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Abstract 

Immunotherapy is a vital treatment for patients with cutaneous melanoma (CM), but effective predictors to guide 
clinical immunotherapy are lacking. Cuproptosis is a newly discovered mode of cell death related to tumorigenesis. 
Exploring the relationship between the mode of cuproptosis and the effect of immunotherapy on CM could better 
guide clinical management. We clustered all patients with CM in the Cancer Genome Atlas (TCGA) database based 
on cuproptosis-related genes (CRGs). Prognosis, immunotherapeutic effect, tumor microenvironment score, expres-
sion of CD274, CTLA4, and PDCD1, and abundance of CD8 + T infiltration in group A were higher than in group B. 
Using a combination of LASSO and COX regression analysis, we identified 10 molecules significant to prognosis from 
differentially expressed genes between the two groups and constructed a cuproptosis-related scoring system (CRSS). 
Compared with the American Joint Committee on Cancer (AJCC) staging system, CRSS more accurately stratified CM 
patient risk and guided immunotherapy. CRSS successfully stratified risk and predicted the effect of immunotherapy 
in 869 patients with eight CM immunotherapy datasets and multiple other tumor immunotherapy cohorts. The 
nomogram model, which combined AJCC stage and CRSS, greatly improved the ability and accuracy of prognosis 
prediction. In general, our cuproptosis-related scoring system and nomogram model accurately stratified risk in CM 
patients and effectively predicted prognosis and the effect of immunotherapy in CM patients.
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Introduction
Cutaneous melanoma (CM) is a highly malignant skin 
cancer that originates from melanocytes. Over the past 
few decades, its incidence among white people has 
increased dramatically, with 23,0000 new cases world-
wide each year (World Health Organization) [1]. Immu-
notherapy is an indispensable and important treatment 
for CM [2]. In recent years, CM immunotherapy has 
made exciting progress and ushered in a new era for CM 
therapy. Compared with conventional chemotherapy, 
immunotherapy can cause an unprecedented, sustained 
response in patients with advanced cancer. However, 
this reaction occurs only in a relatively small number of 
patients, and the effect varies greatly among CM patients. 
These clinical challenges drive researchers to identify 
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new tools to predict which patients are inherently resist-
ant to targeted therapy and immunotherapy. This can 
better guide clinical management of patients and pro-
mote the rational use of clinical resources.

Copper is a mineral nutrient that is involved in cell 
proliferation and death pathways [3]. The link between 
copper and cancer has been well established, and many 
studies have shown that tumors require higher levels 
of copper than healthy tissues. Cancer cells also have a 
higher demand for copper than non-mitotic cells. It 
has been reported that the concentration of copper in 
tumors and serum is increased in both animal models 
and patients with breast, lung, gastrointestinal, oral, thy-
roid, gallbladder, gynecologic, and prostate cancer [4, 5]. 
Copper can also promote tumor angiogenesis and lead to 
tumorigenesis, growth, and metastasis. Cuproptosis is a 
mode of cell death induced by copper ions that is depend-
ent on the accumulation of copper ions. When the cellu-
lar concentration of copper ions reaches a certain level, 
they regulate cell death through targeting acylated pro-
teins in the TCA cycle [6]. CRGs affect tumorigenesis, 
invasion, and metastasis in a manner similar to ferrop-
tosis and pyroptosis genes. cuproptosis is closely related 
to the progression of cancer and is a potential new thera-
peutic target for the targeted killing of cancer cells [4, 7].

The interaction between immune regulation and 
tumor cells in the tumor microenvironment (TME) can 
modulate the effect of immunotherapy. The TME plays 
an important role in these interactions via suppressing 
or enhancing the immune response. Emerging evidence 
suggests that copper overload and cuproptosis lead to 
immune dysfunction through the creation of reactive 
oxygen species (ROS). For example, ROS may contrib-
ute to the release of damage-related molecular patterns 
(DAMP), significantly regulating the immune response 
[8, 9]. Therefore, the molecular characteristics of CRGs 
may provide important insight into the characteristics of 
the TME and the potential mechanism of CM. Delinea-
tion of cuproptosis patterns and their inherent mutation 
patterns, immunotherapeutic effects, TME differences, 
and prognostic effects in patients with CM will provide 
new insights into the mechanisms of occurrence, devel-
opment, and potential effects of immunotherapy on CM.

In this study, we systematically studied the expres-
sion of CRGs, somatic mutations, and CNV patterns in 
patients with CM using CM data from the TCGA and 
GEO databases. Two different modes of cuproptosis 
were identified in patients with CM, and differences in 
the TME and immunotherapy between the two modes 
were compared. To better guide clinical management, 
we constructed a CRSS and applied it to eight immu-
notherapy cohorts containing 502 CM patients. Results 
showed good risk stratification and prediction of the 

effects of immunotherapy. Finally, we combined four 
clinical features (age, sex, AJCC stage, CRSS) to construct 
a prognostic model. Results showed that the prognos-
tic capability and stability of the combined model was 
greatly improved compared to each single variable alone.

Methods
Data collection and preprocessing
The download and processing of the CM dataset from 
the TCGA and GEO databases is described in our pre-
vious study [10]. The normal human skin transcriptome 
data stored in the GTEx database were downloaded 
from the UCSC Xena database [11] (http://​xena.​ucsc.​
edu/) (Additional file 1: Table S1) and used as a control 
(TPM format). Eleven immunotherapy datasets includ-
ing phs000452, PRJEB23709, Nathanson_2017, GBM-
PRJNA482620, GSE91061, nonsqNSCLC-GSE93157, 
GSE93157, GSE100797, GSE78220, GSE106128, and 
Braun_2020 were downloaded from the Tumor Immu-
notherapy Gene Expression Resource (TIGER) database. 
This is a web-accessible portal for integrative analysis 
of gene expression data related to tumor immunology 
(Additional file  1: Table  S2). TIGER contains bulk tran-
scriptome data for 1508 tumor samples with immuno-
therapy clinical outcomes [12].

Tumor somatic mutation and copy number variant analysis
The catastrophic landscape of TCGA-SKCM patients was 
calculated and visualized using the “maftool” package. 
Missense, silence, nonsense, frameshift/in-frame inser-
tions and deletions, and uninterruptions were counted; 
synonymous mutations were not counted [13]. The TMB 
score was calculated using the total number of somatic 
mutations. CNV analysis was carried out through GIS-
TIC_2.0, and the CNV and somatic mutation results 
were integrated into the waterfall map using the “mclust” 
and “NMF” packages.

Protein–protein interaction (PPI) and enrichment analysis
The PPI network of 10 CRGs was analyzed and visualized 
using GENEMANIA tools [14]. GO-BP enrichment anal-
ysis and gene set enrichment analysis (GSEA) were per-
formed via the clusterProfiler [15] package. The input file 
included the expression matrix and grouped text of the 
log2 transformation. The P value was adjusted using the 
Benjamini–Hochberg (BH) method, and the threshold of 
the adjusted P value was set to 0.05.

Unsupervised clustering and differential analysis
Based on the expression of 10 CRGs, we used the Con-
sensuClusterPlus package [16] to perform unsupervised 
cluster analysis of 469 CM patients. The number and sta-
bility of clusters were determined using the consensus 
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clustering algorithm [17]. This process was repeated 
1000 times to ensure the stability of the classification. We 
used the R software limma [18] package to analyze dif-
ferentially expressed genes between the two groups. We 
screened genes with significant differences between the 
two groups using an adjusted P < 0.05 and|log2FC (fold 
change)|> 1.

TIDE analysis and cancer drug sensitivity analysis
We used Tumor Immune Dysfunction and Exclusion 
(TIDE, http://​tide.​dfci.​harva​rd.​edu/) [19] analysis to 
study the differences in response to immune checkpoint 
inhibitor therapy in different CM patient groups. CM 
patients with a TIDE score greater than 0 were defined 
as non-responders to immune checkpoint inhibitor ther-
apy, where patients with a TIDE score less than 0 were 
defined as responders [19]. In addition, we compared the 
difference in Dysfunction and Exclusion scores between 
the two groups.

Analysis of immune score and immune cell infiltration
We used the ESTIMATE [20] website to calculate the 
immune score and stromal score of each CM patient in 
the TCGA-SKCM cohort. We used the Wilcoxon test 
[21] to further analyze the differences in immune score 
and stromal score between different groups. ESTI-
MATE score is a combination of stromal score and 
immune score, and can be used as an index to evaluate 
the purity of a tumor [20]. Based on the TCGA-SKCM 
cohort matrix, we calculated the immune cell abundance 
of each patient using CIBERSORT [22], MCP Counter 
[23], TIMER (http://​timer.​comp-​genom​ics.​org/) [24], 
and GSVA, among other software packages. We excluded 
samples with a P > 0.05. Finally, the differences in immune 
cell subtypes among different groups were analyzed via 
the Mann–Whitney U test.

Construction of the cuproptosis‑related scoring system
Based on survival data and using the R software lasso 
package, we constructed the CRSS for differentially 
expressed genes between the two groups via univariate 
COX regression analysis, lasso regression analysis, and 
multivariate COX regression analysis. The risk score of 
each patient in the training group was calculated using 
the Cox proportional hazards model (PH model): 
ĥi(t) = ĥ0(t)exp

(
x
′

iβ̂

)
 (where exp is the prognostic gene 

expression level, β is the multivariate COX regression 
model regression coefficient, and h0(t) is the baseline 
hazard function.) [10] All CM samples were divided into 
a high-risk-score group and a low-risk-score group based 
on the median risk score. We used the Kaplan–Meier 
method to perform survival analysis, and the log-rank 
test was used to compare survival between groups. Using 

the R software package “SurvivalROC,” we drew the 
receiver operating characteristic curve (ROC) and calcu-
lated the corresponding area under the curve (AUC).

Construction of the prognostic nomogram
We first performed univariate and multivariate Cox 
regression analyses of CRSS and other clinicopathologi-
cal factors to evaluate whether CRSS is an independent 
risk factor for CM. Then, based on the R packages “RMS,” 
“Hmisc,” “Latge,” “Formula,” and “Foreign,” the nomogram 
model was constructed using the indices in the multivari-
ate Cox regression model. We used the “nomogramEx” 
package to extract the scoring function of each variable in 
the model and simulate the formula for calculating sur-
vival probability. We also used the “DynNom” package to 
validate the nomogram model results. The total risk score 
was calculated according to each predictive factor in the 
nomogram; the median of the total risk score was taken 
as the cutoff value [25, 26]. We then divided the patients 
into a high-risk-score group and a low-risk-score group. 
The prediction capability and accuracy of the nomogram 
was validated by C index, ROC analysis, and calibration 
curve. We used a similar analysis process for the valida-
tion cohorts. Finally, by quantifying the net benefit under 
different threshold probabilities in the cohort [27], the 
clinical validity of the nomogram was determined using 
a clinical decision curve analysis (R packages “rms” and 
“rmda”) [28].

Statistical analysis
Two or more continuous variables consistent with a nor-
mal distribution were analyzed by the t-test or analysis 
of variance (ANOVA), respectively. The Mann–Whitney 
U test and the Kruskal–Wallis test were used for two or 
more continuous variables that did not conform to the 
normal distribution. P values were corrected using the 
BH method [29]. An adjusted P‐value < 0.05 was consid-
ered statistically significant.

Results
Genetic characteristics and transcriptional changes 
in cuproptosis‑related genes in CM
Additional file 1: Fig. S1 shows the entire analytic process 
of the study.

Data processing of the TCGA and GEO data sets, as 
well as merging and removing of batch effects from the 
GEO datasets were carried out as described in our previ-
ous study (https://​doi.​org/​10.​1111/​cas.​15499, Additional 
file  1: Fig. S1). First, we analyzed the somatic mutation 
and CNV landscape of 469 CM patients using the TCGA-
SKCM dataset (Fig.  1A). Somatic mutations or CNVs 
were found in 439 of the 467 CM samples (94%). Next, 
we analyzed the somatic mutations and CNV patterns 
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of 10 CRGs from CM patients (Fig. 1B). Somatic muta-
tions or CNVs were found in the CRGs of 162 out of 
467 CM samples (34.69%); these were mainly caused 
by chromosome deletion variation. Chromosome dele-
tions were mainly found in CDKN2A, DLAT, and FDX1, 
where somatic mutations mainly occurred in CDKN2A. 
In addition, through protein–protein interaction (PPI) 

analysis using the GeneMANIA website, we found that 
PDHB, DLAT, PDHA1, LIAS, and DLD were hub genes 
in the interaction network (Fig.  1C). We then com-
pared the expression levels of 10 CRG s in CM and nor-
mal samples from the TCGA + GTEx, GSE15605, and 
GSE46517 data sets (Fig.  1D–F). The results suggested 
that, compared with normal tissues, the DLD, PDHB, and 

Fig. 1  Genetic characteristics and transcriptional changes of cuproptosis related genes in CM. A. Somatic mutation and CNV landscape of all 
patients in TCGA-SKCM data set. B. Somatic mutation and CNV landscape of 10 CRGs in all patients in TCGA-SKCM dataset. C. Network diagram of 
PPI analysis and enrichment analysis of 10 CRGs. D. Differential expression of 10 CRGs in TCGA and GTEx datasets between CM patients and normal 
skin tissues. E, F. Differential expression of 10 CRGs in GSE15605 (E) and GSE46517 (F) datasets between CM patients and normal skin tissues. *: 
P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001



Page 5 of 15Liu et al. Journal of Translational Medicine           (2023) 21:57 	

CDKN2A genes were highly expressed in CM samples. 
MTF1, PDHA1, FDX1, GLS, and LIAS were downregu-
lated in patients with CM.

Identification of cuproptosis subgroups in CM 
and comparison of prognosis and TME between the two 
groups
The consistency of cluster analysis is dependent on 
determination of the K value. We used the K value of 
the cumulative distribution function (CDF) with a small 
slope of decline. According to our results, when K was 
equal to 2, the consistency was the best. Therefore, based 
on unsupervised clustering, we successfully divided the 
TCGA-SKCM data into two groups (Additional file  1: 
Fig. S2A–C). Interestingly, KM analysis suggested that 
the overall survival (OS) and recurrence free survival 
(RFS) of group A were significantly better than group B 
(log‐rank test P‐value < 0.001, Fig. 2 A, B). In addition, the 

effects of immunotherapy and chemotherapy in group 
A were significantly better than in group B (log‐rank 
test P‐value < 0.05, Fig.  2C, D). TIDE analysis results of 
all TCGA-SKCM samples showed that the TIDE score 
in group A was significantly lower than in group B, and 
the immunotherapy response rate of group A was sig-
nificantly higher than group B (Fig.  2E, F). Further, the 
Dysfunction and Exclusion scores in group A were signif-
icantly lower than in group B (Fig. 2G, H). Results of the 
immune checkpoint analysis showed that the expression 
of CD274, PDCD1, and CTLA4 in group A was signifi-
cantly higher than in group B (Fig. 2I) . The above results 
suggest that the sensitivity and effects of immunotherapy 
in group A were significantly better than in group B.

Tumor mutation load (TMB) and TME are vital bio-
markers for the prediction of immunotherapy efficacy 
in CM. TMB has attracted much attention in immuno-
therapy. In addition, TMB and PD-L1 are important 

Fig. 2  The effect and prognosis of immunotherapy in group A were significantly better than those in group B. The OS (A) and RFS (B) of CM 
patients in group A were significantly better than those in group B. The effect of immunotherapy (C) and chemotherapy (D) in group A was 
significantly better than that in group B in CM. E. Comparison of the proportion of patients responding to immunotherapy between the two 
groups. Comparison of TIDE (F), Dysfunction (G), and Exclusion (H) scores between the two groups. I. Comparison of the expression of 8 common 
immune checkpoints between the two groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001
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biomarkers for the prediction of PD-1 antibody efficacy 
[30]. Hodi et al. [31] showed that in patients receiving the 
anti-PD-1 inhibitor Nivolumab (NIVO) or NIVO com-
bined with the anti-CTLA-4 inhibitor ipilimumab (IPI) 
or IPI alone, high (> median) TMB predicted longer sur-
vival than low (≤ median) TMB. Based on somatic muta-
tion data from the TCGA-SKCM samples, we calculated 
and compared TMB between the two groups. The results 
showed that the TMB in group A was significantly higher 
than in group B (Additional file  1: Fig. S2D). To fur-
ther investigate the difference in TME between the two 
groups, we evaluated the immune score of both groups 
and estimated the abundance of immune cell infiltra-
tion using four methods. The results from the ESTI-
MATE package calculation showed that the immune 
score, matrix score, and ESTIMATE score of group A 
were significantly higher than in group B (Additional 
file 1: Fig. S3A). Using a median cutoff value, the overall 

survival rate of CM patients with a high immune score 
and ESTIMATE score was significantly higher than CM 
patients with a low immune score (Additional file 1: Fig. 
S3B–D). The aggregation of CD4 + T cells and CD8 + T 
cells enhanced immune capacity and anti-tumor activity 
in CM [32, 33]. NK cells are a type of lymphocyte that 
possess cytotoxic activity and can effectively respond to 
the presence of a variety of tumor cells [34]. A decrease 
in the number of NK cells and CD8 + T cells has been 
related to adverse outcomes [35]. Using four methods to 
predict the abundance of immune cell infiltration (MCP, 
CIBERSORT, TIMER, and ssGSEA) we showed that the 
abundance of CD8 positive T cells, natural killer T cells, 
and macrophages in group A was significantly higher 
than in group B (Fig.  3 and Additional file  1: Fig. S2D). 
The above results further confirmed that the immuno-
therapy response and immune activity in group A was 
better than in group B.

Fig. 3  Difference of immune score and immune cell infiltration between group A and group B. The results were shown in the form of a complex 
heat map, in which the abundance of immune cell infiltration predicted by ssGSEA, TIMER, and CIBERSORT between the two groups was presented 
in the form of a heatmap. The immune score, stromal score, and ESTIMATE score predicted by ESTIMATE are displayed in the form of a bar chart. The 
yellow density chart on the right side of the heat map shows the average of each index. The statistical method of Mann- WhitneyU test was used to 
compare the two groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001
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The function of group a was mainly concentrated 
in pathways related to immunity and immunotherapy
First, we performed differential expression analysis 
between group A and group B. Results identified a total 
of 2207 differentially expressed genes. Among the 10 
CRGs, CDKN2A and DLD were significantly downregu-
lated and DLAT, FDX1, and LIPT1 were significantly 
upregulated in group A (Additional file  1: Fig. S2D). 
Then, we performed GSEA on CM samples using the 
four enrichment analysis databases. Results from GSEA-
GOBP and GSEA-KEGG suggested that the functional 
enrichment of group A tended toward pathways for 
immunity and immunotherapy such as B cell mediated 
immunity, lymphocyte mediated immunity, immuno-
globulin mediated immune response, PD-L1 expression, 
PD-1 checkpoint pathway in cancer, Th1 and Th2 cell 
differentiation, and Th17 cell differentiation (Additional 
file  1: Fig. S4A, B). The GSEA-reactomePA and GSEA-
hallmarker results suggested that the enriched pathways 
in group A tended toward immunotherapy such as PD-1 
signaling, HALLMARK_IL6_JAK_STAT3_SIGNALING, 
HALLMARK_INTERFERON_GAMMA_RESPONSE, 
HALLMARK_TNFA_SIGNALING_VIA_NFKB and 
HALLMARK_IL6_JAK_STAT3_SIGNALING. In addi-
tion, cell cycle-related pathways, such as Cyclin A/B1/
B2-associated events during G2/M transition, G1 Phase, 
Oncogene Induced Senescence, Senescence-Associated 
Secretory Phenotype (SASP), p53-Dependent G1/S DNA 
damage checkpoint, and HALLMARK_E2F_TARGETS 
were enriched in group B (Additional file 1: Fig. S4C, D). 
These results suggest that group A had higher immune 
activity where group B was more inclined toward a senes-
cence-related secretory phenotype (SASP) caused by cell 
cycle senescence. Interestingly, SASP can promote cancer 
progression and resistance to immunotherapy.

Construction of the CRSS for CM
First, we performed univariate COX regression analysis 
on 2207 differentially expressed genes between the two 
groups (Fig.  4A). Next, we included 53 genes with a P 
value of less than 0.005 to perform the next lasso regres-
sion analysis (Fig. 4B). Based on the standard lambda.1se 
(lambda value = 10), we identified 10 molecules for the 
construction of the CRSS. Then, we carried out multivar-
iate COX regression analysis of the 10 molecules (Fig. 4C) 
and constructed the CRSS according to the multivari-
ate COX regression analysis coefficient and expression 
of each variable. Taking the median cuproptosis-related 
risk score as the cutoff value, we divided the CM patients 
in the training and validation cohorts into high and low 
cuproptosis-related risk assessment groups (Additional 
file 1: Fig. S5A–F). We identified a significant difference 

in the expression of 10 CRGs between the two groups 
(Additional file  1: Fig. S5C–F). We further performed 
KM and ROC analysis in the training, validation, and test 
cohorts to test the ability of CRSS to predict the progno-
sis of patients with CM. In the training cohort, the OS 
and RFS of CM patients with a high cuproptosis-related 
risk score (CRRS) were significantly lower than those 
with a low CRRS (log‐rank test P‐value < 0.05, Additional 
file 1: Fig. S6A–C). In addition, the ROC analysis results 
suggested that the areas under curve of CRSS for predict-
ing 5 year OS and RFS in CM patients were 0.76 and 0.78, 
respectively (Additional file 1: Fig. S6B–D). CRSS could 
also stratify the risk of CM patients and accurately pre-
dict OS, disease metastasis free survival (DMFS), and 
disease special survival (DSS) in the validation and test 
cohorts (log‐rank test P‐value < 0.0001, Additional file 1: 
Fig. S6E, G, I). The AUC of CRSS for predicting 5 year OS 
and DMFS in CM patients were 0.83 and 0.79 in the vali-
dation and test cohorts, respectively (Additional file  1: 
Fig. S6F, H).

CRSS accurately predicted the effect of immunotherapy
We validated the ability of CRSS to predict the effect 
of immunotherapy in eight cohorts of CM patients. 
In the phs000452 cohort (n = 153) containing com-
plete clinical information on immunotherapy, the OS 
of CM patients with a high cuproptosis-related score 
was significantly better than CM patients with a low 
cuproptosis-related score (Fig.  5A). When comparing 
the CRRS of CM patients in different states during CM 
treatment, we found that CRRSs increased gradually 
from complete response (CR) to partial response (PR) 
to stable disease (SD) and then to progressive disease 
(PD) (Fig.  5B). In addition, CRRS in CM patients who 
responded to immunotherapy was significantly lower 
than in patients who did not respond to immunotherapy 
(Fig. 5C). Similar results from the PRJEB23709 (n = 91), 
GSE91061 (n = 109), GSE93157 (n = 25), GSE100797 
(n = 25), GSE78220 (n = 28), GSE106128 (n = 47), and 
Nathanson_2017 (n = 24) datasets validated our conclu-
sion (Fig.  5D–T). In addition, when CRSS was applied 
to other tumor immunotherapy cohorts such as renal 
cell carcinoma (Braun_2020, n = 311), glioblastoma 
(PRJNA482620, n = 34), and non-small cell lung can-
cer (nonsqNSCLC-GSE93157, n = 22), it also accurately 
predicted the effect of immunotherapy (Fig.  6A–H). 
Further, TMB in the high CRRS group was significantly 
lower than in the low CRRS group (Fig.  7). The TIDE 
analysis results showed that the TIDE score of the low 
CRRS group was significantly lower than in the high 
CRRS group, and immunotherapy response rate in the 
low CRRS group was significantly higher than in the high 
CRRS group (Fig. 7).
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Higher immune activity in the low CRRS group
First, we compared differences in immune checkpoint 
expression and immunocyte infiltration abundance 
between the high and low cuproptosis-related risk score 
groups. As shown in Fig. 7, the expression of eight com-
mon immune checkpoints including PDCD1, CD86, 
CD80, CD274, ICOS, ICOSLG, CTLA4, and CD28 were 
upregulated in the high CRRS group. MCP analysis sug-
gested that the abundance of NK cells, monocyte lines, 
B cell lines, cytotoxic lymphocytes, and CD8 + T cells in 
patients with a low CRRS were significantly higher than 
in patients with a high CRRS (Fig.  7). In addition, we 
investigated the expression of 10 genes used to construct 
the CRSS between the two groups. The results showed 
that A2M, LYZ, TFAP2C, FGL2, FCGR2A, CLEC2B, 
and SLC5A3 were upregulated in the low CRRS group 
where PAEP, BCAN, and ALDH3B2 were downregulated 
in the low-rated group (Fig. 7). In addition, we used the 

online website GEPIA2 (http://​gepia2.​cancer-​pku.​cn/#​
index) [36] to analyze differences in expression of the 10 
genes between the CM tissues from the TCGA database 
and normal skin tissues from the GTEx database. The 
results showed that compared with normal tissues, A2M, 
BCAN, FCGR2A, and LYZ were significantly upregulated 
and ALDH3B2, CLEC2B, and TFAP2C were significantly 
downregulated in CM tissues (Additional file 1: Fig. S7).

Construction of the prognosis nomogram based on clinical 
features and CRSS
To use CRSS more effectively in predicting the prognosis 
of patients with CM, and more accurately stratify the risk 
of CM patients in the clinic, we included three clinical fea-
tures (age, sex, and AJCC stage) as well as the use of CRSS 
to construct a prognostic nomogram model. Univariate 
(Fig.  8A, HR = 1.95, P < 0.001) and multivariate (Fig.  8A, 
HR = 1.80, P < 0.001) COX regression analyses showed that 

Fig. 4  Construction of the CRSS for CM. A total of 2207 CRGs were evaluated by univariate Cox survival analysis, and 53 CRGs with P < 0.005 were 
filtered out and included in subsequent analyses (A). As shown in panel B, LASSO regression analysis identified 10 SRGs (lambda value = 10) that 
were subjected to multivariate Cox regression analysis (C)

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
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CRSS was an independent risk factor for patients with CM. 
Then, we constructed the nomogram model based on these 
four variables, quantified the score of each variable, and 
constructed the calculation formula of the total points and 

the calculation formula for survival probability (Fig.  8B). 
The specific formula is as follows:

agepoints = 0.426244156 ∗ age − 4.262441563;

Fig. 5  Validate the ability of CRSS to predict the effect of immunotherapy in other CM immunotherapy cohorts. KM analysis was used to compare 
the difference of immunotherapy effect between high and low CRRS groups in phs000452 (A), PRJEB23709 (D), GSE91061 (G), GSE93157 (J), 
GSE100797 (M), GSE78220 (P), GSE106128 (R), and Nathanson_2017 (T) dataset. Comparison of CRRS of different CM patients in different remission 
states after immunotherapy in phs000452 (B), PRJEB23709 (E), GSE91061 (H), GSE93157 (K), and GSE100797 (N) dataset. Comparison of CRRS of 
different CM patients in different response states after immunotherapy in phs000452 (C), PRJEB23709 (F), GSE91061 (I), GSE93157 (L), GSE100797 
(O), GSE78220 (Q), and GSE106128 (S) dataset. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001



Page 10 of 15Liu et al. Journal of Translational Medicine           (2023) 21:57 

The red line in Fig.  8B shows an example of our calcu-
lation using the above formula. Briefly, the ID of this 
sample was TCGA-BF-A3DL, an 84-year-old female CM 
patient with AJCC stage III; her CRRS was 4.3257325. 

CRSSpoints = 16.666666667 ∗ CRSS;

Sex points : sex of malepoints = 22.13515; sex of femalepoints = 20.0;

Stage points : stage Ipoint = 22.072986, stage IIpoint = 27.122168,

stage IIIpoint = 39.351985, stage IVpoint = 56.579527

Totalpoint = agepoints + CRSSpoints + Sexpoints + Stagepoints

1−Year Survivalrate = −1.23e−7* Total3point+−3.9272e−5* Total2point+0.004702312 * Totalpoint+0.830232033

3−Year Survivalrate = 3.9e−7* points3+−0.000127432* points2+0.001461972 * points +0.94138763

5− Year Survivalrate = 8.8e−7* points3 +−0.000187702* points2 + 0.001304628 * points + 0.895846264

Fig. 6  Validate the ability of CRSS to predict the effect of immunotherapy in the immunotherapy cohort of other tumors. KM analysis was 
used to compare the difference of immunotherapy effect between high and low CRRS groups in Braun_2020 (A), GBM-PRJNA482620 (D), and 
nonsqNSCLC-GSE93157 (F) dataset. Comparison of CRRS of other tumor patients in different remission states after immunotherapy in Braun_2020 
(B) and nonsqNSCLC-GSE93157 (H) dataset. Comparison of CRRS of other tumor patients in different response states after immunotherapy in 
Braun_2020 (C), GBM-PRJNA482620 (E), and nonsqNSCLC-GSE93157 (G) dataset. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001

According to the formula, her total points were 161, 
corresponding to the probability of an OS less than five 

years, three years, and one year of 0.998, 0.975, and 0.413, 
respectively. In reality, her OS was 2.107, which was very 
consistent with our prediction.

In addition, the C index of our model was as high as 
0.833. Next, we validated the accuracy, stability, and 
clinical practicality of our model through KM, ROC, 
calibration curve analysis, and DCA. According to the 
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coefficients of four variables in the multivariate COX 
regression analysis, we calculated the total risk score 
including four influencing factors (i.e., the total score). 
Taking the median of the total score as the cutoff value, 
all patients with CM were divided into two groups with 
high and low total scores. KM analysis showed that the 
OS of CM patients with a low total score was significantly 
better than that of CM patients with a high total score 
(Fig.  8C, log‐rank test P‐value < 0.0001). ROC analysis 
showed that the AUC values for 3-, 5-, and 7-year sur-
vival of CM patients predicted by the total score were 
0.785, 0.827, and 0.838, respectively (Fig. 8F–G). In addi-
tion, the AUC value was higher than when each of the 
four variables was used alone to predict OS. The results 
from the calibration curve showed that the predicted val-
ues were consistent with the observed values for 1-, 3-, 
and 5-year OS (Fig.  8D). Finally, clinical decision curve 

analysis (DCA) showed that the clinical benefit rate of 
CRSS alone was significantly higher than that of AJCC 
stage. The clinical benefit rate of the model constructed 
by combining four variables was higher than that of each 
single variable (Fig.  8E). Based on the above results, we 
conclude that our prediction model has the ability to 
robustly and accurately predict prognosis.

Validation of the prognostic model
To further validate the accuracy of our model, we applied 
the model to the validation cohort to test its applicabil-
ity. Univariate (Additional file  1: Fig. S8A, HR = 2.34, 
P < 0.001) and multivariate (Additional file  1: Fig. S8A, 
HR = 1.94, P < 0.001) COX regression analyses validated 
that CRSS was an independent risk factor for patients 
with CM. In addition, we also used the DynNom pack-
age to validate the results of the nomogram. The results 

Fig. 7  Landscape of the expression of significantly differentially expressed CRRS’ genes, TMB, TIDE score, Expression of immune checkpoints, 
and abundance of immune cell infiltration in the TCGA-SKCM cohort. The results were shown in the form of a complex heat map, in which the 
expression of significantly differentially expressed CRRS’ genes, Expression of immune checkpoints, and the abundance of immune cell infiltration 
predicted by MCP between the two groups was presented in the form of a heatmap. The TIDE score and TMB are displayed in the form of bar chart 
and density chart, respectively. The yellow density chart on the right side of the heatmap shows the average of each index. The statistical method of 
Mann- WhitneyU test was used to compare the two groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001
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showed that 5-year survival rate decreased with increase 
in risk score in both stage I and stage IV (Additional 
file  1: Fig. S8B). KM analysis showed that in the vali-
dation cohort, the OS of CM patients with a high total 
score was significantly worse than CM patients with a 
low total score (Additional file 1: Fig. S8C, log‐rank test 

P‐value < 0.0001). ROC analysis showed that the AUC 
values for 3-, 5-, and 7-year survival in CM patients pre-
dicted by the total score were 0.863, 0.872, and 0.871, 
respectively (Additional file  1: Fig. S8F–G). The results 
of the calibration curve showed that the predicted val-
ues were consistent with the observed values for 1-, 3-, 

Fig. 8  Construction of prognosis nomogram based on clinical features and CRSS. A. Univariate and multivariate COX regression analysis of CRSS 
and other clinical characteristics of all CM patients in the training cohort. B. Using CRSS and other clinical features of CM patients to construct 
prognostic Nomogram in the training cohort. The scoring function of each variable and the formula for calculating the survival rate are shown on 
the right and bottom of the graph, respectively. C. KM analysis was used to compare the difference of immunotherapy effect between high and 
low CRRS groups in training cohort. D. Calibration curve analysis validate the stability of the model. E. DCA evaluates the clinical practicability of 
the model and calculates and compares the clinical benefit rate of each model. F, H. Using ROC analysis to evaluate the ability and accuracy of the 
model to predict 3 -, 5-and 7-year OS in patients with CM
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and 5-year OS (Additional file 1: Fig. S8D). Finally, clini-
cal DCA showed that the clinical benefit rate of CRSS 
alone was significantly higher than AJCC stage. The clini-
cal benefit rate of the model constructed by combining 
four variables was higher than that of each single variable 
alone (Additional file  1: Fig. S8E). Based on the above 
results, we conclude that our prediction model has the 
ability to robustly and accurately predict prognosis.

Discussion
Immunotherapy is one of the most important treatments 
for patients with advanced CM. Immune activity and 
TME status of CM patients plays a decisive role in the 
effect of immunotherapy. Cuproptosis is a newly identi-
fied mode of cell death. Many studies have confirmed 
that CRGs are closely related to tumor immunotherapy 
and TME status. To date, there have been no studies 
focused on the relationship between cuproptosis and 
TME in CM, or the effect on immunotherapy.

In this study, we systematically divided TCGA-SKCM 
patients into two groups based on the 10 most classical 
CRGs using unsupervised cluster analysis. The immune 
score, the abundance of immune cell infiltration, the 
expression of immune checkpoints, TMB, and other 
TME indices in group A were significantly higher than 
in group B. In addition, the effect of immunotherapy and 
overall prognosis in group A were significantly better 
than in group B. We also evaluated the sensitivity of the 
two groups of CM patients to common immunothera-
peutic drugs.

To explore the causes of the differences in prognosis 
and construct a risk prediction model, we performed dif-
ference analysis using univariate and multivariate COX 
regression analyses. We identified 10 genes that were 
most likely to lead to significant differences in immuno-
therapy efficacy and prognosis between the two groups. 
The CRSS composed of 10 the CRGs accurately strati-
fied the risk of CM patients and showed that immune cell 
infiltration abundance, TMB, immunotherapy sensitiv-
ity, and immunotherapeutic effect in patients with high 
CRRS were significantly higher than in those with low 
CRRS. CRSS accurately predicted immunotherapeutic 
effect in 11 cohorts, including eight CM immunotherapy 
cohorts and three other tumor immunotherapy cohorts. 
In addition, the prognostic nomogram model con-
structed using CRSS and clinicopathological features was 
more accurate and stable than CRSS or AJCC stage alone.

C-Type Lectin Domain Family 2 Member B (CLEC2B) 
encodes a member of the C-type lectin/C-type lectin-
like domain (CTL/CTLD) superfamily. Members of 
this family share common protein folding and have a 
variety of functions such as cell adhesion, intercellu-
lar signal transduction, glycoprotein conversion, and 

roles in inflammation and immune responses. CLEC2B 
encodes a type 2 transmembrane protein that functions 
as a cell activation antigen [37]. However, the research 
on CLEC2B and CM is currently lacking. In this study, 
compared with normal tissues and CM patients with low 
CRRS, CLEC2B was significantly downregulated in CM 
patients and CM patients with high CRRS. Moreover, 
univariate (HR = 0.690) and multivariate (HR = 0.810) 
COX regression analyses showed that CLEC2B was an 
independent protective factor for patients with CM. 
Therefore, CLEC2B may inhibit the occurrence and 
development of CM by enhancing immune surveillance.

Fc Gamma Receptor Iia (FCGR2A) encodes a member 
of the immunoglobulin Fc receptor gene family found on 
the surface of many immunoreactive cells. The protein 
encoded by this gene is a cell surface receptor present on 
phagocytes such as macrophages and neutrophils and is 
involved in the phagocytosis and clearance of immune 
complexes. Following binding to IgG, FCGR2A initiates 
cellular responses against pathogens and soluble anti-
gens. FCGR2A also promotes phagocytosis of opsonized 
antigens [38]. Mutations or deletions of FCGR2A can lead 
to significant resistance to immunotherapy in a variety of 
tumor types including colon cancer, breast cancer, and 
leukemia [39–41]. The protein encoded by Alpha-2-Mac-
roglobulin (A2M) is a protease inhibitor and cytokine 
transporter. A2M uses decoy and trap mechanisms to 
inhibit broad-spectrum proteases including trypsin, 
thrombin, and collagenase, and inhibits inflammatory 
cytokines, thereby disrupting the inflammatory cascade 
[42]. Lindner et  al. found that A2M inhibits the malig-
nant properties of astrocytoma cells by impeding beta-
catenin signaling [43]. There are currently no mechanistic 
studies exploring the link between A2M, FCGR2A, and 
CM. In the present study, A2M and FCGR2A were simul-
taneously upregulated in CM and downregulated in CM 
patients with a high CRRS relative to patients with a low 
CRRS. Further, univariate and multivariate COX regres-
sion analyses suggested that both A2M (HR = 0.860) 
and FCGR2A (HR = 0.820) were independent protective 
factors in CM patients. Therefore, we hypothesize that 
FCGR2A and A2M may enhance the efficacy of immu-
notherapy and improve prognosis by enhancing immune 
activity and immune lethality in CM patients.

Brevican (BCAN) encodes a member of the chondroi-
tin sulfate proteoglycan glycan family that is specifically 
expressed in the central nervous system. This protein is 
regulated during development and may play a role in cell 
adhesion. BCAN is highly expressed in glioma and may 
promote the growth and cell motility of brain tumor 
cells [44, 45]. However, there is no reported research on 
BCAN and CM. In our study, the expression of BCAN in 
the tumor and high CRRS groups was significantly higher 
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than in normal tissues and the low CRRS group. In addi-
tion, univariate (HR = 1.09) and multivariate (HR = 1.06) 
COX regression analyses showed that BCAN is an inde-
pendent risk factor in patients with CM. Therefore, we 
speculate that BCAN may promote the development of 
CM by affecting cell adhesion.

This study had some limitations. First, the data were 
retrospective, and a prospective cohort would be needed 
to validate our model. Second, the expression of each 
gene in our model was based on skin tissues. Devel-
opment of biomarkers based on urine or blood sam-
ples would be more appropriate for clinical application. 
Finally, future studies should include in vivo and in vitro 
experiments to verify the specific mechanisms of each 
molecule in CM.

In the future, we will first retrospectively collect biolog-
ical samples and clinical data of past and prospective CM 
patients in our hospital, and construct an external vali-
dation cohort to validate the accuracy of our signature 
in predicting the effect of immunotherapy, as well as the 
accuracy of our model in predicting the prognosis of CM 
patients. Then, biological specimens and detailed clinical 
data of CM patients admitted to our hospital will be pro-
spectively collected under the condition of ethical review 
and informed consent signed by patients. The required 
sample size was calculated according to the effect value, 
test level (α) and test efficacy (1-β) equivalence of the pre-
vious retrospective study results. The experimental group 
and the control group were matched by age, sex, clinical 
staging, and other basic characteristics. A 5-year follow-
up will be conducted to record the status of CM patients 
after immunotherapy, as well as the time to death. We 
wound calculate the accuracy of our signature in predict-
ing immunotherapy effect in CM patients and the ability 
of model scores to predict prognosis in CM patients at a 
follow-up time of 6 months, 1 year, 3 years, and 5 years.

Overall, we first attempted to developed a new cuprop-
tosis-related scoring system that can stratify the risk of 
CM patients and predict their prognosis, thus potentially 
affecting immunotherapeutic choices. Moreover, we 
constructed a prognostic nomogram model to more effi-
ciently guide clinical decision making.
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