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a b s t r a c t

Disease detection from smartphone data represents an open research challenge in mobile
health (m-health) systems. COVID-19 and its respiratory symptoms are an important
case study in this area and their early detection is a potential real instrument to
counteract the pandemic situation. The efficacy of this solution mainly depends on
the performances of AI algorithms applied to the collected data and their possible
implementation directly on the users’ mobile devices. Considering these issues, and the
limited amount of available data, in this paper we present the experimental evaluation of
3 different deep learning models, compared also with hand-crafted features, and of two
main approaches of transfer learning in the considered scenario: both feature extraction
and fine-tuning. Specifically, we considered VGGish, YAMNET, and L3-Net (including 12
different configurations) evaluated through user-independent experiments on 4 different
datasets (13,447 samples in total). Results clearly show the advantages of L3-Net in
all the experimental settings as it overcomes the other solutions by 12.3% in terms of
Precision–Recall AUC as features extractor, and by 10% when the model is fine-tuned.
Moreover, we note that to fine-tune only the fully-connected layers of the pre-trained
models generally leads to worse performances, with an average drop of 6.6% with respect
to feature extraction. Finally, we evaluate the memory footprints of the different models
for their possible applications on commercial mobile devices.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

COVID-19 pandemic largely changed our lives, not only for the impact of the disease on the entire world population,
ut also for an emerging perception of human weaknesses to the virus’s spread and the dependency on the limitations of
ational healthcare systems. In the last couple of years, people became more conscious of the risks, and they increased
heir trust in digital solutions aimed at counteracting and mitigate the pandemic. The digital solutions proposed by
esearchers are mainly characterized by a massive use of Artificial Intelligence (AI) technologies and big data [1,2]; data
erived from clinical analysis (e.g., blood test [3], X-ray and lung CT images [4]), but also from commercial personal and
earable devices collecting physiological and/or audio signals [5].
Mobile health (m-health) systems have the potentiality to become scalable and low-cost solutions for fast screening,

imed at recognizing the onset of new COVID-19 cases, thus possibly preventing new outbreaks. To this aim, they have to
ely on smartphone-embedded sensors, especially microphones, to recognize or distinguish the main COVID symptoms,
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like cough and breath, from those of either other pathologies or healthy conditions. We investigated previous works
in the literature, and we found interesting preliminary works. Schuller et al. [6] have been the first to investigate how
the automatic analysis of speech and audio data can contribute to fight the pandemic crisis, presenting the potential
of Computer Audition techniques (CA, i.e., computer-based speech and sound analysis) [7]. Subsequently, researchers
investigated the effective applicability of those techniques in real scenarios. The main difficulty they encountered was the
collection of objective data from large populations. Initial studies focused on small patients’ cohorts [8] even though the
target of the work would require a huge amount of data that could not be collected rapidly. The authors of [8] presented
both a preliminary evaluation of a cough detector system aimed at distinguishing cough signals from noise, and an AI tool
for COVID-19 diagnosis based on data collected from 70 subjects in controlled environments. Other works released mobile
and web apps to directly collect crowdsourced datasets from the population [9–11]. Some of them focused only on cough
audio data, while others introduced also speech signals, trying to improve the classification performances. Respiratory
sound samples (e.g., cough and breath) are generally processed by using standard modeling procedures proposed in the
CA literature to extract different sets of features (referred as hand-crafted acoustic features) [12]. Different Deep Learning
(DL) approaches have been proposed [13,14], including the use of pre-trained models for latent features extraction from
raw audio signals, also called deep audio embeddings, to enrich standard CA features [9].

In our previous paper [15], we investigated the feasibility of using a novel embedding model called Look, Listen and
Learn (L3-Net) [16] to improve the detection of COVID-19 from respiratory sounds data, including both coughing and
breathing recordings. Specifically, we employed a pre-trained version of L3-Net to extract latent features from audio files,
thus relying on transfer learning to characterize raw audio samples in a low-dimensional space, which highlights the
differences among the data. By comparing L3-Net performances with the other proposed models, we demonstrated that
it overcomes the others in several standard metrics, scoring an overall gain of 28.57% of AUC, 23.75% of Precision, and
39.43% in terms of Recall.

In this work, we present a more thorough investigation of possible solutions to efficiently detect COVID-19, comparing
the use of hand-crafted acoustic features and two different transfer learning techniques aimed at adapting pre-trained DL
models: feature extraction and fine-tuning. Specifically, we can summarize the novel contributions of this work as follows:

• We evaluate the effectiveness of detecting COVID-19 from respiratory sounds data by using both hand-crafted
acoustic features and deep audio embeddings extracted by 3 state-of-the-art pre-trained DL models: VGGish,
YAMNET, and L3-Net;

• We study in details L3-Net, evaluating its classification performances based on different model’s configurations;
• We compare the two main approaches of transfer learning for model adaptation, i.e., features extraction and

fine-tuning, identifying their advantages and drawbacks in our application scenario;
• We perform an extensive evaluation of the considered solutions through a series of user-independent experiments

by using 4 different benchmark datasets, which correspond to 8726 data samples more than those we used in our
previous work;

• Finally, we study the memory footprint of both transfer learning approaches, thus evaluating their feasibility of being
entirely executed on mobile devices.

The remainder of the paper is organized as follows. Section 2 presents the related work. In Section 3, we describe in
details the procedure we follow to compare the different approaches for COVID-19 detection, including pre-processing
of the raw audio sample, hand-crafted features extraction, and the use of deep audio embeddings models relying on the
two transfer learning techniques. Then, Section 4 outlines the experimental setup we adopt to evaluate the classification
performance of the considered approaches, and presents the obtained results. In Section 5, we evaluate the memory
footprint of the two transfer learning techniques, considering their implementation on mobile devices. Lastly, in Section 6,
we draw our conclusions and present some directions for future works.

2. Related work

It is largely recognized in literature that the use of deep learning techniques (namely, Convolutional Neural Networks,
CNNs) for solving audio classification problems typically obtains better performances than classical ML methods [17].
However, labeled datasets available for research on the application of ML to automated COVID-19 detection usually involve
just a few hundreds of samples. In such cases, transfer learning is the main technique for system training so as to achieve
good predictions in case of scarce labeled samples [18]. Leveraging transfer learning with CNNs for audio classification
problems is studied in some papers. In [19], the usage of both image and sound CNNs is studied. In the former case, data
samples are image-based sound representations such as spectrograms. Exhaustive experiments are conducted, which
show that both hyper-parameters and the choice of the retrained part of the neural network impact on accuracy and
retraining time, but in all the cases transfer learning yields better results than training a CNN from scratch. The sound
CNNs (namely VGGish and YAMNet [20]) obtained better results than image CNNs (GoogLeNet, SqueezeNet, ShuffleNet)
with all the considered datasets.

Transfer learning leverages neural networks, pre-trained on large sets (millions) of generic labeled objects, as a starting
point. Let G be the generic dataset used to pre-train the network N , and S the dataset specific to the considered
2



M.G. Campana, F. Delmastro and E. Pagani Pervasive and Mobile Computing 89 (2023) 101754

t
a
f
a
N

t
a
o
a
b
o
f
k
p
a
f
t
a
h

i
l
c
t
I
s
b
a
c
C
o
o
t

l
m
r
b
b
a
C
r
t
e
a
t
e

a
s
v
T
i
t
s
a
a
t

a

classification problem. Two techniques are mainly used for transfer learning: either feature extraction or fine-tuning. In
he former, the first n layers of N – usually stopping prior the fully-connected layers – receive as input the data in S ,
nd their outputs are used as features of the objects in S. Thanks to the pre-training of N , these should be the relevant
eatures of S objects. The remaining layers are then trained for the specific classification problem. In the latter, the last (or
few last), most specialized, layer of N is removed and substituted with a new, non-trained, one; the resulting network
′ is then trained on data from S (thus avoiding starting from scratch).
The superiority of one technique over the other is not definitively established. Feature extraction is largely believed

o avoid overfitting, i.e., excessive specialization of the network in properly classifying data with the same characteristics
s those from the training set while poorly behaving with additional data of the same set; this phenomenon may easily
ccur with small datasets. In the computer vision field [21], the two methods are compared, and an analysis is conducted
bout where to split N for an effective feature extraction. The drawn conclusions are that, in general, fine-tuning performs
etter than feature extraction; however, this benefit is smaller the more G and S differ. Furthermore, the benefit depends
n the number n of preserved layers and it may drop for greater n due to too few general features and/or complex
eature interactions. Similar hypotheses appear in [22] (sec.14.2.1) where an assumption for fine-tuning usage is that the
nowledge learned and preserved by N ′ is also applicable to S. In the NLP field, the authors of [23] obtain comparable
erformances of the two methods in most of the cases, with fine-tuning outperforming feature extraction when G and S
re aligned, while achieving poor performance in case of significantly different tasks. [24] analyzes the performances of
ine-tuning applied to medical image processing. The presented results confirm that layers selection in fine-tuning affects
he classification metrics, and an automatic method for layer selection is proposed and validated, which consists in solving
n optimization problem. The proposed method shows an improvement for all the considered metrics, but at the cost of
igher time spent for training. An analogue research is presented in [25] applied to computer vision.
Going through the specific application domain of respiratory sounds, some solutions exist in the literature, even though

t may be difficult to classify these sounds due to their complicated structures and variety of noises [26]. [27] classifies
ung sounds via feature extraction applied to pre-trained CNNs. It compares different techniques of feature extraction,
onsidering three classifiers. It obtains the best results with the pre-trained ResNet18 CNN and short-time Fourier
ransformation as the mechanism for feature extraction, and it improves the state-of-the-art results on the same dataset.
n [26], deep learning pre-trained CNNs are used, and transfer learning is leveraged via feature extraction, representing
ounds with Mel-spectrograms. CNNs show better results than Support Vector Machine (SVM), and VGG-16 supplies the
est results as feature extractor, with lower computation time than SVM; anyway, the best measured accuracy in detecting
nomalous sounds is around 86% confirming the difficulty of the considered classification task. In [28], CNNs are used to
lassify lung diseases using audio classification, with a dataset of 920 samples reportedly challenging for other methods.
omparison is conducted between two policies: (i) performing feature extraction via a pre-trained (VGG-16) CNN whose
utput is then sent to SVM, or (ii) fine-tuning the pre-trained CNN using spectrograms of lung sounds. Both policies
btain better results than the state-of-the-art for the same dataset, with the former policy slightly outperforming (2.4%)
he latter.

In the last couple of years, researchers have explored several audio processing techniques to develop effective and
ow-cost COVID-19 screening methods based on respiratory data [29], especially derived from smartphone embedded
icrophones. One of the most promising approach in this domain consists in converting the audio files into a visual

epresentation (e.g., time–frequency spectrogram or Mel-spectrogram) that can be used as input to a CNN model for
oth features extraction and classification. This category includes, for example, the application AI4COVID proposed in [8]
ased only on cough recordings. Specifically, they modeled the audio sample as both Mel-spectrogram and MFCC, which
re then processed by an ensemble model composed of two CNNs and one SVM to categorize the cough into 4 classes:
OVID-19, bronchitis, pertussis, and normal cough. A similar solution has been proposed in [30], where different visual
epresentations of cough recordings (e.g., Mel-spectrogram, Chromagram, and Power-Spectrogram) have been compared
o train an end-to-end CNN architecture. Such approaches are particularly interesting because they avoid the features
ngineering and selection phases in the data processing pipeline, mainly relying on the intrinsic capabilities of DL to
utomatically model the raw input data. However, due to the scarcity of public COVID-19 respiratory sound data, their
raining has been performed on small-size datasets, typically composed by a few hundreds of samples. DL models,
specially those with complex architectures, tend to overfit in such settings, often providing unreliable results.
By contrast, in [31] a large, crowdsourced, dataset is available. Cough, breathing, and voice recordings of the participants

re converted in log-mel spectrograms, which feed VGGish [32], a CNN-based embedding model pre-trained on the large-
cale YouTube-8M dataset (approximately 2.6 billion audio/video features), for feature extraction. The obtained feature
ectors are then aggregated by a pooling layer; the resulting latent feature vector is passed on to the prediction layers.
hanks to the extension of the available dataset, no cross-validation is used. Instead, participants whose data are included
n the training set, are not considered for the testing set. Exhaustive experiments are conducted; the results reveal that
he considered dataset is challenging: a maximum ROC-AUC of 0.71 is obtained in average, leveraging all the three data
ources mentioned above. By splitting the participants into categories, the best results are achieved for female participants
nd for over-60 participants. The considered method is also validated by intentionally introducing biases into the data
nd repeating the experiments. In Section 4, we present the results we obtained by conducting some experiments with
he [31] dataset.

Another approach deals with the mentioned DL drawback by using a combination of hand-crafted acoustic features
nd audio embeddings extracted by pre-trained deep models. Representative of this category is [5], in which the authors
3
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Fig. 1. COVID-19 detection approaches: (1) extraction of handcrafted acoustic features from the audio waveform, which are then classified by a
shallow ML model; (2) usage of a pre-trained deep learning model as features extractor, in series with a shallow model to classify the deep audio
embeddings; and (3) fine-tuning of the pre-trained deep model for both features extraction and classification.

used a set of acoustic features and a pre-trained DL model to train a shallow ML classifier (e.g., Logistic Regression, LR)
to identify COVID-19 subjects from cough and breath audio recordings. Specifically, as deep features extraction model,
they employed VGGish, thus taking advantage of Transfer Learning concept to deal with the scarcity of COVID-19 audio
data [33].

Our work stands out from the related literature for the type of analysis we conduct in order to identify an effective
olution to detect COVID-19 by using commercial mobile devices as low-cost and pervasive diagnostic tools. Indeed, while
imilar works consider just one or a few approaches of audio classification and evaluate their performance with a limited
mount of data (typically only one dataset), here we provide a thorough comparison of several state-of-the-art techniques,
ncluding both shallow and deep learning models, by using four large-scale datasets collected from real devices, for a
otal of 13,448 audio samples. Moreover, to the best of our knowledge, our work is the first investigating the two main
pproaches of Transfer Learning (i.e., features extraction and fine-tuning) in this specific application scenario, comparing
heir performance and providing a feasibility study of their implementation on real-world resource-constrained devices.

. Acoustic features and deep audio embeddings

Fig. 1 shows the flow diagram of the entire data processing we adopt to compare the three main approaches of audio
lassification, which include: (1) using handcrafted acoustic features to train a shallow ML classifier; (2) using a pre-
rained model as features extractor to input a shallow classifier; and, finally, (3) the fine-tuning of a pre-trained model,
hus creating a single solution for both audio modeling and classification.

In the first approach, a set of handcrafted acoustic features is firstly extracted from the user’s audio sample; then, a
rincipal Component Analysis (PCA) is applied to reduce the dimensionality of the features vector, which is finally used
o input a shallow ML classifier that performs the diagnosis as a binary classification problem, distinguishing between
OVID-positive and COVID-negative samples.
As far as transfer learning is concerned, after the signal conversion in Spectrogram-like images, and the extraction of

eep audio embeddings, we use a pooling layer that calculates the mean and standard deviation of each dimension of the
eep audio embeddings across all the windows. This generates a single feature vector.
Then, based on the classification procedure, we can distinguish the two forms of transfer learning as follows: in (2), we

irst reduce the dimension of the embeddings vector through PCA to input a shallow ML classifier that provides the final
rediction. By contrast, in (3) we train from scratch a series of fully-connected layers to process the input embeddings
ector, where the output softmax layer generates the final probability vector used to classify COVID-19 positive and
egative predictions.
In the following, we describe in detail both the acoustic features and the pre-trained deep models considered in this

ork to evaluate the different approaches of audio classification aimed at detecting COVID-19 from respiratory sounds.

.1. Acoustic features extraction

In order to transform the raw audio sample into a numerical representation manageable by a ML model, legacy

pproaches rely on different sets of handcrafted acoustic features. To evaluate this approach, we adopt the common

4
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procedure used in similar audio-based medical applications [7]. Firstly, the original audio sample recorded by the user’s
device microphone is re-sampled to a standard value for audio tasks (e.g., 16 kHz or 22 kHz). Then, we manually extract
common audio features related to both the frame (i.e., a chunk of the audio) and the segment (i.e., the entire audio sample)
perspectives from the raw audio waveform, including frequency-based, structural, statistical, and temporal characteristics.

Specifically, we characterize the user’s audio sample by using the same acoustic features proposed in [9]:

uration : total length (in seconds) of the audio sample;

nset : number of pitch onsets (i.e., ‘‘events’’) in the audio file;

empo : the beats rate that occur at regular intervals throughout the whole audio signal;

eriod : the frequency with the highest amplitude among those obtained from the Fast Fourier Transform (FTT);

MS Energy : the root-mean-square value of the signal power, i.e., the magnitude of the short-time Fourier transform;

Spectral Centroid : the centroid value of the frame-wise magnitude spectrogram, which can be used to identify
percussive and sustained sounds;

oll-off Frequency : the frequency under which the 85% of the total energy of the frame-wise spectrum is contained;

ero-crossing rate : the number of times the signal value crosses the zero axes, and it is computed for each frame;

el-Frequency Cepstral Coefficients (MFCC) : coefficients that represent the shape of the cosine transformation of the
sound logarithmic spectrum, expressed in Mel-bands, which characterize the set of frequency audible by human
beings;

-MFCC, ∆2-MFCC : the first and second order derivatives of MFCC along the time dimension, respectively.

The total number of acoustic features we extract from the audio sample is 477, including standard statistics (e.g., mean,
edian, max/min values, and skewness) to describe time-series descriptors for the entire audio signal, i.e., for RMS Energy,
pectral Centroid, Roll-Off Frequency, Zero-crossing rate crossing, MFCC, ∆-MFCC, and ∆2-MFCC.

.2. Pre-trained deep audio embeddings models

In order to evaluate the effectiveness of the transfer learning approaches in our specific application scenario, we take
nto account 3 state-of-the-art deep learning models for audio classification: YAMNET, VGGish, and L3-Net [34]. These
odels mainly differ in the network’s architecture and training approach.
Specifically, VGGish [32] is a 24-layer-deep network based on the VGG architecture, a popular CNN-based model

or image classification [35]. The input audio sample must be firstly re-sampled at 16 kHz and normalized in the
ange [−1, +1]. Then, the audio waveform is framed into sliding windows of 0.96 s with no overlap. Finally, for each
rame, the corresponding Mel-spectrogram image is used to input VGGish, which relies on the CNN layers to produce
128-dimensional embeddings representation of the input image, which can be further classified either by a set of

ully-connected layers or a shallow ML model.
YAMNET follows the same idea of VGGish, but it is composed by 28 deep layers and it is based on the architecture of

obileNet [36], a lightweight CNN model especially designed to perform visual applications directly on mobile devices.
n this case, the input waveform should be framed through a sliding windows of length 0.96 s and hop of 0.48 s, from
hich the model extracts a 1024-dimensional embeddings vector.
By contrast, L3-Net is based on a totally different approach. In fact, as we mentioned in Section 2, this model has been

esigned to learn deep representations by identifying if a video frame (i.e., an image) and an audio segment come from
he same video source. This allows to train the model by exploiting the self-supervised approach: since both matched
nd mismatched image-audio pairs can be automatically generated by extracting the image and audio from the same or
ifferent videos, no manual labeling is required to train the model.
The architecture of L3-Net consists of two distinct CNN subnetworks, used to extract different embeddings for the

ideo and audio inputs respectively. To check the correspondence between both embeddings, a fusion network is used,
hich concatenates the deep representations and uses two fully connected layers as well as a softmax layer for binary
lassification. After training, the two subnetworks can be used as two distinct models to extract deep audio and video
mbeddings, respectively.
L3-Net has been further extended in [37], where the authors investigated different design choices of the original model,

nd how they impact on the performances of downstream audio classifiers. In particular, they studied 3 main aspects of
he model: (i) the input representation, considering Linear-frequency power spectrogram (L), Mel-spectrogram with 128
ands (M128), and Mel-spectrogram with 256 bands (M256); (ii) the type of audio samples used during the training,
ncluding both environmental sounds (E) and music (M); and (iii) the size of the deep audio embeddings, considering both
5
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Table 1
L3-Net configurations.
Name Training data Embedding size Input type

L3 E 512 L

Environmental
sounds

512
Linear

L3 E 512 M128 Mel-128
L3 E 512 M256 Mel-256

L3 E 6144 L
6144

Linear
L3 E 6144 M128 Mel-128
L3 E 6144 M256 Mel-256

L3 M 512 L

Music

512
Linear

L3 M 512 M128 Mel-128
L3 M 512 M256 Mel-256

L3 M 6144 L
6144

Linear
L3 M 6144 M128 Mel-128
L3 M 6144 M256 Mel-256

512 and 6144 dimensions. Based on this study, the authors publicly released OpenL3,1 a framework that includes all the
2 investigated configurations of L3-Net, which we summarized in Table 1 for the sake of clarity.
In order to compare the different approaches of audio processing for COVID-19 detection, we rely on the pre-trained

nstances of the aforementioned deep learning models, thus taking advantage of their ability of characterizing audio data
amples obtained by their training with a massive amount of data. In particular, for VGGish and YAMNET, we use the
re-trained versions available on TensforFlow Hub,2 which have been trained by using the YouTube-8M [38] (6.1 million
ideos) and AudioSet [7] (more than 2 million of data samples), respectively. We also test all the configurations of OpenL3,
hich have been trained on different subsets of AudioSet.

. Experimental evaluation

In this section, we describe both the benchmark datasets and the experimental protocol we use to evaluate the
erformances of the different approaches presented in Section 3. In a first set of experiments, we compare the effectiveness
f both handcrafted acoustic features and deep audio embeddings in detecting COVID-19 from respiratory sounds data.
n a second set of experiments, we evaluate the feasibility of fine-tuning the considered deep learning models with the
vailable data, thus creating a single component for both features extraction and classification.

.1. Datasets

In order to perform our experiments, we rely on 4 crowdsourced datasets commonly used in the literature to
enchmark AI-based solutions for COVID-19 detection from respiratory sounds, including both breathing and coughing
ecordings: COSWARA [10] and Coughvid [39] are publicly available, while we obtained the access to two different versions
f the COVID-19 Sounds dataset collected by the Cambridge University,3 here called Cambridge KDD [5] and Cambridge
pj [31].
The first dataset is part of the COSWARA research project of the Indian Institute of Science (IISc), Bangalore, attempting

o build a diagnostic tool for COVID-19 using different audio recordings of individuals, including breathing, cough and
peech sounds. Currently, the project is still ongoing and it is continuing the data collection stage through crowdsourcing.
hrough the use of a web and a mobile application, the researchers ask volunteers to send their health status along with
ifferent types of audio recordings: two samples of cough (shallow and heavy), two audios of breath (shallow and deep),
wo recordings of counting numbers (normal and fast), and the phonation of sustained vowels.

The dataset is freely available on the official Github repository of the project.4 We downloaded the whole dataset
vailable on February, 26th 2022, which includes audio recordings collected up to 24th February 2022. In this work, we
onsidered only valid files (i.e., not corrupted or empty recordings) of both breath and cough recordings donated by people
ithout other respiratory diseases (e.g., asthma), including both the available modalities, i.e., shallow/heavy cough, and
hallow/deep breath. The final dataset includes a total of 2501 audio samples shared by people who have declared they
ere positive to COVID-19 at record time (1234 breath samples, and 1267 cough samples), and 860 samples labeled as
egative examples (425 breath and 435 cough).
Similarly to COSWARA, the Coughvid corpus has been collected through a web application by a research group of the

cole Polytechnique Fédérale de Lausanne, Switzerland, between April 1st, 2020 and December 1st, 2020, and it is freely

1 https://openl3.readthedocs.io.
2 https://www.tensorflow.org/hub.
3 https://www.covid-19-sounds.org.
4 https://github.com/iiscleap/Coswara-Data.
6

https://openl3.readthedocs.io
https://www.tensorflow.org/hub
https://www.covid-19-sounds.org
https://github.com/iiscleap/Coswara-Data


M.G. Campana, F. Delmastro and E. Pagani Pervasive and Mobile Computing 89 (2023) 101754

U
s
a
r
b
o
d
u
a
(

n
c
a
d
o
o

4

s
C
t
i
f
t
t

Fig. 2. Number of audio samples in the 4 considered datasets, grouped by their respective labels and modalities.

available as a Zenodo repository.5 The authors collected a total of 25,000 crowdsourced samples representing a wide
range of participant ages, genders, and geographic locations. Moreover, among the different metadata, each record has
been labeled according to the output of a ML classifier specifically trained by the authors to estimate the probability that
the input audio sample actually represents a cough recordings. Taking into account only those records with a high cough
estimation (i.e., greater than 80%), we selected a total of 547 COVID-positive samples and 5625 negative recordings.

Finally, both Cambridge KDD and Cambridge npj have been collected by the Mobile System Research Lab of the
niversity of Cambridge as part of the ERC EAR research project. Similarly to the previous datasets, they contain respiratory
ounds collected by using both web and mobile applications. Cambridge KDD represents the first dataset used by the
uthors to evaluate the performance of a VGGish-based solution to detect COVID-19 from both breathing and coughing
ecordings [5], and it contains 282 COVID-positive samples (141 breath and 141 cough) and 660 negative samples (330
reath and 330 cough). More recently, in [31] the same authors have studied how different data selection strategies can
verestimate the performances of ML models in detecting COVID-19 from respiratory sounds, and they released a second
ataset to avoid potential acoustic bias, selecting only English-speaking participants and balancing the data based on the
sers’ demographics.6 In this work, we refer to such corpora as Cambridge npj to distinguish it from the former dataset,
nd it contains a total of 1468 (734 breath and 734 cough) audio samples donated by COVID-positive subjects and 1504
752 breath and 752 cough) recordings of healthy people.

Fig. 2 shows the main peculiarities of the four datasets, highlighting the number of audio files available for both
egative and positive examples, according to the available ground truth. As we can note, most of the datasets are
haracterized by a large class imbalance, which can lead to obtain biased learning models that have a poorer predictive
ccuracy over the minority classes compared to the majority classes [40]. To cope with this issue, we balanced all the
atasets by using random under sampling, thus randomly removing samples from the majority class in each corpus. In
rder to make the experiments reproducible, we share both the name of the files used in our experiments and the code
n our Github repository.7

.2. Evaluation protocol

We follow a rigorous protocol for the experiment’s evaluation. Specifically, while similar works in the literature employ
imple dataset splits that can lead to overestimate the performance of a predictor, we decided to rely on the 5-fold Nested
ross-Validation approach with user-based splits to avoid biasing the results based on patterns of specific users or specific
rain/validation/test splits of the dataset. The procedure can be summarized as follows. Firstly, we divide the whole dataset
nto 5 non-overlapping folds, ensuring that all the recordings generated by the same user are not placed in two different
olds. In an outer loop, we iterate over the 5 folds, where, for each iteration, one fold is selected as the test set, while
he remaining 4 represent the development set. The development set is then used in an inner loop for hyperparameters
uning, where it is further divided in 5 non-overlapping folds to define both training and validation sets.

5 https://doi.org/10.5281/zenodo.4048312.
6 While the access to the raw data requires a formal Data Access Agreement, the code required to produce the balanced dataset is freely available

on Github at https://github.com/cam-mobsys/covid19-sounds-npjDM.
7 https://github.com/mattiacampana/Transfer-Learning-COVID-19.
7
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Table 2
Hyperparameters tuned in both the Features Extraction (FE) and Fine-Tuning (FT) experiments. Algorithm DE
indicates the classification layers added to the Deep Embeddings models considered in our experiments.
Task Algorithm Parameter Values

FE

SVM

Regularization [10−3, . . . , 103]
Kernel [rbf, poly, sigmoid]
Kernel coefficient [10−3, . . . , 10]
Degree of poly kernel [2, . . . , 5]

AB Estimators [10, 20, 50, 100]
Learning rate [1, .5, .1, .05, .01, .001]

LR Penalty [l1, l2]
Regularization [10−3, . . . , 103]

RF

Estimators [10, 20, 50, 100]
Min samples split [2, 8, 10, 12]
Max depth [10, 30, 50]
Split criterion [entropy, gini]

PCA Explained variance [.6, .65, .7, .75, .8, .85, .9. .95, .99]

FT DE
Hidden layers [1, . . . , 5]
Hidden units [128, 512, 1024, 2048, 6144]
Dropout rate [0, .1, .2, .3, .4]

The second step of the evaluation protocol differs based on the Transfer Learning approach. For the features extraction
experiments, where the pre-trained deep embeddings models are simply used as feature extractors, the tuning phase
includes: (i) finding the best PCA coefficient, that is, the amount of variance that needs to be explained by the held
components; and (ii) finding the best shallow classifier and tuning its parameters by using the Bayesian optimization
algorithm [41]. In these experiments, we test 4 broadly used ML algorithms: Logistic Regression (LR), Support Vector
Machines (SVMs), Random Forest (RF), and AdaBoost (AB).

By contrast, in the set of fine-tuning experiments, we tune the considered deep embedding models by using the
Hyperband algorithm, which is broadly used to optimize neural network models because it is able to speed up the random
search of the parameter spaces through adaptive resource allocation and early-stopping [42]. Specifically, we exploit
such optimization algorithm to tune the hyperparameters of the additional classification layers added to the base deep
embeddings models, including the number of fully-connected layers, the number of hidden units in each layer, and the
percentage of dropout rates to control the over-fitting of the model.

Table 2 summarizes the value spaces of the hyperparameters considered during the tuning phase of both features
extraction and fine-tuning experimental settings. In addition, for each model, we also evaluate which type of audio files
(i.e., modality) allows us to obtain the best performances among those available in each dataset: Cough (C), Breath (B), or
the combination of the two (CB).

Finally, we evaluate the classification performances over the outer splits by using the Precision–Recall Area Under
Curve (PR-AUC), which summarizes the Precision–Recall curve with a wide range of threshold values as a single score,
and it is commonly used to evaluate binary classification models with imbalanced datasets [43].

4.3. Features extraction results

In the first set of experiments we compare the quality of different audio features as input of standard shallow classifiers
in COVID-19 detection task. Such features include both the hand-crafted acoustic features (HC) presented before, and the
audio embeddings extracted by YAMNET, VGGish, and OpenL3.

Fig. 3 summarizes the obtained results with all the considered datasets and the relative audio modalities, indicating as
OpenL3 (best) the configuration of OpenL3 that presents the best performances. As we can note, the performances of each
approach strongly differs for each combination of dataset and audio modality but, in general, OpenL3 is able to obtain the
best results in all the experimental settings. Compared with the other deep models, the embeddings of OpenL3 allows
to achieve an overall improvement of 12.3% with respect to the deep features generated by YAMNET, and of 7.2% more
than those extracted by VGGish. Surprisingly, the lowest improvement obtained by OpenL3 is the one compared with HC
(6.7%), which perform better than YAMNET and VGGish in all the experimental settings, except for Cambridge npj (B)
and Cambridge npj (CB), where the handcrafted features achieve the same or slightly worse results than the two deep
embedding models. According to the obtained results, Cambridge npj represents a challenging dataset, where all the
considered solutions achieve lower performances compared with the results achieved in the other experimental settings,
ranging from 0.62 and 0.67 of PR-AUC, except for OpenL3 that can reach 0.70 by using only cough samples.

In order to analyze in detail the different solutions, we also report the shallow classifiers and PCA explained variance
rate that led to the best results. Specifically, Table 3 shows the details for the Coswara and Coughvid datasets, while
Table 4 shows those with Cambridge KDD and Cambridge npj. With the former dataset, the best configuration is

different for each modality. HC performs best with Breath recordings, reaching a PR-AUC score of 0.74 by using all the

8
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Fig. 3. Overall results for the features extraction experiments. OpenL3 (best) refers to the model’s configuration that has obtained the best result in
each dataset/modality.

features (i.e., 99% PCA) and AB as shallow classifier, while it obtains its lowest score (0.68) using the Cough modality. Also
YAMNET obtains its best result with the breathing recordings, but showing a significant decrease in terms of PR-AUC,
obtaining an overall score of 0.66 with LR. VGGish performs slightly better, reaching 0.68 of PR-AUC using RF and 75% as
PCA explained variance. On the other hand, OpenL3 obtains the best performances with all the three modalities, but with
different configurations: using only cough samples, the best configuration is L3 E 512 L, which reaches 0.73 PR-AUC by
sing LR and 0.70 of PCA; L3 E 6144 M128 reaches the best score over the whole dataset (i.e., 0.76 PR-AUC) relying on
reathing sounds and AB as classifier; while L3 M 6144 M256 scores 0.75 of PR-AUC by using RF and 85% of PCA with the
ombination of the two previous modalities.
In the experiments with the Coughvid dataset, all the solutions are characterized by a slight decrease in the

erformance: YAMNET scores 0.56 of PR-AUC by using SVM, thus representing the worst model; VGGish performs better,
eaching 0.59 with LR; HC still obtains better performance compared with the previous two deep models, reaching a
R-AUC of 0.61 with SVM; while OpenL3 overcomes the other solutions in all the tested configurations, starting from a
R-AUC of 0.62 obtained by L3 E 512 L in combination with SVM, up to the best result of 0.68 PR-AUC scored by L3 E
144 M128 with the simple LR as shallow classifier.
On the other hand, with Cambridge KDD all the considered features models reach higher performances with all the

hree modalities. The lowest value scored by HC is 0.78 by using AB as classifier and coughing records only; while it
eaches its maximum result with the breath modality, obtaining 0.85 of PR-AUC and AB. YAMNET still represents the
orst model, obtaining the best results with breath sounds: 0.78 of PR-AUC reached by using SVM as shallow classifier.

n this case, VGGish performs better than HC and YAMNET, reaching a PR-AUC of 0.89 with cough recordings and the
lassifier AB. OpenL3 still greatly overcomes the other solutions, obtaining its lowest score with the Breath modality
i.e., 0.92 of PR-AUC) with LR as classifier and three different configurations (i.e., L3 E 6144 M256, L3 M 6144 M128, and
3 M 6144 M256); while it reaches the best performance with the L3 E 6144 M256 configuration and LR as classifier,
btaining an overall PR-AUC of 0.94.
Finally, in the Cambridge npj experiments, HC, YAMNET, and VGGish obtain very similar results with all the three

odalities, while OpenL3 still represents the best model. Specifically, HC shows the best performances with coughing
amples only, scoring 0.64 of PR-AUC with SVM and 70% of PCA. YAMNET performs very similarly, reaching 0.63 as PR-
UC as maximum value, but using only breathing samples and the combination of cough and breath modalities. With the
ame combination of respiratory sounds, VGGish slightly overcomes the previous two solutions, scoring a PR-AUC of 0.65
y using SVM. Also in this case, OpenL3 generates the best features set, which allows to reach a PR-AUC score of 0.70 by
sing the L3 E 512 L configuration, the SVM classifier, and cough recordings only.
9
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Table 3
Features extraction results with Coswara and Coughvid.
D Features Cough Breath Both

Clf PCA PR-AUC Clf PCA PR-AUC Clf PCA PR-AUC

Coswara

HC AB .90 .68 AB .99 .74 SVM .65 .70
YAMNET RF .99 .56 LR .99 .66 RF .99 .61
VGGish RF .70 .61 RF .75 .68 SVM .65 .63

L3 E 512 L LR .70 .73 RF .90 .70 AB .99 .74
L3 E 512 M128 LR .99 .71 RF .75 .70 AB .95 .73
L3 E 512 M256 SVM .85 .68 AB .95 .71 AB .85 .72
L3 E 6144 L LR .95 .65 LR .99 .69 LR .99 .68
L3 E 6144 M128 LR .85 .72 AB .99 .76 SVM .75 .73
L3 E 6144 M256 LR .75 .72 RF .85 .74 AB .99 .71
L3 M 512 L RF .70 .71 RF .85 .73 SVM .85 .70
L3 M 512 M128 RF .80 .69 AB .99 .74 RF .70 .72
L3 M 512 M256 LR .60 .70 RF .90 .71 AB .99 .69
L3 M 6144 L LR .75 .70 LR .99 .70 AB .95 .72
L3 M 6144 M128 SVM .75 .69 LR .99 .74 AB .99 .72
L3 M 6144 M256 SVM .99 .69 AB .90 .72 RF .85 .75

Coughvid

HC SVM .80 .61 – – – – – –
YAMNET SVM .60 .56 – – – – – –
VGGish LR .70 .59 – – – – – –

L3 E 512 L SVM .75 .62 – – – – – –
L3 E 512 M128 LR .99 .67 – – – – – –
L3 E 512 M256 LR .99 .64 – – – – – –
L3 E 6144 L LR .99 .65 – – – – – –
L3 E 6144 M128 LR .99 .68 – – – – – –
L3 E 6144 M256 LR .99 .67 – – – – – –
L3 M 512 L RF .90 .62 – – – – – –
L3 M 512 M128 LR .99 .62 – – – – – –
L3 M 512 M256 LR .75 .60 – – – – – –
L3 M 6144 L LR .99 .67 – – – – – –
L3 M 6144 M128 LR .99 .65 – – – – – –
L3 M 6144 M256 LR .99 .64 – – – – – –

4.4. Fine-tuning results

Instead of using the considered deep audio embedding models as simple features extractors, in this second set of
xperiments we evaluate the use of transfer learning via fine-tuning to create a single model to both represent the input
ound through deep embeddings, and then classify it. In other words, here we start with the base models (YAMNET,
GGish, and OpenL3), pre-trained for generic audio classification tasks, and then we fine-tune (train) only the final
ully-connected layers of the neural networks to detect COVID-19 from respiratory sounds data.

Table 5 summarizes the performances of the fine-tuned models, highlighting in bold face the best results for each
ataset and modality. With Coswara, both YAMNET and VGGish perform better with the Breath modality, obtaining a

PR-AUC score of 0.59 and 0.63, respectively, while OpenL3 performs better with coughing samples and the L3 E 6144
128 configuration, reaching a PR-AUC score of 0.70. The Coughvid dataset is the only one where OpenL3 performs
lightly worse than VGGish. In fact, while VGGish achieves a score of 0.59, OpenL3 reaches at most 0.57 with 3 different
onfigurations (L3 E 512 M256, L3 E 6144 M128, and L3 M 512 M128), and YAMNET obtains 0.54 of PR-AUC.
By contrast, with Cambridge KDD all the models obtain higher results: YAMNET is able to reach a maximum score of

.74 with the combination of both coughing and breathing modalities; VGGish obtains a better result (0.75) by using only
reath recordings; and, similarly, OpenL3 achieves a score of 0.85 with the L3 M 512 L configuration, based on breathing
amples only. Finally, with the Cambridge npj dataset, all the models perform better by combining the two modalities:
AMNET achieves a PR-AUC score of 0.61, VGGish performs slightly worse, obtaining at most 0.60, while OpenL3 reaches
.62 with the L3 M 512 M256 configuration.
Based on the obtained results, it is worth noting that the fine-tuned models perform considerably worse than their use

s feature extractors to input a shallow classifier. More specifically, compared with the results obtained in the previous
et of experiments, the fine-tuned models have lost, on average, 4%, 6.9%, and 8.8% of PR-AUC, respectively for YAMNET,
GGish, and OpenL3. According to the literature [23,44], the relative performance of the fine-tuning and feature extraction
pproaches strongly depends on the similarity of the pretraining and target tasks. Therefore, we can conclude that the
onsidered respiratory sounds do not allow an effective fine-tuning of the analyzed models because they considerably
iffer from their original training data, which actually include heterogeneous sounds extracted from YouTube videos,
ncluding, for example, music, animal sounds, and traffic noises [45]. A possible solution for this issue could be the fine-
uning not only of the final classification layers but also part of the convolutional components dedicated to the feature
xtraction. Such an approach could possibly improve the deep representation of the input audio file; however, it typically
equires a considerable amount of data that is not currently available in public COVID-19 audio datasets [24].
10
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Table 4
Features extraction results with Cambridge KDD and Cambridge npj.
D Features Cough Breath Both

Clf PCA PR-AUC Clf PCA PR-AUC Clf PCA PR-AUC

Cambridge KDD

HC AB .60 .78 AB .80 .85 RF .60 .83
YAMNET LR .99 .74 SVM .99 .78 LR .95 .73
VGGish AB .99 .89 LR .65 .85 AB .95 .86

L3 E 512 L LR .70 .86 LR .95 .87 RF .90 .88
L3 E 512 M128 LR .60 .85 LR .85 .88 LR .80 .86
L3 E 512 M256 RF .80 .91 SVM .85 .88 AB .99 .89
L3 E 6144 L RF .75 .88 RF .75 .84 SVM .99 .86
L3 E 6144 M128 RF .70 .77 AB .85 .83 AB .90 .81
L3 E 6144 M256 LR .90 .94 LR .80 .92 LR .85 .93
L3 M 512 L LR .70 .82 RF .80 .89 SVM .65 .86
L3 M 512 M128 SVM .95 .77 SVM .60 .81 SVM .99 .80
L3 M 512 M256 LR .95 .86 RF .95 .87 LR .90 .89
L3 M 6144 L LR .75 .91 SVM .85 .89 LR .70 .88
L3 M 6144 M128 RF .90 .93 LR .85 .92 AB .95 .91
L3 M 6144 M256 LR .65 .92 LR .90 .92 LR .85 .93

Cambridge npj

HC SVM .70 .64 SVM .99 .62 LR .70 .63
YAMNET SVM .60 .62 SVM .99 .63 SVM .75 .63
VGGish SVM .70 .62 SVM .99 .65 SVM .65 .65

L3 E 512 L SVM .75 .70 SVM .65 .65 SVM .65 .63
L3 E 512 M128 SVM .99 .67 LR .99 .64 SVM .90 .67
L3 E 512 M256 LR .99 .65 SVM .99 .67 SVM .90 .65
L3 E 6144 L LR .95 .65 SVM .80 .63 LR .80 .65
L3 E 6144 M128 LR .95 .65 SVM .75 .62 SVM .85 .66
L3 E 6144 M256 LR .95 .66 LR .85 .64 SVM .80 .66
L3 M 512 L SVM .95 .65 SVM .65 .62 SVM .90 .64
L3 M 512 M128 LR .99 .66 LR .60 .62 SVM .80 .64
L3 M 512 M256 SVM .65 .66 SVM .90 .66 SVM .75 .64
L3 M 6144 L SVM .90 .65 SVM .65 .62 LR .99 .64
L3 M 6144 M128 LR .95 .68 SVM .85 .66 SVM .85 .68
L3 M 6144 M256 LR .95 .67 SVM .90 .63 SVM .75 .66

Table 5
PR-AUC scores obtained in the fine-tuning experiments.
Features Coswara Coughvid Cambridge KDD Cambridge npj

C B CB C C B CB C B CB

YAMNET .52 .59 .57 .54 .70 .73 .74 .57 .56 .61
VGGish .57 .63 .62 .59 .69 .75 .74 .57 .58 .60

L3 E 512 L .68 .62 .65 .54 .68 .72 .66 .57 .55 .57
L3 E 512 M128 .60 .63 .59 .55 .75 .62 .70 .57 .58 .58
L3 E 512 M256 .63 .58 .67 .57 .75 .70 .66 .60 .57 .61
L3 E 6144 L .60 .69 .59 .53 .74 .68 .73 .56 .54 .55
L3 E 6144 M128 .70 .67 .62 .57 .47 .70 .70 .59 .55 .57
L3 E 6144 M256 .63 .56 .58 .56 .57 .67 .69 .58 .60 .57
L3 M 512 L .57 .55 .65 .56 .75 .85 .55 .58 .58 .60
L3 M 512 M128 .58 .57 .58 .57 .72 .75 .76 .58 .61 .61
L3 M 512 M256 .56 .67 .64 .54 .71 .76 .75 .57 .61 .62
L3 M 6144 L .61 .56 .67 .56 .64 .76 .61 .56 .53 .59
L3 M 6144 M128 .58 .54 .60 .56 .75 .64 .73 .60 .58 .61
L3 M 6144 M256 .68 .66 .63 .56 .81 .59 .72 .57 .57 .60

5. Memory footprint

In order to investigate the feasibility of a COVID-19 detection system embedded on commercial mobile devices,
e compare the memory footprint of the two Transfer Learning approaches evaluated in Section 4. In fact, while the
omputational capabilities of modern smartphones are increasingly comparable with the ones of personal computers and
hey can even execute complex ML models in just a few milliseconds [46], the amount of usable memory still represents
limited resource to be optimized.
When the deep audio embedding models are used as features extractors, two main components must be considered

o estimate the overall memory usage: (i) the size of the deep model used to extract the audio embeddings from the raw
nput file, and (ii) the size of the shallow model used for the classification phase. Based on the number of parameters, the
izes of the deep audio embeddings models are the following: YAMNET is the smallest model, with just 3.7M parameters;
11
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Fig. 4. Memory footprint of (a) the considered shallow classifiers based on different input sizes (i.e., percentage of PCA explained variance), and (b)
the fine-tuned deep learning models. Please, consider that in (a) the overall memory footprint is given by taking into account also the size of the
deep embedding models to extract the input features from the raw audio sample.

OpenL3 has 4.7M parameters [37]; while VGGish is the biggest one, with a total of 62M parameters [32], approximately
requiring 16 MB, 288 MB, and 18 MB for YAMNET, VGGish, and OpenL3, respectively.

Moreover, the memory footprint of the classification phase is represented by the size of the employed shallow classifier,
hich is generally affected by the input data dimension. Fig. 4(a) shows the memory size (in MB) of the 4 shallow
lassifiers considered in our experiments, based on the input size in terms of the percentage of PCA explained variance.
s expected, the size of most of the classifiers increases according to the input dimension, except for Random Forest
RF), whose size remains nearly constant at around 1 MB (between 0.98 and 1.11). Logistic Regression (LR), the simplest
lassifier, is also the one with the lowest memory footprint in all the experiments, starting from less than 1 KB (i.e., 922
ytes), up to 3.64 KB with 99% of PCA explained variance. On the other hand, AdaBoost (AB) results to be the most
emanding model in terms of memory, with an overall size that ranges from just 5.74 MB with 60% of PCA, up to 185.05
B with the full dimension of the input. Finally, SVM has an intermediate memory footprint among the other classifiers,

anging from 42.6 KB up to 1.88 MB.
On the other hand, when the deep audio models are fine-tuned, the size of the additional fully-connected layers

hould be considered to estimate the overall memory footprint. Fig. 4(b) shows the average size of the fine-tuned models,
ighlighting both the size of the original pre-trained models, and the size of the additional layers for classification. We
an note that, in general, fine-tuning introduces a non-negligible overhead, due to both the number and density of the
lassification layers considered in our experiments. More specifically, the overhead introduced by the new layers for
AMNET and VGGish is 5.8M and 5.3M parameters, respectively, which corresponds to an average increment of 33.7
B for the former model, and 7.37 MB for the latter. On the other hand, the overhead introduced for OpenL3 strongly
epends on the size of the deep audio embeddings: for the configurations that generate a total of 512 embeddings, the
ine-tuning introduces, on average, 5.6M parameters (+21.8 MB); while the configurations with 6144 embeddings have
een augmented by 14.8M parameters, which corresponds, on average, to an overhead of 56.73 MB with respect to the
ase model.
The obtained results clearly show that in both the Transfer Learning approaches, the most demanding component is

epresented by the pre-trained deep learning model, especially in the case of VGGish, which is the larger model among
hose considered in our analysis. Even though the general memory footprint of the considered solutions is manageable on
odern smartphones, they can still be prohibitive for mobile devices with less memory resources, such as smartwatches
nd smart bands.
Therefore, in order to develop novel pervasive m-health applications that can be used as low-cost pre-screening tool for

OVID-19, processing the user’s data directly on her personal device, the deep learning model should be firstly optimized
o be executed on resource-constrained devices. In this regards, several techniques can be employed to optimize different
spects of deep learning models, including the overall model size [47,48]. For example, quantization is a practical and
roadly used technique aimed at reducing the size of a pre-trained model by simply lowering the operations precision
rom 32 bit floats to 16 bit floats or even 8 bit integers [49], thus reducing the overall model’s size by 4x at least, with
ittle degradation in model accuracy, thus enabling its execution on devices with limited computational and memory
apabilities.
12
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6. Conclusions and future work

In this paper, we investigated the use of different Artificial Intelligence approaches to automatically detect COVID-19
rom respiratory sound signals, aimed at developing an effective and low-cost solution to identify new cases, performing
he whole data processing directly on the users’ mobile devices. Specifically, we compared the performances of the two
ost common approaches for audio classifications: the use of handcrafted acoustic features, and pre-trained deep learning
odels.
In particular, we considered the pre-trained instances of 3 state-of-the-art deep learning models, namely VGGish,

AMNET, and OpenL3, evaluating their efficacy under two transfer learning settings: features extraction and fine-tuning.
n the first case, the deep models are used as simple feature extractors, characterizing respiratory sounds as deep audio
mbeddings, which are further classified by shallow machine learning classifiers, such as Logistic Regression, and Support
ector Machines. On the other hand, in the latter approach, the final fully-connected layers of the deep learning models
re fine-tuned to adapt the model to the new application domain, thus creating a single model for both data modeling
nd classification.
Through an extensive evaluation, we compared the performances of the different approaches by using four public

atasets and 5-fold nested cross-validation with user-based splits, to avoid biasing the experiments based on specific
sers or specific train/validation/test splits. The obtained results clearly show the great advantage of OpenL3 in all the
xperimental settings, improving the other solutions by 12.3% in terms of Precision–Recall AUC as features extractor, and
y 10% when the model is fine-tuned. Moreover, we noted that the fine-tuned models generally perform worse than
he feature extractors, with an average drop of 6.6% of the performances. Besides, we evaluated the feasibility of the
onsidered solutions of being entirely executed on mobile devices, especially considering their memory constraints. As
magined, the component with the greatest impact on the overall memory footprint is represented by the deep learning
odels, especially in the fine-tuning experiments, where additional fully-connected layers are introduced to adapt the
odel to the new application domain, requiring, on average, between 37 MB and about 300 MB for the most demanding
odel (i.e., VGGish).
Our future work is threefold. Firstly, we would like to investigate different techniques to improve the fine-tuning

f the deep learning models. In fact, while we focused on updating only the classification part of the models (i.e., the
inal fully-connected layers), another possible approach would imply also the partial update of the features extraction
omponent of the model (i.e., the convolutional layers), thus adapting its input representation capabilities to the novel
pplication scenario [24]. Even though fine-tuning of a larger portion of the model will surely require a non-negligible
mount of COVID-19 data, we can still use the combination of the available datasets during the draining process as data
ugmentation approach.
Secondly, we are planning to develop a prototype mobile application to evaluate the performance of the considered

pproaches for COVID-19 detection in real-world scenarios. To this aim, we need to optimize the models in order to be
fficiently executed on memory-constrained devices by testing different optimization approaches, including, for example,
uantization, which reduces the precision of the mathematical operations performed by the neural network, and pruning,
here redundant connections among hidden units are removed during the training phase [50].
Finally, we would like to explore Explainable Artificial Intelligence (XAI) techniques aimed at supporting the predictions

roduced by the deep learning models. In particular, since the audio classification models are generally based on Convolu-
ional Neural Networks, we can exploit the same XAI techniques proposed in the literature for visual applications [51] to
escribe, for example, which set of frequencies have led the model to classify a given respiratory sound as COVID-positive
nstead of negative sample, thus providing an additional validation of the classification model. This is a critical requirement
n our reference scenario, since it has been proven that the ability of explaining the output of an AI model increases the
aith held in the system, thus leading to a widespread adoption.
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