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Abstract 

Background  Previous studies have indicated that lower lung function is related to a higher risk of venous thrombo-
embolism (VTE). However, causal inferences may be affected by confounders, coheritability or reverse causality. We 
aimed to explore the causal association between lung function and VTE.

Methods  Summary data from public genome-wide association studies (GWAS) for lung function and VTE were 
obtained from published meta-analysis studies and the FinnGen consortium, respectively. Independent genetic vari-
ables significantly related to exposure were filtered as proxy instruments. We adopted linkage disequilibrium score 
regression (LDSC) and two-sample Mendelian randomization (MR) analyses to infer the genetic backgrounds and 
causal associations between different lung functions and VTE events.

Results  LDSC showed a genetic correlation between forced expiratory volume in one second (FEV1) and deep vein 
thrombosis (DVT) (rg = − 0.189, P = 0.005). In univariate MR (UVMR), there was suggestive evidence for causal associa-
tions of genetically predicted force vital capacity (FVC) with DVT (odds ratio (OR) 0.774; 95% confidence interval (CI) 
0.641–0.934) via forwards analysis and genetically predicted pulmonary embolism (PE) with FVC (OR 0.989; 95% CI 
0.979–0.999) via reverse analysis. Multivariate MR (MVMR) analyses of lung function-specific SNPs suggested no sig-
nificant direct effects of lung function on VTE, and vice versa. Of note is the borderline causal effect of PE on FEV1 (OR 
0.921; 95% CI 0.848–1.000).

Conclusions  Our findings identified a coheritability of FEV1 (significant) and FVC (suggestive) with DVT. There was no 
convincing causal relationship between lung function and the risk of VTE events. The borderline causal effect of PE on 
FEV1 and the significant genetic correlation of FEV1 with DVT may have clinical implications for improving the quality 
of existing prevention and intervention strategies.
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Background
Venous thromboembolism (VTE) is a chronic disease 
manifested as either deep vein thrombosis (DVT) or 
as pulmonary embolism (PE) according to the site of 
embolism and is the third leading cause of vascular 
mortality, affecting nearly 10 million people world-
wide each year [1, 2]. VTE is a multicausal disorder 
influenced by both acquired and inherited risk factors 
and is related to reduced survival and high recurrence 
rates and health-care costs [3–5]. Previous studies have 
focused on clinical risk factors (cancer, major surgery, 
immobilization, etc.) and some specific genetic condi-
tions (i.e., Factor V, protein C or protein S) account for 
less than one-fifth of the population attributable risk in 
the elderly [6, 7], but most VTEs are provoked by weak 
risk factors or even no identifiable risk factors [1, 8]. 
Published evidence indicates that poor lung function 
is related to increased atherothrombotic risk, with risk 
factors broadly similar to those for VTE [9, 10]. Moreo-
ver, chronic lung diseases (e.g., chronic obstructive pul-
monary disease (COPD) [9, 11], asthma, emphysema, 
interstitial lung disease [12]) or postoperative lung can-
cer [13], characterized by varying degrees of impair-
ment in different lung function parameters, are related 
to an increased risk of VTE [10]. Another study pointed 
out that impaired lung function did not affect the VTE 
risk in cancer patients complicated with PE [14].

Forced expiratory volume in one second (FEV1), 
forced vital capacity (FVC), the ratio of FEV1 to FVC 
(FEV1/FVC) and peak expiratory flow (PEF) are key 
indicators for monitoring lung function and can also 
predict the morbidity and mortality of different res-
piratory diseases [15–17] as well as all-cause mortal-
ity [18]. A retrospective observational study indicated 
that the more severe the airway obstruction in COPD 
patients, the higher the risk of VTE [12], and another 
autopsy study noted that patients with emphysema 
were at higher risk of VTE [19]. However, no studies 
have investigated whether different parameters of lung 
function are causally associated with VTE events.

Based on the aforementioned inconsistent conclu-
sions, the lack of public awareness that unprovoked 
thrombus is common and preventable as well as the 
increasing prevalence of impaired lung function and 
the serious impact on quality of life [20], clarifying the 
underlying causality and the direction of these relations 
would be conducive to guiding management and pre-
vention. In addition, the intercorrelations among dif-
ferent parameters of lung function and the potential 
shared risk factors (e.g., age, sex [11, 21, 22]) of lung 
function and VTE events pose a great challenge to clar-
ify the causal relation between lung function and VTE.

The design of the Mendelian randomization (MR) 
study follows Mendel’s law of inheritance, which is simi-
lar to a randomized controlled trial (RCT) and can over-
come unmeasured confounders and provide more robust 
evidence for causal estimation between different lung 
functions and VTE events. Genetic variants significantly 
associated with lung function and VTE events were 
selected as proxy instrumental variables (IVs). IVs are less 
likely to be influenced by confounders and reverse cau-
sality as the random assignment of parents to offspring 
at conception [23, 24]. However, there is the possibility 
of pleiotropy, exemplified by a univariate MR (UVMR) 
analysis of FEV1 as an exposure factor. Figure S1 (Addi-
tional file  1) shows the possible explanations for the 
association of single nucleotide polymorphisms (SNPs) 
with FEV1 exposure and VTE outcomes. Vertical pleiot-
ropy refers to the fact that SNPs robustly related to FEV1 
affect VTE outcomes via other lung function traits first 
and then downstream affect FEV1 (Additional file 1: Fig. 
S1A). Horizontal pleiotropy means that SNPs related to 
FEV1 affect VTE outcomes via other lung function traits 
without mediation by FEV1 (Additional file 1: Fig. S1B). 
Confounding pleiotropy occurs when SNPs affect VTE 
outcomes via lung function parameters other than FEV1, 
even though SNPs affect FEV1 via other lung function 
parameters (Additional file  1: Fig. S1C). Multivariable 
MR (MVMR), taking into account the possible pleiot-
ropy described above, integrates a set of pleiotropic SNPs 
[25] related to at least one exposure as IVs to assess the 
direct causal effect of each exposure on the outcomes 
(Additional file 1: Fig. S2). Moreover, in the case of hori-
zontal pleiotropy, causality can be inferred even if no 
IV indicates a specific association with any independ-
ent exposure [26]. Linkage disequilibrium score (LDSC) 
regression was performed to investigate the coheritability 
between different lung function traits and VTE events by 
assessing the genetic correlation [27]. Here, we adopted 
bidirectional, UVMR and MVMR methods to infer the 
causal association of different lung function parameters 
with the risk of VTE and its subtypes (DVT and PE) 
using summary GWAS data from a European population.

Methods
Study design
This is a two-sample bidirectional, UVMR and MVMR 
study. The genetic variants significantly related to lung 
function parameters (FEV1, FVC, FEV1/FVC and PEF) 
and VTE events (VTE, DVT and PE) were selected 
as IVs, respectively. A schematic diagram of the study 
design is shown in Fig. S3 (Additional file  1). The valid 
IV should satisfy the following three core assumptions. 
First, the proxy IVs should be strongly correlated with 
exposure. Second, the proxy IVs had no associations with 
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confounders. Last, IVs should only be linked with VTE 
via lung function. All statistical analyses in our study 
were based on publicly available summary data; there-
fore, no ethical approval was needed.

GWAS of lung function (FEV1, FVC, FEV1/FVC and PEF)
Summary data for different lung functions were derived 
from the largest publicly available GWAS, which 
included 19,819,139 variants in 400,102 individuals of 
European ancestry (UK Biobank: 321,407 and SpiroMeta: 
79,055). In each of the original GWASs, linear regres-
sion models were fitted for each trait (FEV1, FVC, FEV1/
FVC and PEF) with age, age2, sex, height, smoking status 
(ever/never) and genotyping array as a series of covari-
ates. All the residuals from linear regression were rank-
based inverse-normal transformed to obtain normally 
distributed Z-scores, which were used as the phenotype 
for the association test. Details are available elsewhere 
[28], and summary statistics are available for download 
via LD-Hub (http://​ldsc.​broad​insti​tute.​org/​ldhub/).

GWAS of VTE (VTE, DVT and PE)
We used summary statistics from a GWAS that was 
made public by the FinnGen consortium [29] (Release 5, 
https://​r5.​finng​en.​fi/), including 9176 cases and 209,616 
controls for VTE (Phenocode: I9_VTE). Replication 
analyses were performed using 4576 cases and 214,216 
controls for DVT of the lower extremities (no controls 
excluded) (Phenocode: I9_PHLETHROMBDVTLOW_
EXNONE) and 4185 cases and 214,607 controls for pul-
monary embolism (no controls excluded) (Phenocode: 
I9_PULMEMB_EXNONE). A total of 19,023 cases and 
195,144 controls were included in the FinnGen consor-
tium, and a total of 16,962,023 variants were analysed 
using a mixed-model logistic regression model with 
adjustment for age, sex, 10 principal components (PCs) 
and genotyping batch. VTE, DVT and PE were all defined 
according to the International Classification of Diseases 
(ICD) revision 9.

The GWAS summary data on exposure and outcome 
were all based on European populations.

Genetic instrumental variable selection
The SNPs that were significantly (P threshold = 5 × 10−8) 
associated with lung function and VTE were selected as 
instrumental variables, respectively. Independent vari-
ants (r2 < 0.001, window size = 10,000  kb) were retained 
according to European ancestry reference data from the 
1000 Genomes Project. The above procedures were per-
formed with R (version 4.0.3) software.

UVMR analyses
Forwards UVMR analyses were conducted to assess the 
causal relation between different lung function param-
eters and VTE events. Then, reverse UVMR was per-
formed using genetic variants with VTE, DVT and PE 
to estimate their causal effects on different lung function 
parameters. The effects (i.e., beta) and the corresponding 
lung were obtained from the GWAS-lung function and 
GWAS-VTE [30]. IVs having direct effects on the out-
come were excluded (P < 1 × 10−5), and palindromic SNPs 
were removed by harmonizing lung function and VTE 
data [31].

Inverse variance-weighted (IVW) analysis was per-
formed as the main approach, which was actually a sin-
gle variable weighted linear regression of outcome-SNP 
effects on exposure-SNP effects, and the intercept was 
constrained to zero [32]. The results may be imprecise 
if IVs exhibit horizontal pleiotropy, meaning that IVs 
may affect outcomes via pathways other than exposures 
[33]. Therefore, we supplementarily applied several MR 
methods based on different IV assumptions, including 
weighted median, weighted mode, MR-Egger regres-
sion and causal analysis using summary effect estimates 
(CAUSE) approaches, as sensitivity analyses to verify the 
robustness of the main IVW estimate [33]. The MR-Egger 
regression, of which the intercept is not constrained to 
zero [33, 34], gives consistent estimates with the IVW 
method if all IVs are invalid, while the weighted median 
method requires more than half of the IVs to be valid 
[35]. The weighted mode method is inherently robust to 
IVs with outlier ratio estimates and is not as susceptible 
to a small number of pleiotropic variants as the IVW 
and MR-Egger approaches [36]. For efficiency, weighted 
median estimates are generally as accurate as the IVW 
method, both are more accurate than MR-Egger regres-
sion, and MR-Egger regression is especially imprecise if 
IVs are all similarly associated with the exposure [35]. 
Horizontal pleiotropy may be correlated (IVs affect expo-
sure and outcome through shared factors) or not corre-
lated (IVs affect exposure and outcome via independent 
pathways) with a shared factor, but both do not violate 
the major MR assumption [37]. CAUSE analysis, a recent 
method that accounts for correlated or uncorrelated hor-
izontal pleiotropy effects, was conducted, which includes 
more IVs by LD pruning (r2 < 0.1) with its built-in func-
tion based on precomputed LD estimates [37].

Horizontal pleiotropy was evaluated by the inter-
cept test of the MR-Egger method (the intercept 
P_value < 0.05 implied the presence of horizontal plei-
otropy) [38] and the MR pleiotropy residual sum and 
outlier (MR-PRESSO) test (potential outlier SNPs that 
violated the IV assumptions could be detected) [39]. In 
addition, heterogeneity was estimated by the Cochran 

http://ldsc.broadinstitute.org/ldhub/
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Q test and I2 statistics in the IVW method (the Cochran 
Q_P value < 0.05 or I2 statistics > 25% indicated the pres-
ence of heterogeneity) as well as leave-one-out sensitivity 
analysis [40, 41], which could help to evaluate horizontal 
pleiotropy.

MVMR analyses
Forwards MVMR analyses were conducted to infer the 
direct effects of each lung function parameter while 
accounting for the effects of the others. An extension of 
the IVW method (uncorrected variants, random effect 
model) to perform multivariate weighted linear regres-
sion [33] and an extension of the MR-Egger regression 
method to correct for both measured and unmeasured 
pleiotropy were conducted in MVMR [42]. Then, we 
repeated the MVMR method in the reverse analyses to 
estimate the direct effects of VTE, DVT or PE on differ-
ent lung function parameters.

Odds ratios (ORs) and corresponding 95% confidence 
intervals (CIs) of lung function correspond to the risk 
of VTE events per standard deviation (SD) increase in 
log odds of different lung function parameters, and vice 
versa. Two-sided α < 0.007 (0.05/7, Bonferroni corrected 
significance threshold) was defined as a statistically sig-
nificant difference since four potential risk factors and 
three outcomes were included in our study. P < 0.05 
but above 0.007 was defined as suggestive evidence for 
a potential association. MR analyses were conducted 
using the following R (version 4.0.3) packages: “TwoSam-
pleMR”, “MR-PRESSO” and “CAUSE”.

Variance explained by IVs and F_statistic of MR analyses
To estimate the variance explained for each 
SNP, we calculated R2 by the following formula: 
R2 = 2 × MAF × (1  −  MAF) × Beta2. Then, we summed 
the R2 to calculate the overall R2 and F statistics for expo-
sure (F_statistic = R2 × (N −  2)/(1 −  R2)). N means the 
number of individuals of the GWAS-exposure [43]. The 
higher the R2 and F statistics are, the lower the risk of 
weak IV bias [44]. An online mRnd tool (https://​cnsge​
nomics.​com/​shiny/​mRnd/) proposed by Brion et al. [45] 
was used to calculate the statistical power of the MR 
study with the input of several parameters (total sam-
ple size of the outcome, proportion of cases in the out-
come study, true odds ratio of the outcome variable per 
standard deviation of the exposure variable, and the pro-
portion of variance in exposure variable explained by 
selected SNPs).

Heritability and genetic correlation analyses
LDSC analysis regressed χ2 statistics for one trait to cal-
culate SNP-based heritability (h2) or two traits to esti-
mate SNP-based coheritability (http://​ldsc.​broad​insti​

tute.​org/​ldhub/, LD score tool, version 1.0.1). Cross-trait 
LDSC analysis was conducted to assess the genetic cor-
relations between different lung function parameters and 
each VTE trait by the regression slope using GWAS sum-
mary data [27]. To account for multiple testing, similar 
to the MR analysis, we also adopted a Bonferroni correc-
tion, that is, P < 0.007 (0.05/7) was considered statistically 
significant, and 0.007 < P < 0.05 was considered suggestive 
evidence.

Results
Detailed information on the characteristics of the SNPs 
used for each trait is shown in Additional file  2 (Tables 
S1–S7). Summary information on the GWAS data and 
instrumental variables is listed in Table 1.

Genetic instrumental variable selection
In the forwards UVMR analyses, a total of 
272/239/303/205 independent SNPs that conformed to 
a genome-wide significance threshold (P < 5 × 10−8) for 
FEV1, FVC, FEV1/FVC and PEF were filtered. Next, we 
extracted these SNPs from the corresponding GWAS 
outcomes, and there were 258/226/285/195 overlapping 
SNPs, respectively. Finally, 212/194/240/168 SNPs were 
selected as the IVs after harmonizing SNP exposures 
and SNP outcomes. Although the SNPs appeared to be 
numerous, the variance explained by these SNPs (FEV1: 
0.030–0.031; FVC: 0.028–0.029; FEV1/FVC: 0.055–
0.057; PEF: 0.034) and the statistical power (FEV1: 
0.080–0.350; FVC: 0.050–0.740; FEV1/FVC: 0.130–
0.200; PEF: 0.050–0.070) of the MR analysis were not 
sufficient (Table 1). The percentages of the IVs of each 
lung function trait associated with other lung func-
tion phenotypes are as follows: FEV1 to other pheno-
types (FVC: 18.868%, FEV1/FVC: 8.491%, PEF: 9.434%), 
FVC to other phenotypes (FEV1: 10.309%, FEV1/FVC: 
1.031%, PEF: 3.093%), FEV1/FVC to other phenotypes 
(FEV1: 7.500%, FVC: 0.833%, PEF: 6.250%), and PEF 
to other phenotypes (FEV1: 11.905%, FVC: 3.571%, 
FEV1/FVC: 8.929%). In the reverse UVMR analyses, 
we adopted the same method and finally obtained 
11/5 (DVT vs. FEV1 and FVC) or 6 (DVT vs. FEV1/
FVC and PEF)/6 instrumental variables. The statisti-
cal power of the reverse MR analysis was unable to be 
calculated because there were no previous studies that 
simultaneously satisfied the main parameters used for 
calculation. The percentages of the IVs of each venous 
thromboembolism subtype associated with other sub-
types are as follows: VTE to DVT (50%), VTE to PE 
(16.667%), DVT to VTE (100%), DVT vs. PE (33.333%), 
PE to VTE (40%), and PE to DVT (40%). MR-Egger 

https://cnsgenomics.com/shiny/mRnd/
https://cnsgenomics.com/shiny/mRnd/
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http://ldsc.broadinstitute.org/ldhub/
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regression and MVMR analysis were performed to 
detect and correct the potential pleiotropic bias caused 
by overlapping IVs of different phenotypes. Please see 
the following sections for detailed results. The flow 
chart for quality control of the IVs (UVMR) is shown in 
Additional file 1 (Figs. S4A–D, S5A–C).

In forwards MVMR analyses, all 1019 
(272 + 239 + 303 + 205) LD-independent SNPs 
related to FEV1, FVC, FEV1/FVC or PEF were 
included. Ninety-five SNPs (203 variables) repre-
sent repetitive signals, so we generated a set of SNPs 
(911 = 1019 − 203 + 95) by selecting the SNPs with the 
lowest P value. Next, we collected these SNPs from the 
corresponding GWAS outcomes, and there were 861 
overlapping SNPs. Finally, 727 (727 = 861  −  134, 134 
SNPs with palindromic structure) SNPs were selected 
as IVs after harmonizing SNP exposures and SNP out-
comes. In reverse MVMR analyses, we adopted the 
same method, and 19 instrumental variables were 
obtained. The flow chart for quality control of the IVs 
(MVMR) is shown in Additional file 1 (Figs. S6, S7).

Causal effect between lung function and the risk of VTE, 
DVT and PE via UVMR analyses
Figures  1, S8, S9 (Additional file  1) and Tables S8, S9 
(Additional file  2) show the UVMR estimates between 
lung function and VTE risk using different MR methods.

Forwards UVMR analyses
FEV1 vs. VTE, DVT and PE
All models indicated that there was no causal effect of 
FEV1 on VTE, DVT and PE (VTE: OR 0.903, 95% CI 
0.797–1.023, P = 0.110; DVT: OR 0.876, 95% CI 0.737–
1.041, P = 0.133; PE: OR 0.953, 95% CI 0.794–1.144, 
P = 0.607) with no evidence of heterogeneity (VTE: Q_
Pval = 0.370, I2 = 0.027; DVT: Q_Pval = 0.381, I2 = 0.026; 
PE: Q_Pval = 0.192, I2 = 0.034) or pleiotropy (VTE: inter-
cept = −  0.002, P = 0.648; DVT: intercept = −  0.007, 
P = 0.214; PE: intercept = −  0.003, P = 0.679). The 
weighted median estimates were more accurate than 
the MR-Egger and weighted mode methods. CAUSE 
analyses indicated that the causal model was better than 
the sharing model of FEV1 vs. DVT (Additional file  2: 

Table 1  Summary information of GWAS data and instrumental variables used in our analyses

FEV1 forced expiratory volume in one second; FVC forced vital capacity; FEV1/FVC the ratio of FEV1 to FVC; PEF peak expiratory flow; VTE venous thromboembolism; 
DVT deep vein thrombosis; PE pulmonary embolism; nIVs number of instrumental variables; R2 variance explained by the SNPs on exposure

Exposures Outcomes

Traits Sample size Source Year Trait transformation Trait nIVs R2 F_statistic Power

FEV1 400,462 UKBB & SpiroMeta 2019 Raw, in liter VTE 209 0.030 13,238.190 0.350

DVT 209 0.030 13,238.190 0.300

PE 213 0.031 13,373.943 0.080

FVC 400,462 UKBB & SpiroMeta 2019 Raw, in liter VTE 189 0.029 11,468.368 0.240

DVT 192 0.029 11,489.334 0.740

PE 191 0.028 11,396.694 0.050

FEV1/FVC 400,462 UKBB & SpiroMeta 2019 Raw, in liter VTE 236 0.055 22,562.624 0.130

DVT 235 0.056 22,383.280 0.200

PE 240 0.057 22,748.353 0.170

PEF 400,462 UKBB & SpiroMeta 2019 Raw, in liter VTE 166 0.034 13,537.796 0.050

DVT 168 0.034 13,679.262 0.050

PE 168 0.034 13,679.262 0.070

VTE 9176/209,616 FinnGen Study 2021 Case control FEV1 8 0.077 15,846.433 –

FVC 9 0.134 30,183.011 –

FEV1/FVC 11 0.144 32,396.142 –

PEF 9 0.015 3312.630 –

DVT 4576/214,216 FinnGen Study 2021 Case control FEV1 5 0.185 44,289.920 –

FVC 5 0.185 44,289.920 –

FEV1/FVC 6 0.195 46,644.481 –

PEF 6 0.195 46,644.481 –

PE 4185/214,607 FinnGen Study 2021 Case control FEV1 5 0.264 66,459.527 –

FVC 5 0.264 66,459.527 –

FEV1/FVC 5 0.264 66,459.527 –

PEF 5 0.264 66,459.527 –
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Table S10), but the difference did not reach the threshold 
of significance (P = 0.340), which possibly was due to the 
low power of the DVT GWAS. Leave-one-out sensitiv-
ity analyses and the MR-PRESSO test did not find SNPs 
to alter the MR estimates, indicating the robustness and 
reliability of forwards UVMR results (Additional file  3: 
Fig. S10A–C).

FVC vs. VTE, DVT and PE
UVMR provided suggestive evidence for a causal 
effect from FVC to DVT using 192 SNPs. The OR per 
SD increase in FVC was 0.774 (95% CI 0.641–0.934; 
P = 0.008). In addition, the suggestive causal effect is 

unlikely to be affected by pleiotropy due to the lim-
ited MR-Egger intercept (−  0.006) and nonsignificant 
results (P_value = 0.346) in the reversed test. For IVs, no 
potential outlier SNP was detected by leave-one-out and 
MR-PRESSO analyses (Additional file  3: Fig. S11A–C). 
No evidence was found for causal associations of FVC 
with VTE and PE in the IVW method (VTE: OR 0.921, 
95% CI 0.803–1.057, P = 0.241; PE: OR 0.992, 95% CI 
0.812–1.211, P = 0.934), and neither pleiotropy (VTE: 
intercept = −  0.003, P = 0.469; PE: intercept = −  0.006, 
P = 0.416) nor heterogeneity (VTE: Q_Pval = 0.327, 
I2 = 0.041; PE: Q_Pval = 0.182, I2 = 0.085) was found. The 
weighted median estimate was suggestive of significance 

Fig. 1  The forest plots of UVMR results. The blue dot and line represent the causal estimate and 95% confidence interval (CI), respectively. Each line 
represents one method to assess the potential causal effect. A Represents the effects of different lung function parameters on VTE risk, and B is the 
inverse direction. Causal inferences that were not nominally significant with at least two different methods are shown in Figs. S8 and S9 (Additional 
file 1). CAUSE filtered independent SNPs with GWAS p values < 1 × 10−3. FEV1 forced expiratory volume in one second; FVC forced vital capacity; 
FEV1/FVC the ratio of FEV1 to FVC; PEF peak expiratory flow; VTE venous thromboembolism; DVT deep vein thrombosis; PE pulmonary embolism; 
NSNP number of single nucleotide polymorphism; IVW inverse-variance weighted; CAUSE causal analysis using summary effect; PRESSO pleiotropy 
residual sum and outlier
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(OR 0.785, 95% CI 0.639–0.963, P = 0.020), which high-
lights the necessity for MVMR analysis.

FEV1/FVC vs. VTE, DVT and PE
According to the main IVW analyses, no causal effect 
of FEV1/FVC on VTE (OR 1.037, 95% CI 0.944–1.139, 
P = 0.447), DVT (OR 1.070, 95% CI 0.938–1.220, 
P = 0.313) or PE (OR 1.066, 95% CI 0.932–1.219, 
P = 0.349) was identified. The leave-one-out analy-
sis plots are shown in Additional file  4 (Fig. S12A–
C). Although MR weighted median and weighted 
mode estimates were significant (DVT-median: OR 
1.364 (1.087–1.712), P = 0.007; weighted mode: OR 
2.308 (1.651–3.226), P = 1.821e−06; PE-median: OR 
1.379 (1.098–1.734), P = 0.006; PE-mode: OR 2.441 
(1.719–3.468), P = 1.195e−06) or suggestive signifi-
cant (VTE-median: OR 1.251, 95% CI 1.059–1.476, 
P = 0.008; VTE-mode: OR 1.843, 95% CI 1.442–2.355, 
P = 1.935e−06), overall horizontal pleiotropy effects exist 
(VTE: PRESSO_P = 0.040; DVT: intercept = −  0.003, 
P = 0.004; PE: intercept = − 0.003, P = 0.004), which also 
highlights the necessity for MVMR analysis.

PEF vs. VTE, DVT and PE
All models consistently indicated that genetically pre-
dicted PEF had no causal relation with VTE (OR 1.006, 
95% CI 0.882–1.147, P = 0.928), DVT (OR 1.001, 95% 
CI 0.833–1.204, P = 0.988) or PE (OR 1.037, 95% CI 
0.869–1.238, P = 0.687). Pleiotropy bias (VTE: inter-
cept = 0.006, P = 0.159; DVT: intercept = 0.011, P = 0.093; 
PE: intercept = 0.003, P = 0.605) was not observed, and 
heterogeneity (VTE: Q_Pval = 0.084, I2 = 0.134; DVT: 
Q_Pval = 0.041, I2 = 0.166; PE: Q_Pval = 0.393, I2 = 0.025) 
was not detected. The main IVW estimates were gener-
ally consistent with the weighted median, weighted mode 
and MR-Egger sensitivity estimates. The leave-one-out 
sensitivity analyses (Additional file  4: Fig. S13A–C) and 
the MR-PRESSO analyses found that the causal relation 
between PEF and VTE events was not affected by any 
individual SNP, which indicated the reliability of the MR 
estimates.

Reverse UVMR analyses
VTE vs. different lung function parameters
All methods in reverse UVMR analyses consistently sug-
gested no significant causality of genetically predicted 
VTE with FEV1, FVC and PEF (IVW: ORFEV1 1.000; 
95% CI 0.989–1.012; P = 0.949; ORFVC 0.998; 95% CI 
0.998–1.008; P = 0.691; ORPEF 1.005; 95% CI 0.994–
1.016; P = 0.353). There was no evidence of heteroge-
neity between IV estimates with IVW methods from 
individual SNPs (FEV1: Q_Pval = 0.167, I2 = 0.327; FVC: 
Q_Pval = 0.153, I2 = 0.332; PE: Q_Pval = 0.086, I2 = 0.423) 

and no pleiotropy effect (FEV1: intercept = −  0.001, 
P = 0.815; FVC: intercept = − 0.003, P = 0.093; PE: inter-
cept = − 0.002, P = 0.519). No potential outlier SNP was 
detected by leave-one-out and MR-PRESSO analyses 
(Additional file  5: Fig. S14A–C). The suggestive signifi-
cant effect of VTE on FF in weighted median analysis 
(OR 1.012, 95% CI 1.001–1.023, P = 0.028) highlighted 
the necessity of MVMR.

DVT vs. different lung function parameters
According to the main IVW analyses, no causal effect of 
DVT on FEV1 (OR 1.005, 95% CI 0.995–1.015, P = 0.354), 
FVC (OR 1.001, 95% CI 0.993–1.008, P = 0.839), FEV1/
FVC (OR 1.008, 95% CI 0.997–1.019, P = 0.144) or PEF 
(OR 1.007, 95% CI 0.997–1.018, P = 0.183) was identi-
fied. Although MR weighted median estimates were 
suggestive significant (FF-median: OR 1.009 (1.002–
1.017), P = 0.012; PEF-median: OR 1.009 (1.001–1.017), 
P = 0.026), overall heterogeneity (Additional file  5: Fig. 
S15A–C) and horizontal pleiotropy effects exist (FF: 
Q_pval = 0.017, intercept = −  0.000, P = 0.004; PEF: 
Q_pval = 0.031), highlighting the necessity for MVMR 
analysis.

PE vs. different lung function parameters
According to the main IVW analyses, no causal effect of 
PE on FEV1 (OR 0.989, 95% CI 0.976–1.003, P = 0.122), 
FEV1/FVC (OR 0.996, 95% CI 0.985–1.008, P = 0.554) or 
PEF (OR 0.995, 95% CI 0.980–1.010, P = 0.482) was iden-
tified, but suggestive significance existed between PE and 
FVC (OR 0.989, 95% CI 0.979–0.999, P = 0.029). Pleiot-
ropy bias was not detected, and heterogeneity was not 
found (Additional file 5: Fig. S16A–C).

None of the CAUSE analyses in reverse MR showed 
that the causal model was superior to the sharing model 
(Additional file 2: Table S11).

Direct causal effect between lung function and the risk 
of VTE, DVT and PE via MVMR analyses
Forwards MVMR analyses
The forwards MVMR analyses indicated that the direct 
effect of each lung function parameter controlling for 
other lung function parameters on VTE was similar to 
the UVMR setting. Additionally, there was no direct 
effect of FVC (OR 0.407, 95% CI 0.018–9.067, P = 0.570) 
on DVT, which was inconsistent with the UVMR-IVW 
results. Consistent with the main IVW, the results of 
MVMR-Egger regression and MR-PRESSO (no signifi-
cant outliers were detected) also showed no causal asso-
ciation between lung function and VTE, which suggested 
that the MVMR approach avoids the bias caused by hori-
zontal pleiotropy in the UVMR analyses (Table 2).
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Reverse MVMR analyses
The reverse MVMR analyses found that the direct effect 
of VTE or DVT controlling for another two traits on 
different lung functions was consistent with the UVMR 
analyses. Additionally, the direct effect of PE on FVC 
(OR 0.956, 95% CI 0.862–1.061, P = 0.400) was attenuated 
compared to the total effect obtained via UVMR. Nota-
bly, the direct causal effect of PE on FEV1 was border-
line significant (OR 0.921, 95% CI 0.848–1.000, P = 0.050), 

which was inconsistent with UVMR and should be inter-
preted with caution (Table 3).

LDSC regression analyses
The total heritability of lung function was 11.4–15.5% 
(mean χ2 = 1.912–2.284). The total heritability of VTE 
(0.6–1.3%, mean χ2 = 1.053–1.091) was relatively small. 
Lung functions were not genetically correlated with 

Table 2  Multivariable MR for lung function on VTE (orientate to exposure FEV1)

FEV1 forced expiratory volume in one second; FVC forced vital capacity; FEV1/FVC the ratio of FEV1 to FVC; PEF peak expiratory flow; VTE venous thromboembolism; 
DVT deep vein thrombosis; PE pulmonary embolism; MR Mendelian randomization; SNP single nucleotide polymorphism; OR odds ratio; CI confidence interval; SE 
standard error; mvIVW multivariable inverse-variance weighted; PRESSO pleiotropy residual sum and outlier

Exposure nSNPs OR (95% CI) Beta (SE) P Intercept (P) Q_Pval (I2) PRESSO (global P)

FEV1 vs. VTE 0.001 (0.477) 0.474 (0.002)  < 0.001

 mvIVW 727 1.473 (0.516–4.202) 0.378 (0.535) 0.479

 mvMR-Egger 727 0.480 (0.051–4.506)

FVC vs. VTE

 mvIVW 727 0.492 (0.052–4.615) − 0.709 (1.142) 0.535

 mvMR-Egger 727 1.857 (0.239–14.428)

FEV1/FVC vs. VTE

 mvIVW 727 1.885 (0.243–14.646) 0.634 (1.046) 0.544

 mvMR-Egger 727 1.449 (0.508–4.135)

PEF vs. VTE

 mvIVW 727 0.996 (0.843–1.177) − 0.004 (0.085) 0.965

 mvMR-Egger 727 0.984 (0.830–1.167)

FEV1 vs. DVT 0.001 (0.499) 0.474 (0.002) 0.002

 mvIVW 726 1.613 (0.377–6.892) 0.478 (0.741) 0.519

 mvMR-Egger 726 0.393 (0.018–8.747)

FVC vs. DVT

 mvIVW 726 0.407 (0.018–9.067) − 0.898 (1.583) 0.570

 mvMR-Egger 726 2.171 (0.126–37.299)

FEV1/FVC vs. DVT

 mvIVW 726 2.210 (0.129–37.902) 0.793 (1.450) 0.585

 mvMR-Egger 726 1.602 (0.375–6.844)

PEF vs. DVT

 mvIVW 726 1.006 (0.798–1.268) 0.006 (0.118) 0.959

 mvMR-Egger 726 0.990 (0.781–1.255)

FEV1 vs. PE 0.001 (0.703) 0.484 (0.001) 0.052

 mvIVW 727 1.694 (0.492–5.834) 0.527 (0.631) 0.404

 mvMR-Egger 727 0.374 (0.027–5.249)

FVC vs. PE

 mvIVW 727 0.378 (0.027–5.302) − 0.974 (1.348) 0.470

 mvMR-Egger 727 2.361 (0.210–26.565)

FEV1/FVC vs. PE

 mvIVW 727 2.396 (0.213–27.020) 0.874 (1.236) 0.479

 mvMR-Egger 727 1.680 (0.488–5.788)

PEF vs. PE

 mvIVW 727 0.991 (0.799–1.229) − 0.009 (0.110) 0.935

 mvMR-Egger 727 0.982 (0.790–1.221)
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VTE and PE, but significant coheritability of FEV1 with 
DVT (rg = −  0.189, P = 0.005) and suggestive coherit-
ability of FVC with DVT (rg = − 0.169, P = 0.013) were 
found, suggesting that the causal relation between FVC 
and DVT may be influenced by coheritability (Fig.  2, 
Additional file 2: Table S12).

Discussion
Impaired lung function is related to a higher risk of 
VTE events. However, whether there is a causal rela-
tion between different lung function parameters and 
VTE events and the direction of the causal relation are 
unclear. Benefitting from the large sample-based GWAS 
data and less-biased MR approaches, we used UVMR 

Table 3  Multivariable MR for VTE on lung function (orientate to exposure VTE)

FEV1 forced expiratory volume in one second; FVC forced vital capacity; FEV1/FVC the ratio of FEV1 to FVC; PEF peak expiratory flow; VTE venous thromboembolism; 
DVT deep vein thrombosis; PE pulmonary embolism; SNP single nucleotide polymorphism; OR odds ratio; CI confidence interval; SE standard error; mvIVW 
multivariable inverse-variance weighted; PRESSO pleiotropy residual sum and outlier

Exposure nSNPs OR (95% CI) Beta (SE) P Intercept (P) Q_Pval (I2) PRESSO 
(global P)

VTE vs. FEV1 − 0.004 (0.246) 0.172 (0.287) 0.375

 mvIVW 13 1.039 (0.943–1.375) 0.130 (0.096) 0.173

 mvMR-Egger 13 1.120 (0.910–1.378)

DVT vs. FEV1

 mvIVW 13 0.955 (0.869–1.049) − 0.046 (0.048) 0.338

 mvMR-Egger 13 0.966 (0.865–1.078)

PE vs. FEV1

 mvIVW 13 0.921 (0.848–1.000) − 0.082 (0.042) 0.050

 mvMR-Egger 13 0.920 (0.844–1.003)

VTE vs. FVC

 mvIVW 13 1.124 (0.915–1.381) 0.117 (0.105) 0.266

 mvMR-Egger 13 1.067 (0.860–1.324)

DVT vs. FVC

 mvIVW 13 0.956 (0.862–1.061) − 0.045 (0.053) 0.400 0.004 (0.197) 0.072 (0.415) 0.287

 mvMR-Egger 13 0.988 (0.882–1.107)

PE vs. FVC

 mvIVW 13 0.931 (0.850–1.018) − 0.072 (0.046) 0.115

 mvMR-Egger 13 0.931 (0.852–1.016)

VTE vs. FEV1/FVC 0.004 (0.063) 0.732 (0.000) 0.867

 mvIVW 14 1.099 (0.937–1.288) 0.094 (0.081) 0.246

 mvMR-Egger 14 1.039 (0.876–1.232)

DVT vs. FEV1/FVC

 mvIVW 14 0.973 (0.898–1.055) − 0.027 (0.041) 0.516

 mvMR-Egger 14 1.007 (0.922–1.099)

PE vs. FEV1/FVC

 mvIVW 14 0.939 (0.877–1.006) − 0.063 (0.035) 0.074

 mvMR-Egger 14 0.943 (0.878–1.012)

VTE vs. PEF 0.002 (0.438) 0.084 (0.375) 0.269

 mvIVW 15 1.057 (0.855–1.306) 0.055 (0.108) 0.612

 mvMR-Egger 15 1.024 (0.814–1.288)

DVT vs. PEF

 mvIVW 15 0.996 (0.894–1.109) − 0.004 (0.055) 0.935

 mvMR-Egger 15 1.014 (0.899–1.143)

PE vs. PEF

 mvIVW 15 0.950 (0.867–1.042) − 0.051 (0.047) 0.277

 mvMR-Egger 15 0.953 (0.868–1.047)
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and MVMR to assess the total and direct effects of dif-
ferent lung function parameters on VTE outcomes and 
vice versa. Higher FVC had a beneficial total effect on 
DVT outcome, while a higher risk of PE had a suggestive 
total effect on decreased FVC outcome. Nevertheless, the 
direct effects for these two traits were greatly attenuated 
compared to the total effects (except for the borderline 
direct effect of PE on FEV1). Additionally, we also identi-
fied the significant coheritability of FEV1 with DVT via 
LDSC analysis.

VTE generally refers to DVT and PE. The lower 
extremities are the most common site for DVT, while 
PE occurs in pulmonary arteries when thrombi dislodge 
from the vein walls and travel with the blood into the 
pulmonary arteries [46]. Blood flow change, hypercoagu-
lability and vessel wall damage are three critical factors 
for the pathogenesis of thrombosis [47]. Lung function, 
including airway flow, capacities, and oxygenation, is 
functionally divided into obstructive and restrictive dys-
function [48]. The physiological correlation of the heart, 
lung and vessels intuitively hints that any impairment of 
lung function may influence the health of vessels [48]. 
Conversely, damage to vessels, especially pulmonary 
vessels, may lead to pulmonary dysfunction [49]. Such 
conjectures were verified to some extent in our LDSC 
results. Several observational studies pointed out that 

COPD was diagnosed when lung function parameters 
began to decrease, was characterized by airway limitation 
and was related to a higher risk of VTE events [12, 50, 
51]. Additionally, a prospective population-based study 
indicated that airway obstruction can increase the risk 
of VTE events (provoked or unprovoked), and decreased 
FEV1 and FEV1/FVC, indices of obstructive ventilation 
dysfunction, were related to a higher risk of VTE events, 
especially PE [11]. However, the heterogeneity of these 
observational studies, with different levels of adjustment 
for confounding factors (age, sex and smoking, etc.), 
which are known facts that could affect the development 
of pulmonary dysfunction and VTE events, was the criti-
cal factor impacting the reliability of the results.

Unsurprisingly, our MR analysis did not draw causal 
inferences consistent with observational studies, which 
was similar to our previously published negative results 
for causal inference of lung function and atrial fibrillation 
[52]. First, a possible reason is the heterogeneity adjust-
ing for potential confounders or concomitant and sec-
ondary risk factors (e.g., surgery, cancer, lower extremity 
varices, immobilization, bronchial superinfection or 
right ventricular failure [51]). Furthermore, in addi-
tion to the aforementioned cancer-related and hospital-
ization-related VTE, unprovoked VTE also accounts for 
20–30% of the disease burden of VTE [3]. Patients with 

Fig. 2  The forest plot of genetic correlation analyses. The blue dot and line represent the genetic correlation estimate and 95% confidence interval 
(CI), respectively. FEV1 forced expiratory volume in one second; FVC forced vital capacity; FEV1/FVC the ratio of FEV1 to FVC; PEF peak expiratory flow; 
VTE venous thromboembolism; DVT deep vein thrombosis; PE pulmonary embolism; cor correlation coefficient
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unprovoked VTE are younger, which is consistent with 
the estimation of the higher attributable risk for genetic 
factors in younger patients, while the attributable risk 
of some specific genetic conditions in elderly patients is 
only approximately 7–22% [3]. Therefore, the age compo-
sition of the population may also be one of the potential 
reasons affecting our results. In addition, patients with 
COPD or pulmonary dysfunction are habitually given CT 
scans to assist in the diagnosis, causing referral bias, i.e., 
being more likely to be diagnosed with PE [11, 53], which 
may further affect the reliability of causal inference. Since 
we were unable to obtain individual-level data from mul-
tiple cohorts, this study could not complete MR analyses 
stratified by age, concomitant risk factors or diagnosis 
mode. Second, emerging evidence suggests that there is 
a bidirectional association between chronic inflamma-
tion and thrombosis [10, 54]. Meanwhile, patients with 
different degrees of impaired lung function exhibited dif-
ferent degrees of systemic inflammation, and the inflam-
matory response was proportional to the deterioration of 
lung function and disease progression [55]. The potential 
mechanisms of coagulopathy related to chronic inflam-
mation have been proposed but are not well defined [10], 
and pulmonary hypertension with venous stasis second-
ary to impaired lung function and hypoxia are potential 
risk mediators [11]. In addition, a prospective cohort 
study indicated that patients with respiratory symptoms 
but normal lung functions also had a higher risk of VTE 
events (especially provoked VTE) [11]. Therefore, lung 
function may represent only manifestations or markers 
for some comorbidities rather than decisive causal risk 
factors for VTE. Third, genetic correlation between lung 
function and VTE events may be another potential rea-
son because pleiotropic effects may exist in addition to 
causality. An observational study showed that FEV1 is a 
feature of the severity of obstruction ventilation dysfunc-
tion that can identify undiagnosed COPD, while FVC 
represents overall vital capacity [56], higher FEV1/FVC is 
a feature of restriction, lower FEV1/FVC represents air-
flow obstruction [57], and reduced PEF is a physiological 
change in older individuals [58]. Genetically, the multiple 
gene regions related to FEV1 and FEV1/FVC play roles 
in biological pathways of inflammation [22, 59]. Thus, 
the same genetic mechanisms may determine or influ-
ence different lung function parameters, which may vio-
late the assumption and bias the estimates from UVMR 
analysis. Our present study successfully accounted for 
the aforementioned bias, which was consistent with the 
LDSC results to some extent. Although the causal associ-
ation was not significant and the underlying mechanism 
between lung function and VTE events remains unclear, 
our study provided suggestive genetic evidence for a clin-
ical concern to support the importance of lung function 

(especially FVC) assessments in monitoring and pre-
venting the risk of VTE events (especially PE), and lung 
function parameters may be a useful marker of a higher 
risk of VTE events. In addition, individuals with low lung 
capacity (FEV1 or FVC) should pay special attention to 
and reduce unhealthy lifestyles related to DVT, such as 
sedentary long the station or long time to maintain a pos-
ture. Finally, although a large sample cohort was used, the 
low statistical power of this MR analysis may be a poten-
tial reason for failure to detect a true causal relationship. 
Therefore, the summary data of a larger sample size need 
to be discovered, and the MR results should be evaluated 
in an independent population to verify their reliability, if 
possible.

The design of the MR study is less susceptible to 
potential confounders and inverse causality, but limi-
tations exist. First, the statistical powers of the reverse 
MR analyses were unable to be calculated because the 
main parameters could not be obtained. Therefore, the 
MR results should be interpreted cautiously with refer-
ence to the existing evidence of different study designs. 
Second, the summary GWAS data used in this study 
were derived from a European population, so our con-
clusions may not generalize to other ethnic populations. 
Third, although lung function and VTE GWASs have no 
cohort overlap, they might have some sample overlap, 
which would inflate the Type 1 error rate [31]. Further-
more, the two GWASs we used were both adjusted for 
age and sex, which could produce collider bias and lead 
to the identification of invalid IVs affecting the interpret-
ability and validity of the results [60]. Fourth, limited by 
current knowledge and the inability to obtain summary 
data for GWAS of VTE risk factors to assess potential 
genetic correlations, we cannot avoid the possibility of 
pleiotropy effects. Nonetheless, we performed MR-Egger 
regression and CAUSE analyses, which were more robust 
to invalid SNPs and considered the correlated and uncor-
related pleiotropy effects. Fifth, the identified SNPs may 
exhibit potential weak instrument bias, but this is less 
likely because the F statistics for each SNP used were sig-
nificantly higher than ten.

Conclusions
Our findings identified the coheritability of FEV1 (signifi-
cant) and FVC (suggestive) with DVT. There was no con-
vincing causality between lung function and the risk of 
VTE or its subtypes. Nevertheless, the borderline causal 
effect of PE on FEV1 and the significant genetic correla-
tion between FEV1 and DVT may have clinical implica-
tions for improving the quality of existing prevention and 
intervention strategies. The identification of patients at 
higher risk for VTE events may lead to a more targeted 
preventive treatment of those individuals. Additionally, 
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MR studies using individual-level statistics may be 
beneficial to elucidate the potential nonlinear relation 
between lung function and VTE events.
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