis, cause Artemis-deficient
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severe combined immunodeficiency (ART-SCID), which is poorly responsive to allogeneic
hematopoietic-cell transplantation.

METHODS—We carried out a phase 1-2 clinical study of the transfusion of autologous
CD34+ cells, transfected with a lentiviral vector containing DCLREIC, in 10 infants with newly
diagnosed ART-SCID. We followed them for a median of 31.2 months.

RESULTS—Marrow harvest, busulfan conditioning, and lentiviral-transduced CD34+ cell
infusion produced the expected grade 3 or 4 adverse events. All the procedures met pre-specified
criteria for feasibility at 42 days after infusion. Gene-marked T cells were detected at 6 to 16
weeks after infusion in all the patients. Five of 6 patients who were followed for at least 24
months had T-cell immune reconstitution at a median of 12 months. The diversity of T-cell
receptor B chains normalized by 6 to 12 months. Four patients who were followed for at least 24
months had sufficient B-cell numbers, IgM concentration, or IgM isohemagglutinin titers to permit
discontinuation of IgG infusions. Three of these 4 patients had normal immunization responses,
and the fourth has started immunizations. Vector insertion sites showed no evidence of clonal
expansion. One patient who presented with cytomegalovirus infection received a second infusion
of gene-corrected cells to achieve T-cell immunity sufficient for viral clearance. Autoimmune
hemolytic anemia developed in 4 patients 4 to 11 months after infusion; this condition resolved
after reconstitution of T-cell immunity. All 10 patients were healthy at the time of this report.

CONCLUSIONS—Infusion of lentiviral gene-corrected autologous CD34+ cells, preceded by
pharmacologically targeted low-exposure busulfan, in infants with newly diagnosed ART-SCID
resulted in genetically corrected and functional T and B cells. (Funded by the California

Institute for Regenerative Medicine and the National Institute of Allergy and Infectious Diseases;
ClinicalTrials.gov number, NCT03538899.)

SEVERE COMBINED IMMUNODEFICIENCY (SCID), characterized by a lack of T lymphocytes with
a lack of or nonfunctional B lymphocytes, is genetically heterogeneous: it is caused by a
defect in any one of approximately 20 genes.12 Population-based newborn screening has
established that SCID occurs in approximately 1 in 65,000 births (95% confidence interval,
1in 51,000 to 1 in 90,000) in the United States.3* Artemis-deficient SCID (ART-SCID),
resulting from mutations in the gene DCLREIC (DNA cross-link repair 1C), constitutes 2
to 3% of all SCID. It has a high incidence among persons of Navajo or Apache descent and
in certain consanguineous populations and shows poor response to treatment by allogeneic
hematopoietic-cell transplantation (HCT).5~" In the absence of normal levels of functional
Artemis protein, the repair of double-strand DNA breaks is compromised, which results

in a T-cell-negative, B-cell-negative, natural killer (NK) cell-positive immunophenotype
— arising from arrested V(D)J recombination of T and B lymphocytes — and increased
systemic sensitivity to alkylating agents typically used as pre-HCT conditioning.8

Treatment of ART-SCID by HCT, even with an HLA-matched sibling, is less likely to
achieve T- and B-cell reconstitution than are other SCID genotypes treated by HCT.”® HCT
from unrelated or haplocompatible related donors also has an elevated risk of graft rejection
and graft-versus-host disease (GVHD) and a decreased likelihood of B-cell reconstitution
among persons with ART-SCID. Although high-dose alkylators improve engraftment and
immune reconstitution, they often cause late adverse effects in patients with ART-SCID,
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including short stature, dental maldevelopment, endocrinopathies, and premature death.10
The administration of gene-transduced autologous CD34+ hematopoietic stem cells (HSCs),
which eliminates the risk of graft rejection and GVHD, is therefore a compelling alternative
to allogeneic HCT.

Studies of gene therapy for X-linked SCID and SCID associated with adenosine deaminase
deficiency have shown that some conditioning is necessary to open marrow niches for
engraftment of gene-corrected HSCs.11-14 In mouse models of ART-SCID, conditioning to
open marrow niches was similarly necessary for engraftment,1> but low-dose busulfan was
sufficient.16

We previously showed in Artemis-deficient mice that physiologic levels of Artemis

protein were critical for cell survival.l” DCLREIC complementary DNA (cDNA) that was
expressed under control of a strong promoter had less efficacy with respect to immune
reconstitution than expression under the physiologic human Artemis promoter.1” Therefore,
our new lentiviral construct, AProArt, contains the human DCLREIC cDNA driven by a
1-kb endogenous DCLREIC promoter sequence.118 This use of an autologous promotor
and reduced exposure to busulfan are key characteristics of this study of AProArt-transduced
autologous CD34+ bone marrow cells to treat infants with newly diagnosed ART-SCID.

METHODS
PATIENTS AND CLINICAL INTERVENTION

The protocol for this phase 1-2, nonrandomized, single-center clinical study was approved
by the Food and Drug Administration and the University of California, San Francisco
(UCSF), institutional review board and is available with the full text of this article at
NEJM.org. Written informed consent was obtained from the parents of each child. Ten
infants with newly diagnosed ART-SCID who lacked an HLA-matched sibling donor were
enrolled and treated at UCSF between June 2018 and September 2021. Three older patients
with insufficient immunity after allogeneic HCT were also treated; data from these patients
are being analyzed.

Care of patients was managed in the UCSF Benioff Children’s Hospital Blood and
Marrow Transplant Unit and followed standard guidelines for autologous HCT. After

the manufacture, cryopreservation, and quality-control testing of the gene-transduced
autologous CD34+ cells, patients received intravenous busulfan targeted to a blood
cumulative area under the curve (AUC) of 20 mg x hour per liter administered over a
period of 2 days. The first dose was calculated from a pharmacokinetic model based

on age and weight.1® First-dose pharmacokinetic data were used to adjust the second
dose. Pharmacokinetic samples after the second dose allowed calculation of each patient’s
cumulative AUC. One day later, the gene-corrected cells were thawed and infused.

Measurements of immune reconstitution and gene marking began 4 weeks after infusion,
with T-cell receptor (TCR) diversity and vector insertion-site analysis beginning 12 weeks
after infusion. Follow-up evaluations occurred monthly through month 6, every 3 months
through month 24, and less often subsequently. Results that were obtained through June 30,
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2022, are reported here. The authors vouch for the accuracy and completeness of the data
and for the fidelity of the study to the protocol.

PRODUCT MANUFACTURING

The AProArt vector, described previously,1> was produced at the University of Indiana
Vector Production Facility. Bone marrow (20 ml per kilogram of body weight) that was
collected while the patient was under general anesthesia was enriched for CD34+ cells
(CliniMACS machine, Miltenyi Biotec) according to the manufacturer’s instructions. In
accordance with the protocol, patients received a transfusion of red cells before marrow
harvest for a hemoglobin level of less than 10 g per deciliter, and all the patients

received a transfusion (from the same donor) after marrow harvest. The CD34+ cells were
cultured overnight in RetroNectin (Takara Bio)—coated plates with recombinant human
thrombopoietin, human stem-cell factor, human Fms-like tyrosine kinase receptor 3 ligand,
and interleukin-3. The cells were transduced with AProArt for 6 to 8 hours on each of

the following 2 days, after which they were cryopreserved in liquid nitrogen, with aliquots
reserved for testing.

PATIENT CELL LINEAGE SEPARATION

Blood samples were prepared as described previously.1®> They were sorted by means of flow
cytometry (JAZZ sorter, Becton Dickinson) into lineages of myeloid cells (CD14+/CD15+),
T cells (CD3+), B cells (CD19+), and NK cells (CD3-/CD19-/CD56+).

VECTOR COPY NUMBER AND TRANSDUCTION EFFICIENCY

DNA from lineage-isolated cells was analyzed by means of droplet digital polymerase-
chain-reaction (PCR) assay with primers specific for the AProArt vector and a region of the
albumin gene to generate mean vector copy number (VCN) per cell.1®> AProArt-transduced
CD34+ cells that were cultured in myeloid colony-forming methylcellulose were pooled
for VCN determination, and 100 14-day colonies were assayed individually to calculate the
percentage positive for the vector sequence (transduction efficiency).15

IMMUNE RECONSTITUTION

We defined immune reconstitution as the meeting of three of four criteria: at least 1000
CD3+ cells per cubic millimeter, at least 500 CD4+ helper T cells per cubic millimeter,

a percentage of naive CD4+ cells of at least 20% of total CD4+ cells, and a lymphocyte
proliferative response to phytohemagglutinin of at least 50% of the lower limit of the
reference range. We assayed, by means of flow cytometry, T- and B-cell subsets and the
proliferative responses of CD3+ and CD45+ cells to phytohemagglutinin. B-cell function
was determined by serum IgM concentration, IgM isohemagglutinin titers, and, after
discontinuation of immune globulin infusions, specific antibody titers after vaccinations.
The diversity of TCR g-chain (TCRp) repertoire and number of vector insertion sites were
determined through deep DNA sequencing (see the Supplementary Appendix, available at
NEJM.org).
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STUDY DESIGN

Results
PATIENTS

The first (stage 1) measure of treatment success was the safe administration of busulfan and
transduced cells, determined at 42 days after infusion. We assessed feasibility, safety, post-
conditioning recovery, and evidence of early engraftment of transduced cells without adverse
events of grade 3 or higher (adapted National Cancer Institute Common Terminology
Criteria for Adverse Events, version 5.0). Feasibility was defined as having at least 2x10°
infused AProArt-transduced CD34+ cells per kilogram with a mean VCN of at least 0.2 and
less than 10 copies per cell; an absolute neutrophil count of more than 500; a platelet count
of more than 20,000 with no clinical bleeding and without platelet transfusion; and no grade
3 or 4 adverse events not associated with busulfan treatment, collection of cells, or infusion.
The second (stage 2) measure of treatment success was functional T-cell reconstitution at
month 12.

The median follow-up for the 10 patients was 31.2 months (range, 10.0 to 48.9) (Table 1).
There were no deaths. Four patients were of Navajo or Apache descent and homozygous for
the founder DCLREIC mutation (c.597C—A; p.Tyr199X).> Six patients had combinations
of previously reported missense and gross deletion mutations (Table 1 and Table S1 in

the Supplementary Appendix).20-21 Patients ART003 and ART012 had novel heterozygous
variants of unproven significance in addition to heterozygous variants on opposite parental
alleles previously reported to be pathogenic; however, skin fibro-blasts from each patient had
a radiation sensitivity that was rescued after AProArt transduction, findings that support that
the variants were causal (data not shown).1>

The sex, race, and ethnic group of the patients (with a predominance of Navajo or Apache
descent) were representative of persons affected by this very rare autosomal recessive
disorder (Table S2). Nine infants received a diagnosis after newborn screening for SCID;

8 were free of infections before gene therapy (Table 1). Ilinesses included transplacental
maternal T-cell chimerism with grade 2 or 3 GVHD that involved the liver or skin and
warranted systemic immunosuppression (Patients ART009, ART012, and ART013) and
perinatally acquired cytomegalovirus (CMV) infection (Patient ART010), which progressed
to encephalitis and warranted multiple antiviral medications and twice-weekly infusions of
third-party CMV-specific cytotoxic T cells (provided by Richard O’Reilly, M.D., Memorial
Sloan Kettering Cancer Center). The CMV in Patient ART010 cleared as T-cell immunity
reconstituted. However, subsequent waning of T-cell numbers with recrudescence of CMV
viremia led to a second treatment with autologous AProArt-transduced CD34+ cells 12
months after the initial treatment (Fig. S1). Data from this patient were censored from
further analysis.

STUDY END POINTS

A total of 10 patients met our criteria for feasibility of the procedure at 42 days after
infusion. Of the 9 patients with at least 12 months of follow-up, 4 met our criteria for T-cell
immune reconstitution at 12 months.
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INFUSIONS AND ACUTE TOXIC EFFECTS

The median age at infusion of gene-transduced cells was 2.7 months (range, 2.3 to 13.3)
(Table 1). The median busulfan cumulative AUC was 19.0 mg x hour per liter (range, 17.6 to
20.2). The median CD34+ cell dose was 7.7x108 per kilogram (range, 2.2 to 12.1), and the
median VCN in the delivered cells was 2.5 copies per cell (range, 1.6 to 3.9). The median
transduction efficiency was 78% (range, 62 to 84). Busulfan toxicity manifested as transient
blood cytopenias only; nadir neutrophil counts occurred at 13 to 21 days (Table 1 and Fig.
S2). Consistent with noninfectious mucosal ulcerations known to occur in ART-SCID,22 four
patients (two of Navajo descent) had oral ulcers that appeared before or more than 42 days
after busulfan conditioning; the ulcers responded to topical glucocorticoids and resolved
after T-cell immunity was restored. Six patients had neutropenia (as seen in other genetic
forms of SCID13), which responded to granulocyte colony-stimulating factor and resolved
on immune reconstitution.

IMMUNE RECONSTITUTION

Gene-marked (VCN, =0.01) CD3+ T cells were detected at a median of 12 weeks (range,

6 to 16) in all 10 patients, and 5 of 6 patients followed for at least 24 months had

cellular immune reconstitution at a median of 12 months (range, 6 to 24) (Fig. 1 and Table
2).1.7.13.24 | evels of CD3+, CD4+, and CD8+ T cells, naive CD4+ T cells, and regulatory T
cells (Tregs) increased over a period of 9 months after infusion (Fig. 1).7+23 T-cell-receptor
excision circles (a product of the recombination of TCR genes, which takes place during
normal T-cell differentiation) were detected 3 to 6 months after infusion, and their numbers
increased in parallel with naive T cells (Fig. S3). Lymphocyte proliferation in response to
phytohemagglutinin normalized by 9 months in all the patients except Patient ART010, who
had ongoing CMV infection (Fig. S4). Improvements in TCR diversity were evident (Fig.
2 and Fig. S5), with scores on the Shannon index and equitability index and scores for
information density stabilizing by 6 to 12 months after infusion at levels similar to those of
healthy adults.2®

B cells were detected by means of flow cytometry and gene marking (VCN, =0.01) in all

10 patients at a median of 6 weeks (range, 4 to 10); in 1 patient (ART009), the levels
subsequently declined (Table 2). Three patients (ART001, ART002, and ART007) had
normal IgM concentrations and responses to immunizations at 24 months after infusion. At
the time of this report, a fourth patient (ART008) had normal IgM and isohemagglutinin
titers, no longer received 1gG infusions, and had started immunizations (Fig. 1 and Table
2). Three additional patients (ART003, ART009, and ART012) had pre-B cells, immature B
cells, and plasma-blasts (Fig. S6).

Table 2 shows the status of the 10 patients at their last evaluation (with data on Patient
ARTO010 censored at 12 months). Nine had 34 to 77% CD3+/CD4+/CD45RA+/CCR7+
naive T cells and normal lymphocyte proliferative responses. All 10 patients had IgM in
their blood; 4 had normal levels for their age.

N Engl J Med. Author manuscript; available in PMC 2023 January 29.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Cowan et al. Page 7

GENE MARKING AND INSERTION-SITE ANALYSIS

Gene-marked peripheral-blood mononuclear cells were identified 1 month after infusion in
all 10 patients (data not shown). In 8 patients, the VCN in T and B cells was 3 to 5 copies
per cell by 6 months (Fig. 3). The mean VCN per cell in other lineages varied from 0.05 to
0.2 in myeloid (CD14+/15+) cells and 0.05 to 0.3 in NK cells (Fig. 3).

The distributions of vector insertion sites in six patients at least 12 months after infusion
showed no evidence of clonal expansion in sorted subset populations (Fig. S7). Insertion
sites did not cluster near reported oncogenes,26-28 and Venn diagrams revealed insertion
sites common to both myeloid and lymphoid lineages, findings consistent with transduction
of hematopoietic stem cells.

ADVERSE EVENTS

Serious adverse events are shown in Table S3. A total of 40 nonserious adverse events were
considered by the investigators to be possibly, probably, or definitely related to the study
treatment (Table S4); 23 of them were of grade 1 or 2. Of the 17 grade 3 or 4 adverse

events, 16 were cytopenias, the timing of which supports marrow harvest or busulfan as
being causal; 1 was auto-immune hemolytic anemia (AIHA). AIHA developed 4 to 11
months after infusion in four of the nine patients evaluable at least 12 months after infusion.
All had IgM warm antibodies and had positive results on Coombs’ antiglobulin testing.
Patient ART001 was hospitalized, whereas Patients ART009 and ART010 received immuno-
suppression on an outpatient basis, and Patient ART002 recovered without treatment. CMV
infection was associated with AIHA in Patients ART002 and ART010.

DISCUSSION

The lentiviral construct that was used in this gene-insertion therapy included the natural
human Artemis promoter to avoid toxic overexpression of Artemis'’+18 and yet yield
sufficient, therapeutic levels of Artemis protein.?? Results show strong T-cell numbers and
function and TCRA diversity in 5 of 6 patients at least 24 months after infusion. Moreover,
B cells developed in all 10 patients, permitting the discontinuation of immune globulin
infusions in 4 of the 6 patients followed for at least 24 months. Three patients who were
followed for fewer than 24 months had B cells at all maturational stages. In a previous study,
only 3 of 16 patients with ART-SCID who received allogeneic HCT had re-constitution of
B-cell immunity.? B-cell counts in all 16 patients at last follow-up were less than 1 per cubic
millimeter to 15 per cubic millimeter.

Infused CD34+ cells had mean VCNs of 1.6 to 3.9 copies per cell and generally higher
VCNs in differentiated T lymphocytes (1.5 to 5.0 copies per cell) and B lymphocytes (1.5 to
5.2 copies per cell) (Table 1 and Fig. 3), findings consistent with a requirement for Artemis
expression for antigen receptor recombination and T- and B-cell maturation. However, it
may be that not every inserted vector copy is active, and the study was too small and
follow-up time too short to permit meaningful tests of correlation between infused CD34+
cell numbers or transduction efficiency—specific and lineage-specific VCN and immune

N Engl J Med. Author manuscript; available in PMC 2023 January 29.
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recovery. The vector insertion sites were diverse, across cells and patients, without evidence
of clonal expansion or cancer.

The low mean VCN in myeloid and NK cells as compared with that in T and B cells
probably reflects the fact that low-exposure busulfan was not myeloablative and that a

large component of pretreatment, nontransduced cells remained, which diluted the VCN

in myeloid and NK cells. Another factor is that in contrast to T- and B-cell lineages,

which require Artemis protein for re-arrangement of T- and B-cell receptors, gene-corrected
myeloid and NK lineages have little or no selective advantage.

Of the six patients whom we followed for at least 24 months after infusion, four met criteria
for stopping immune globulin infusions. Three have been fully immunized and produced
protective antibodies, and the fourth has started immunizations. All four had higher B-cell
numbers than the two patients still receiving immune globulin infusions. Moreover, each

of the four had B cells in various stages of maturation, whereas those receiving immune
globulin infusions did not. However, the patients were too few and the follow-up too short
to reveal possible relationships between gene marking in non-lymphoid lineages and B-cell
reconstitution. There was no correlation between B-cell reconstitution and treatment-related
variables — for example, CD34+ cell dose, busulfan exposure, graft VCN, or the number of
transduced cells.

Pharmacologically targeted busulfan at approximately 25% of the standard exposure
appeared to be safe, causing only expected transient blood cytopenias in this radiation-
sensitive SCID, which is fortunate, because opening marrow niches is essential to achieve
multilineage engraftment and full immune reconstitution.11:13.14 |_onger follow-up to assess
dental development, growth, and endocrinopathies is planned. In addition, on the basis of
the four patients with B-cell reconstitution, it appears that engraftment of fewer than 15%
gene-corrected hematopoietic stem cells (as estimated by mean VCN in myeloid cells) can
produce T- and B-cell reconstitution (Fig. 3). T and B cells developed in all the patients in
this study, and all the patients survived, whereas not all patients with ART-SCID who receive
alternative-donor or matched-sibling allogeneic HCT survive.”

Patient ART010, who did not have reconstitution of adaptive immunity despite receiving
10.4x108 CD34+ cells per kilogram (VCN, 2.9 copies per cell), had CMV infection before
infusion that progressed to CMV encephalitis while receiving anti-CMV therapy. High-dose
ganciclovir3® and CMV infection3! may have hindered immune reconstitution, warranting

a second infusion of gene-transduced CD34+ cells. At the last follow-up, the patient was

not receiving anti-CMV therapy and had unquantifiable CMV on PCR assay, rising T- and
B-cell numbers, normal T-cell function, and a stable mean VCN in T and B cells. In one trial
of lentiviral gene therapy for newly diagnosed X-linked SCID, the only patient who received
a second treatment also presented with CMV.13

AIHA developed in 4 of 9 participants at least 1 year after infusion; the early appearance of
B cells before T-cell reconstitution including Tregs may be responsible, although the study
was too small for a definitive assessment. AIHA is a known complication of allogeneic
HCT.32 In addition, AIHA was reported in 3 of 19 previously treated patients and in
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2 of 24 previously untreated patients with X-linked SCID undergoing autologous gene
therapy (Malech H, National Institutes of Health, and Mamcarz E, St. Jude Children’s
Hospital: personal communications). Although the incidence appears high in our study, 2
of the 4 patients had CMV infection when AIHA developed,33 1 of whom warranted no
immunosuppression and 1 of whom was treated with sirolimus. Further follow-up with a
larger sample size will be necessary to characterize AIHA in this patient population.

In this study, we treated 10 patients with newly diagnosed ART-SCID by infusing
autologous lentiviral-transduced CD34+ cells after conditioning with pharmacologically
targeted low-exposure busulfan. We found that this approach restored immunity and was
safe (within the context of the disease and alternative approaches) and conclude that further
studies are warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lymphocytes and Lymphocyte Subsets after Infusion of Autologous L entiviral-
Transduced CD34+ Cells.

Shown are cells per cubic millimeter of peripheral blood. The values that were used to define
T-cell immune reconstitution (dashed lines) are as follows: CD3 T cells, more than 1000 per
cubic millimeter; CD4 T cells, more than 500 per cubic millimeter; CD8 T cells, more than
300 per cubic millimeter; and naive CD4 T cells, more than 200 per cubic millimeter.”13
The mean number of regulatory T cells for children 10 to 48 months of age is 60 per cubic
millimeter (range, not available).23
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Figure 2. Diversity of T-Cell Receptor f-Chain Variable Sequences at Baseline and after Infusion
of CD34+ Gene-Corrected Cells.
Panel A shows hierarchical tree maps of sequence diversity in Patients ART007 and ART009

from baseline to 36 months after infusion. Panel B shows serial measurements of scores

on the Shannon index (the range includes all numbers >0), scores on the equitability index
(range, 0 to 1), and scores for information density (range, 0 to 1); for all three scales, higher
values indicate greater diversity. Scores on all three scales increased during the first 6 to

12 months after infusion, and these increases were then sustained. Details are provided in
Figure S5 in the Supplementary Appendix.
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Figure 3. Gene Marking in Peripheral Blood Cells after Infusion of Autologous L entiviral-
Transduced CD34+ Cells.

Subpopulations of peripheral-blood mononuclear cells were sorted after staining for the
following cell-surface markers: T cells, CD3+; B cells, CD19+; myeloid cells, CD14+/
CD15+; and natural killer cells, CD3-/CD19-/CD56+.
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