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Abstract 

The incidence of head and neck cancers (HNC) is rising worldwide especially with HPV-related oropharynx squamous 
cell carcinoma. The standard of care for the majority of patients with locally advanced pharyngeal disease is curative-
intent radiotherapy (RT) with or without concurrent chemotherapy. RT-related toxicities remain a concern due to the 
close proximity of critical structures to the tumour, with xerostomia inflicting the most quality-of-life burden. Thus, 
there is a paradigm shift towards research exploring the use of imaging biomarkers in predicting treatment outcomes. 
Diffusion-weighted imaging (DWI) is a functional MRI feature of interest, as it quantifies cellular changes through 
computation of apparent diffusion coefficient (ADC) values. DWI has been used in differentiating HNC lesions from 
benign tissues, and ADC analyses can be done to evaluate tumour responses to RT. It is also useful in healthy tissues 
to identify the heterogeneity and physiological changes of salivary glands to better understand the inter-individual 
differences in xerostomia severity. Additionally, DWI is utilised in irradiated salivary glands to produce ADC changes 
that correlate to clinical xerostomia. The implementation of DWI into multi-modal imaging can help form prognos-
tic models that identify patients at risk of severe xerostomia, and thus guide timely interventions to mitigate these 
toxicities.

Keywords  Diffusion magnetic resonance imaging, Head and neck cancer, Magnetic resonance imaging, 
Radiotherapy, Xerostomia

Introduction
Head and neck cancer (HNC) of the mucosa is increas-
ing worldwide, currently accounting for up to 4% of all 
malignancies [1]. More than 60% of presentations are 
locally advanced tumours, with most fatalities caused by 
uncontrolled locoregional disease [2, 3]. Approximately 
90% of HNCs are of squamous cell carcinoma (SCC) 
type, with alcohol and smoking being the significant risk 
factors [4]. However, in the past decade, there has been a 
decline in the rates of HNC from those with ‘traditional’ 
risk factors of smoking and alcohol, and a rise in those 
with human papillomavirus (HPV)-related oropharyn-
geal SCC who are typically young, non-smokers. Patients 
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with human papillomavirus (HPV)-related oropharyn-
geal SCC have better survival outcomes with treatment 
[3, 5]. Curative-intent radiotherapy (RT) is the standard 
of care for patients with pharyngeal (nasopharynx, oro-
pharynx, and larynx) carcinomas as modern techno-
logical advancements, altered fractionation schemes and 
the addition of concurrent chemotherapy have achieved 
excellent efficacy in locoregional control (LRC) and long-
term survival. With improving outcomes, survivorship 
now focuses on management of RT-related late toxicities 
[6]. Toxicities are often classified into acute (onset from 
day 1–90) and late (onset from day 91 to the remainder 
of life) [7]. Xerostomia is a late toxicity of concern as it 
constitutes a significant quality-of-life (QoL) burden, 
and is often unavoidable due to the involvement of sali-
vary glands in therapy volumes [8]. This has changed the 
way normal structures are accounted for during treat-
ment planning. There has been a progressive shift in 
survivorship research towards incorporating magnetic-
resonance imaging (MRI) and its functional imaging fea-
tures to develop prognostic models that will predict late 
toxicities. Diffusion-weighted imaging (DWI) is an MRI 
function that is of recent interest due to its accurate eval-
uation of changes in cellular architecture [9]. This review 
aims to address the uses of DWI in evaluating HNC 
treatment outcomes and its emerging potential in pre-
dicting radiation-induced toxicities.

For this review, a comprehensive search was conducted 
on PubMed during April to May 2021, using Medical 
Subject Headings (MeSH) of head and neck cancer, radi-
otherapy, magnetic resonance, and diffusion magnetic 
resonance imaging. Studies were screened using spe-
cific selection criteria, and were included in this review 
if they reported use of DWI/MR imaging for evaluation 
of salivary glands and/or treatment assessment of HNCs. 
Literature were excluded if they studied oligometastatic 
disease, previously resected tumours or explored novel 
adjuvant therapies. Only results in the English language 
were included.

Chemoradiotherapy in head and neck cancer
Traditionally, conventional RT such as computed tomog-
raphy (CT)-based three-dimensional conformal radio-
therapy (3DCRT) have had limitations on protecting 
normal tissues, resulting in considerable toxicity rates 
and modest disease locoregional control (LRC) [10, 11]. 
This led to the introduction of Intensity Modulated Radi-
otherapy (IMRT), a technique that enables organs at risk 
(OAR) sparing by ensuring a steep dose gradient between 
the tumour target and normal structures [12, 13]. The 
PARSPORT trial demonstrated this by sparing parotid 
glands, thus lowering rates of radiation-induced xerosto-
mia, improving salivary function recovery and achieving 

greater QoL compared to conventional techniques [14]. 
Furthermore, subsequent studies proposed the addition 
of concurrent chemotherapy to RT plans and confirmed 
its benefit towards treatment outcomes [15]. Platinum-
based chemotherapy such as cisplatin became the agent 
of choice [16–18]. A trial by Chitapanarux et  al. com-
pared treatment outcomes of a concurrent chemo-radi-
otherapy (CCRT) arm to an accelerated RT arm [19]. 
The CCRT group achieved better LRC and statistically 
improved overall survival (OS) compared to the accel-
erated arm (p = 0.05) [19]. Ghadjar et  al. also showed 
similar benefits with CCRT in terms of LRC and OS [20], 
while Gupta et  al. reported comparable local tumour 
control rates between CCRT and accelerated RT [17]. As 
a result, concurrent chemo-radiotherapy with IMRT has 
emerged as the standard of care for unresectable HNC. 
However, despite the improvement in treatment out-
comes, CCRT still accrues considerable toxicity because 
the combination of RT and chemotherapy inflicts more 
structural damage [20]. This review will focus on RT-
related xerostomia, since it contributes to a significant 
QoL burden and is under-recognised and under-esti-
mated clinically [21].

Xerostomia
Radiation-related xerostomia is dry mouth resulting 
from radiation-induced damage to the salivary glands. 
It is a subjective assessment that is difficult to quantify 
due to discrepancies between clinician and patient per-
ceptions [21]. The parotid and submandibular glands are 
the major tissues responsible for salivary output; parotid 
glands contribute up to 70% of salivary flow during gusta-
tory stimulation, while submandibular glands supply up 
to 90% of salivary output during rest [22]. Parotid glands 
are highly radio-sensitive [23] and has been shown to 
undergo glandular atrophy and morphological changes 
as soon as during the early stages of an RT course [8]. 
Furthermore, it is difficult to spare these critical glands 
during treatment because they are close to or within 
the Planning Target Volume (PTV), hence sparing these 
structures often compromises tumour control [23]. This 
explains why radiation-induced xerostomia is the most 
frequently reported late toxicity amongst HNC patients 
[24], with subjective xerostomia reporting having strong 
correlations with mean RT dose to the oral cavity [21].

Additionally, the development of xerostomia is not 
just determined by mean total dose. Buettner et al. dem-
onstrated that the spatial distribution of doses between 
the superficial and deep lobes of the parotid glands also 
impact toxicity [23]. This implies that the parotid glands 
contain regions of varying radio-sensitivities. A study 
by Nevens et al. found that there is no significant differ-
ence between sparing both parotid glands and sparing 
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just the contralateral gland, however, sparing one whole 
gland leads to better late xerostomia outcomes compared 
to sparing just one superficial lobe [25]. One hypothesis 
to explain this phenomenon is the distribution of sali-
vary gland stem cells. These drive the renewal of parotid 
gland tissue after radiation damage and are dispersed in 
regions throughout the glands [25]. Since the parotids 
exhibit varying radio-sensitivities and the rates of patient 
recovery from late xerostomia differ, it can be assumed 
that heterogeneity exists between each individual in the 
distribution of parotid stem cells. It is also postulated 
that parotid glands contain functional regions arranged 
in parallel, whereby xerostomia occurs when there is 
destruction of a sufficient number of glandular units or 
significant damage to key functional regions [26]. There-
fore, if a treatment plan aims to optimise parotid gland 
sparing, it must consider the dosage distribution in addi-
tion to mean total dose.

Adaptive radiotherapy and MRI imaging
Adaptive radiotherapy (ART) is an approach that aims 
to address the complexities of intra-treatment glandular 
changes. It incorporates imaging during the treatment 
course, so that RT plans can be re-adapted according to 
anatomical movements and the shrinking tumour vol-
ume [2, 4]. A dosimetric study by Kataria et  al. showed 
that the use of ART reduced the volume of parotid 
glands receiving significant radiation dose [2]. Mean-
while, Maheshwari et  al. suggests that ART re-scanning 
also achieves improvement in local tumour control as it 
provides insight into tumour volume reduction [4]. Early 
ART methods use CT imaging [2], however Magnetic-
Resonance Imaging (MRI) also offers additional benefits. 
Firstly, MRI’s soft-tissue contrast and image resolution is 
superior to CT [27–29], which would enable more accu-
rate delineation of tissue changes. High resolution MRI 
can demonstrate intricate morphological information of 
the parotid glands, therefore visualising the radiation-
induced changes that occur to the duct system and con-
nective tissue septa [8]. Moreover, MRI does not expose 
patients to additional radiation, unlike CT [27]. This 
enables continuous MRI scans to be taken repeatedly 
throughout treatment and acquire real-time images that 
depict subtle intra-treatment changes. Its lower safety 
risks relative to CT also makes it suitable for longitudinal 
studies with lengthy follow-up times.

The advantages of MRI’s have also been deployed in 
other aspects of HNC management. Bruijnen et  al. uti-
lised cine MR imaging to quantify respiratory- and 
swallowing-induced intra-fractional tumour motion 
for nasopharyngeal, oropharyngeal and laryngeal can-
cers, such that adequate PTV margins (or internal tar-
get volume, ITV) can be applied for each HNC subtype 

[30]. It is paramount that PTV’s are appropriate because 
underestimation can lead to missing the geometric tar-
get tumour, while overestimation will irradiate more of 
the surrounding OARs. Meanwhile, other research have 
explored the use of MRI signal changes to predict clini-
cal toxicity. Van Dijk et  al. used MRI imaging biomark-
ers to estimate fat concentration of parotid glands, where 
increased lipid density correlated to higher risks of late 
xerostomia [31]. Hence, instead of aiming to eliminate 
toxicities—an unattainable task—research has shifted 
towards optimising imaging modalities to identify at-risk 
cohorts.

Furthermore, MRI’s excellent imaging quality has made 
it easier for artificial intelligence (AI) and deep-learning 
machines to be integrated into treatment planning. Doshi 
et  al. developed an MRI-based software that automati-
cally contours tumour volumes with reproducibility [32]. 
Such tools can improve workflow efficiency by reducing 
the need for clinicians to manually contour each struc-
ture, while also reducing inter- and intra-observer vari-
ability [32].

As the implementation of MRI with ART is still in its 
early stages, some caveats have emerged that poses addi-
tional challenges. Namely, this technology requires the 
use of the MRI magnet outside radiology departments, 
where such technologies would normally be subject to 
strict protocols. There will be an initial learning curve 
in establishing protocols that meet safety requirements. 
Concomitantly, adaptive techniques can be a resource-
intensive practice as it requires increased time invest-
ment by multidisciplinary teams to review and re-adapt 
plans between each fraction.

Diffusion‑weighted imaging
Diffusion-Weighted Imaging (DWI) is a function of MRI 
being explored in HNC management. It is a non-invasive 
technique that measures the random motion of water 
molecules within different tissue compartments [1, 9, 33, 
34]. Molecular motion is determined by its size, environ-
mental temperature and the cellularity of its surround-
ings, therefore DWI can provide quantitative information 
of the diffusivity of each structure based on differences 
in water mobility [1, 9]. Using DWI, the user can identify 
and characterise different tissues as each structure pos-
sesses a unique cellular architecture profile. An impor-
tant parameter of DWI is the b value, which represents 
the sensitivity of a DWI sequence to the effects of diffu-
sion; higher b values equate to greater weighting of diffu-
sion. And to quantify cellular diffusion, DWI sequences 
of varying b values must be generated. This allows the 
calculation of the Apparent Diffusion Coefficient (ADC) 
map [33]. ADCs are essentially values that represent the 
signal attenuation that occurs with molecular diffusion 
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[9]. Thus, the hypercellular environment of a tumour 
impedes the motion of water molecules, appearing as 
increased signals on the DWI sequence and represented 
by low ADC values (mm2/s) [18, 33, 35]. Meanwhile, 
hypocellular environments such as necrotic tissue will 
exhibit high cellular diffusion characterised by high ADC 
[9]. This phenomenon has led to the speculation that 
changes in ADC values can be detected in the early stages 
of RT treatment, since normal tissues begin the apoptotic 
process from the onset of radiation exposure [36]. Larger 
ADC changes may represent more severe cellular damage 
and possibly be indicative of late toxicity. Therefore, DWI 
provides synergistic functional information to the MRI, 
as standard MRI sequences visualise the fine anatomical 
details of structures, whereas the ADC maps quantify the 
diffusivity between different tissues. Such detail is crucial 
to navigate the complex anatomy of the head and neck 
region.

Studies have begun utilising DWI as part of HNC treat-
ment planning. Felice et al. proposes that DWI should be 
incorporated during tumour contouring as it can pos-
sibly delineate the target volume with more accuracy 
[37]. During treatment planning, Gross Tumour Volume 
(GTV) represents the area with confirmed disease, and 
the study found that the mean GTVs determined using 
ADC were significantly smaller than GTVs from stand-
ard CT (p = 0.0078), resulting in a reduction in dosage 
in all HNC cases [37]. This is highly advantageous for 
dose-sparing of sensitive tissues, but the increased risk 
of local failure from reduced target volumes should also 
be considered. Cardoso et al. also supports the contour-
ing benefits of DWI, but their results were contradictory. 
Their study reported that GTVs delineated with DWI 
were larger than those done on CT alone and CT/PET 
(P < 0.05) [34]. The conflicting results of the two studies 
could be due to the heterogeneity of tumours between 
the patient cohorts and differing b values used. However, 
both reports agree that the superior visualisation and 
histological representation of DWI/MRI helps reduce 
clinician uncertainty by making the tumour target more 
identifiable compared to standard CT, and can lead to 
more accurate delineation of GTV volumes—higher or 
lower. Plus, the addition of DWI into treatment workup 
is not inconvenient as it is inexpensive, quick (acquisition 
takes a few minutes) and does not involve intravenous 
contrast [34].

Prognostic role of diffusion‑weighted imaging in head 
and neck tumours
A key strength of DWI is its signals not being influ-
enced by post-treatment effects such as inflammation. 
This is not the case for Fluorodeoxyglucose (FDG)-Pos-
itron Emission Tomography (PET)—another popular 

functional imaging modality – as it has the propensity to 
give false-positive signals due to FDG’s avidity towards 
inflammatory activity [38]. Hence, DWI’s features make 
it a promising prognostic tool in predicting treatment 
outcomes for HNCs, especially during intra- or post-
treatment periods where treatment-induced inflam-
mation is ubiquitous. For instance, ADC analyses have 
been conducted at pre, mid- and post-treatment stages 
for various uses. A study by Alamolhoda et  al. and a 
systematic review by Driessen et  al. reported that the 
mean ADC values of benign lymph nodes were higher 
than of malignant nodes [1, 38], indicating a diagnostic 
use of DWI in detecting metastatic disease during pre-
treatment workup. Meanwhile, Matoba et  al. demon-
strated that mid-treatment ADC changes of the primary 
tumour were significantly lower in patients with locore-
gional failure compared to those with locoregional con-
trol (p < 0.05) [36], suggesting a role for DWI to predict 
treatment response. A systematic review by Chung et al. 
showed similar reports where high ADCs during pre-
treatment and smaller changes in ADCs during mid- and 
post-treatment phases of concurrent chemoradiotherapy 
indicated locoregional failure [39]. Lastly, post-treatment 
ADC mapping can be used to differentiate a recurrent 
tumour from typical post-RT tissue changes. Two stud-
ies by Abdel Razek et  al. found a significant difference 
between the ADCs of recurrent HNC lesions (low ADCs) 
and post-treatment changes (higher ADCs) (p < 0.05) [40, 
41], with the detection of tumour recurrence achieving a 
sensitivity of 94% and specificity of 100% [40].

Diffusion‑weighted imaging in normal salivary glands
The assessment of normal physiology is crucial in under-
standing the pathological processes of radiation-induced 
tissue damage. Previously, there has been two practical 
methods in objectively measuring salivary gland func-
tion: salivary gland scintigraphy (SGS) with technetium 
Tc99m pertechnetate, and manual measurement of sali-
vary flow. DWI has been added as a non-invasive and 
convenient method in visualising gland function, as ADC 
changes occur during gustatory stimulation of salivary 
glands. Thoeny et al. demonstrated significant decreases 
in ADC values of the salivary glands within minutes of 
ascorbic acid stimulation [26]. However, this trend was 
contradicted by Habermann et  al. as their findings sug-
gest a significant increase in ADC within seconds of stim-
ulation with lemon juice (42). Such discrepancies could 
be explained by the differences in the type and amount 
of stimulation. However, these studies indicate that DWI 
is a useful surrogate measure of salivary flow as ADC 
changes represent the direction of free water, whether 
that be saliva release from the ducts or reproduction of 
saliva within the glands. The magnitude of these ADC 
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changes can reflect gland function, with erroneous values 
indicating presence of disease/damage. Furthermore, by 
combining the quantitative data of DWI with the visual 
information of SGS, the functional data can be correlated 
with gland anatomy to determine the regions of compro-
mise. This will offer the possibility of visualising the het-
erogeneity of salivary gland radio-sensitivities between 
each patient. It may also facilitate the early diagnosis of 
unrecognised glandular diseases and inform key deci-
sions for operative versus non-operative management 
[42].

Additionally, the adjustment of b values of DWI can 
present various information from salivary glands. A pro-
spective study by Thoeny et  al. investigated the influ-
ence of varying b values on the ADC’s of healthy parotid 
glands, and demonstrated that the selection of lower 
b values led to higher ADCs [43]. This is because low b 
values deploy less weighting on diffusion, thus provid-
ing a greater description of perfusion parameters such 
as salivary and blood flow. Conversely, the use of higher 
b values resulted in lower parotid gland ADCs [43, 44], 
which is due to the suppression of perfusion effects and 
thus giving a closer representation of pure diffusion. 
Therefore, b values reflect the varying levels of contri-
bution from diffusion/perfusion, and practitioners must 
be aware of these when utilising DWI as it influences 
ADC analyses. Concomitantly, if b values are standard-
ised during inter-individual analyses, it may elucidate the 
functional differences (e.g. saliva production and adipose 
concentration) that exists between each gland. These util-
ities can provide a baseline comparison for HNC patients 
such that personalised treatment can be made for better 
gland sparing.

Diffusion‑weighted imaging in predicting 
radiation‑induced xerostomia
DWI has recently been used for evaluating post-RT sali-
vary gland function and xerostomia severity. A study by 
Loimu et al. conducted post-treatment ADC analyses of 
the parotid glands of HNC patients treated with IMRT, 
to assess if the signal changes can be correlated with SGS. 
Results showed that irradiated glands exhibit signifi-
cantly higher maximum ADC values during stimulation 
compared to pre-irradiation (p < 0.001). A dose–response 
relationship was also found where glands that absorbed 
more doses showed higher pre- to post-treatment ADC 
changes and equated to less salivary flow rates on SGS 
[9]. Additionally, a post-RT ADC analyses by Zhang 
et  al. on nasopharyngeal cancer (NPC) patients found 
that those receiving lower radiation doses to the salivary 
glands had lower maximum ADC measurements during 
gustatory stimulation and thus had higher likelihood of 
functional recovery [45]. Table 1 summarises other DWI 

studies done on salivary gland function, showing similar 
ADC pattern changes. These results demonstrate that the 
combination of DWI and gustatory stimulation can be a 
prognostic tool for the severity of xerostomia.

Furthermore, the production of ADC histograms pro-
vides additional information not revealed within basic 
descriptive statistics. The ADC histogram provides sets 
of parameters that can be compared with each other, 
which reflect the distribution of ADC values and thus 
representing tissue heterogeneity within the glands [46]. 
A prospective study by Zhou et al. conducted ADC histo-
gram analyses for parotid gland volumes of NPC patients 
during pre- and post-RT periods, discovering key trends 
indicating gland response [46]. During the early stages, 
the change rates of parotid mean ADC, minimum ADC, 
kurtosis and several ADC percentiles correlated with the 
rate of parotid atrophy. Meanwhile, the early change rates 
of parotid ADC standard deviation (SD) and maximum 
ADC were higher in those with grade 2 xerostomia com-
pared to grade 1 (p = 0.014, 0.008) [46]. These results sug-
gest that certain parameters from ADC histograms may 
provide surrogate measurements of radiation-induced 
tissue damage and be useful predictive markers of clinical 
xerostomia. However, current studies have only utilised 
DWI for selected timepoints mid- and post-RT. There is a 
need for large prospective trials that conduct these analy-
ses continuously throughout the whole treatment course, 
with comparison to follow-up scans. This will be crucial 
in establishing a prognostic model that guides the identi-
fication of patients at risk, so that treatment plan adapta-
tions and dosimetric adjustments can be done timely to 
mitigate severe toxicities.

Another factor that influences the prediction of xeros-
tomia is the onset of salivary gland ADC changes in 
response to RT. A study by Zhang et  al. assessed early 
ADC changes in salivary glands with late xerostomia and 
found that the mean ADCs of parotid and submandibu-
lar glands were significantly higher than pre-RT values as 
soon as 2 weeks after RT commencement [47]. Addition-
ally, the changes in ADC increase and ADC increase rate 
of stimulated parotid glands at two weeks were associ-
ated with xerostomia severity at 6 months post-RT [47]. 
A possible explanation for this is the multiple phases of 
radiation-induced damage. The rise in ADCs during the 
early period represents the increased molecular flow of 
functional cells undergoing apoptosis. This is followed 
by the later onset of xerostomia which is driven by the 
chronic inflammatory response [48]. Therefore, earlier 
and greater ADC changes during and immediately after 
RT could be an indication of more severe xerostomia 
later, which further necessitates the need for intra-treat-
ment scanning.
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Advanced diffusion‑weighted imaging techniques
Additionally, more sophisticated DWI techniques have 
been developed to improve on the features of conven-
tional DWI. One example is the Intravoxel Incoherent 
Motion (IVIM) model, where the function separately 
quantifies tissue perfusion and diffusion [49]. This poten-
tially allows improved assessment of the pathological 
features of head and neck tumours because during RT 
the apoptotic process of cells leads to changes in fluid 
migration, tissue oxygenation and microvasculature [49, 
50]. Hence, the use of IVIM provides three additional 
measures to ADC values: perfusion fraction (f), diffu-
sion coefficient of tissue molecular diffusion (D), and 
perfusion-related diffusion coefficient (D*) [50]. A pro-
spective trial by Marzi et  al. assessed the role of IVIM-
DWI in predicting the treatment response of cervical 
lymph nodes in those with head and neck squamous 
cell carcinomas (HNSCC), and found a significant dif-
ference in mid-treatment D values between those with 
regional control and regional failure (p < 0.05) [50]. The 
IVIM parameters in the study also had strong correla-
tions with regional control status [50]. Meanwhile, Xiao 
et al. evaluated IVIM’s ability to predict the response of 
those with NPC to IMRT treatment and discovered sig-
nificantly larger changes in D and D* values in treatment 
responders compared to non-responders [49]. These two 
studies suggest that IVIM may provide greater diagnostic 
accuracy compared to ADC analyses, with the additional 
information of tissue vascularity and oxygenation indi-
cating the radiosensitivity of HNCs.

Another advanced technique is Diffusion Kurtosis 
Imaging (DKI), where the model accounts for diffusion 
restriction that occurs within the complicated micro-
structures of tissues. This may be more accurate than 
conventional DWI as the latter assumes that water dif-
fusion obeys standard distribution in  vivo [51]. DKI 
parameters include D, the corrected diffusion coefficient 
for water distribution. Chen et  al. explored the use of 
DKI pre-neoadjuvant chemotherapy in those with NPC 
to predict treatment response, comparing its prognostic 
ability to conventional DWI. They found a significant dif-
ference in pre-treatment D values between responders 
and non-responders, whereas no significant difference 
was observed with ADCs [51]. Thus, DKI may provide a 
more sensitive prediction than conventional DWI in the 
early pre-treatment stages for this patient group.

Caveats of diffusion‑weighted imaging
Despite DWI’s unique strengths and potential to sup-
plement HNC management, there are some drawbacks. 
Firstly, it is challenging to acquire high-quality diffusion-
weighted sequences for the region. Head and neck anat-
omy is complexed, which is challenging for observers to 

contour. The region also has several air-tissue interfaces, 
and since most HNCs are of squamous cell origin, they 
tend to line the epithelial surface close to the air cavi-
ties [52]. Areas with multiple air-tissue transitions are 
especially susceptible to sequence distortions because it 
disrupts the magnetic field, translating to voxel shifts in 
the images [52]. Furthermore, movement artefacts such 
as voluntary motion, vascular pulsation, respiration, 
coughing, and swallowing contribute to the distortion 
and cause transient signal loss due to DWI’s sensitivity 
to motion [33, 52–54]. These artefacts must be mitigated 
because signal losses influence the averaged DWI data 
and overestimate ADC values [54].

Secondly, there are inconsistencies in reported ADC 
values within this field of research. While multiple stud-
ies reported in Driessen et  al.’s systematic review were 
able to differentiate malignant tumours from benign 
lesions using ADC analyses, there is no established con-
sensus on what the ADC threshold for discrimination is 
[38]. Several factors could explain for the inconsistencies 
between studies; varying b values, use of different mag-
netic field strengths, heterogeneity in tumour histology 
and differing study designs. Apart from tumour assess-
ment, salivary gland analyses are also made difficult 
as parotid ADC values can be manipulated by factors 
ranging from malignancies, RT treatment, inflamma-
tory diseases to physiological variations such as adipose 
content and dietary factors [43, 54]. This emphasises the 
importance of standardised b values and other imaging 
parameters during DWI scanning. Therefore, if ADC 
is to be implemented in standard practice, large studies 
with clearly defined protocols should be done to establish 
definitive ADC values with reproducibility.

It is also important to recognise that DWI lacks fea-
tures that are provided by other functional imaging 
modes. Rasmussen et al. compared the volumes of inter-
est (VOI) defined by DWI versus FDG-PET images on 
an integrated PET/MR scanner. The study found that 
the VOIs from the two only had partial overlap, as the 
high cellularity provided by DWI showed weak correla-
tion with the glucose uptake represented by FDG-PET 
[55]. This suggests that the two imaging modalities are 
complementary; replacing one with another will lead 
to loss of information. Thus, rather than adopting one 
imaging technique as a gold-standard, a multi-modal 
approach should be used. By combining the accurate spa-
tial information of CT, the excellent soft-tissue contrast 
and cellular information of DW-MRI, and the metabolic 
activity from PET [34], clinicians can gain a comprehen-
sive assessment of treatment response; a strength of one 
modality can overcome the caveats of another. Multi-
modal imaging can also be used to characterise the het-
erogeneity that exists between each HNC case and help 
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guide personalised treatments. Future research should 
investigate how the visual information of imaging can 
be integrated with patient characteristics (e.g. functional 
status, metabolic health, histological and blood biomark-
ers) to achieve comprehensive patient monitoring.

Finally, while prediction of late xerostomia may be 
possible with multi-modal imaging, such toxicities can-
not be prevented even with early detection because the 
effects of RT would have already been applied. Therefore, 
the best clinical measures can only mitigate the severity 
of xerostomia. Currently, intra-treatment interventions 
include image-guided adaptive RT [2, 4], acupuncture 
[56, 57] and physiotherapy. Image-guided adaptive RT is 
especially promising as the intra-treatment adaptations 
to tumour volume changes may lead to more efficient 
dose deliveries that permit tissue sparing, thus minimis-
ing toxicities [2, 4]. These are improvements to previ-
ous pharmacological options such as sialagogues and 
saliva substitutes, which only offer transient symptomatic 
management [58]. Further research is needed to incor-
porate these functional imaging modalities with clini-
cal interventions, namely image-guided adaptive RT, to 
reduce radiation-induced tissue damage and associated 
morbidities.

Review strengths and limitations
This review has its strengths and limitations. Firstly, 
included studies only involved patients from a popu-
lation of interest, i.e. locally advanced head and neck 
cancers. Another strength is that most included studies 
provide a stratified breakdown of patient characteris-
tics (e.g. demographic details, cancer staging, treatment 
regimens), which identified possible confounding factors. 
However, there are some limitations with the included 
evidence. We admit that excluding studies of patients 
with oligometastatic status does leave out a large propor-
tion of the HNC cohort, and as a result may only focus 
on those with long-term survival for late toxicities, whilst 
assuming that those with distant metastasis may not sur-
vive long enough to have late toxicities of significance. 
Additionally, each study was conducted using different 
methods, based on protocols and treatment guidelines 
of their respective era/region. And while many of these 
studies suggest similar trends, there has been consider-
able inconsistencies in the quantitative values reported. 
Such differences make it challenging to establish stand-
ards that can be applied universally. Furthermore, sev-
eral studies were done with small sample sizes (< 30) and 
inadequate follow-up times, affecting the significance of 
those results. We acknowledge that these studies may 
have been restricted by patient ineligibilities or resource 
constraints.

Conclusion
In HNC chemoradiotherapy, it is unfeasible to avoid 
xerostomia as the salivary glands are highly radio-sen-
sitive and often mandatorily included in RT treatment 
volumes. These side effects remain difficult to assess 
clinically. Thus, recent research has shifted towards 
optimising imaging techniques for better treatment 
assessment and prediction of toxicities to allow for 
early intervention. The DWI function of MR imaging 
is of interest due to its high-quality tissue contrast and 
visualisation of cellular structures, as molecular diffu-
sion can be quantified by ADC values. Existing studies 
suggest that ADC analyses provide crucial information 
on tumour differentiation, inter-individual tissue heter-
ogeneity and intra-treatment tissue changes for a com-
prehensive patient assessment. Future research should 
validate the use of DWI in conjunction with other func-
tional imaging modalities and correlate imaging data 
with clinical information, such that prognostic models 
can be developed to accurately predict patients at risk 
of severe toxicities.
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