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Background  
Amyloidosis is a group of diseases with the common pathophysiology of protein 
misfolding and aberrant deposition in tissue. There are both acquired and hereditary 
forms of this disease, and this review focuses on the latter hereditary 
transthyretin-mediated (hATTR). hATTR affects about 50,000 individuals globally and 
mostly appears as one of three syndromes - cardiac, polyneuropathy, and 
oculoleptomeningeal. Polyneuropathy is the most common form, and there is usually 
some overlap in individual patients. 

Results  
Recently, novel therapeutic options emerged in the form of groundbreaking drugs, 
Patisiran and Inotersen, small interfering RNA molecules that target TTR and reduce the 
production of this protein. By targeting TTR mRNA transcripts, Inotersen decreases 
protein translation and production, reducing the deposition of misfolded proteins. It was 
shown to be both effective and safe for use and specifically formulated to concentrate in 
the liver – where protein production takes place. 

Conclusion  
hATTR is a rare, progressive, and debilitating disease. Its most common presentation is 
that of polyneuropathy, and it carries a very poor prognosis and a natural history 
conveying a median survival of < 12 years. Novel therapeutic options are groundbreaking 
by providing disease-modifying specific, targeted therapies against TTR production and 
deposition. The use of RNA interference (RNAi) opens the door to the treatment of 
hereditary diseases by targeting them at the genetic level. 

INTRODUCTION 

Amyloidoses are a heterogeneous group of human diseases 
characterized overall by deposition of insoluble proteins, 
resulting in disruption of the normal structure and function 

of tissues and organs.1–4 Hereditary transthyretin-medi-
ated (hATTR) amyloidosis is a debilitating, multisystemic, 
progressive, and ultimately fatal disorder with variable 
phenotypic presentations.1,3–6 Transthyretin (TTR) gene 
mutations result in misfolded TTR proteins, leading to ac-
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cumulation. The three main phenotypes of hATTR amy-
loidosis include polyneuropathy, cardiomyopathy, and ocu-
loleptomeningeal involvement – of which polyneuropathy 
is the most common.7,8 

The burden of hATTR amyloidosis is significant and 
well-established. Symptomatic individuals experience de-
creased quality of life and increase healthcare costs when 
contrasted with nonaffected individuals from the general 
population.1,5,8 The purpose of this review is to highlight 
hATTR amyloidosis and its current therapies before dis-
cussing Inotersen (TEGSEDI), an antisense oligonucleotide, 
for the treatment of associated polyneuropathy. 

PATHOPHYSIOLOGY 

Acquired (wild-type) TTR amyloidosis results from a non-
mutated form of TTR depositing in tissues, as seen in senile 
systemic amyloidosis.2 On the other hand, hATTR amyloi-
dosis results from a mutated form of TTR depositing in 
tissues. TTR is a tetrameric plasma transport protein syn-
thesized primarily in the liver, with small amounts also 
made in the retinal pigment epithelium of the eye and 
choroid plexus.2,3,7 Each monomer contains 127 amino acid 
residues arranged in beta-pleated sheets, with binding sites 
for thyroxine and a retinol-complex.1–3,8,9 At a physiologic 
baseline, < 1% of thyroxine sites are bound, and < 50% of 
retinol-complex sites are bound.7 hATTR amyloidosis re-
sults from the dissociation of the tetrameric quaternary 
structure into component monomers, followed by monomer 
misfolding, eventually leading to a conglomeration of 
monomers in the formation of insoluble fibrils. These fibrils 
deposit in various tissues, altering their structure and func-
tion, in addition to causing local damage via direct me-
chanical compression of surrounding structures.2,3,7 

In early-onset disease with polyneuropathy, there is 
abundant amyloid fibril deposition, which mainly affects 
small myelinated and unmyelinated fibers, leading to su-
perficial sensory and autonomic dysfunction.10 Deposition 
directly damages Schwann cells by breaking down the base-
ment membrane and distorting Schwann cell processes, re-
sulting in Schwann cell atrophy.10 In late-onset disease 
with polyneuropathy, large nerve fibers are predominantly 
affected with relatively low deposition quantities of mutant 
TTR amyloid. Instead of depositing in tissues, the mutant 
TTR amyloid circulating in plasma enters the endoneurium 
of Schwann cells through the blood-nerve barrier, indirectly 
damaging Schwann cells by disrupting the structure of en-
doneurial microvessels.10 

Interestingly, damage to Schwann cells in late-onset dis-
ease is unrelated to the amount of surrounding amyloid 
deposition.10 The genetic mutations, seen in hATTR amy-
loidosis, allow for more inherently unstable tetrameric 
structures, predisposing them to break down into 
monomeric components, explaining the overall earlier on-
set of disease in either form of hATTR amyloidosis with 
polyneuropathy compared to senile systemic amyloidosis.2 

Furthermore, whereas wild-type TTR amyloid monomers 
require proper folding with each additional monomer added 
to the growing fibril, mutated forms of TTR do not require 

any post-transcriptional folding for monomers to be added, 
further contributing to why fibrils form at faster rates in 
hATTR amyloidosis.7 

DIAGNOSIS AND CLINICAL PRESENTATION 
CLINICAL PRESENTATION 

hATTR amyloidosis is a debilitating, progressive, and mul-
tisystemic disorder with a heterogenous clinical presenta-
tion.1–4,7 Of the three main phenotypes (polyneuropathy, 
cardiomyopathy, and oculoleptomeningeal involvement), 
polyneuropathy is the most common globally and is further 
classified by early and late-onset disease.7 The early-onset 
disease usually manifests before age 50 and is associated 
with significant autonomic dysfunction, while the late-on-
set disease is related to mild autonomic dysfunction. 
Polyneuropathy can be focal, sensorimotor, or auto-
nomic.1,4,11,12 Focal neuropathy most commonly involves 
the median nerve, which presents as carpal tunnel syn-
drome and rarely can manifest as vocal cord paresis.3 Au-
tonomic dysfunction can manifest as orthostatic hypoten-
sion, alternating postprandial diarrhea and constipation, 
postprandial vomiting secondary to gastroparesis, recur-
rent urinary tract infections secondary to chronic retention, 
and sexual dysfunction. Autonomic dysfunction is a signif-
icant manifestation of early-onset disease, but less preva-
lent in late-onset disease.1,3 Sensorimotor polyneuropathy 
is length-dependent, affecting small unmyelinated and 
myelinated fibers first before progressing to affect larger 
fibers and nerve bundles. It generally begins in the lower 
extremities as superficial numbness, paresthesias, and al-
lodynia, eventually progressing to loss of proprioception 
and deep sensation, accompanied by muscle weakness, dif-
ficulty walking, and secondary Charcot joint abnormalities, 
in the background of intensifying neuropathic pain.1,3 

There are three stages of clinical progression – ambulatory, 
ambulatory with assistance, and wheelchair-bound. Pa-
tients generally reach the second stage 5-6 years after 
symptoms begin, and the third stage 7-9 years after symp-
toms begin with death ensuing 10-15 years after initial pre-
sentation.7 Death is often hastened by cachexia and re-
current infections seen with compromised autonomic and 
sensory function.13 

DIAGNOSIS 

Diagnostic studies for patients with superficial (early) 
polyneuropathy involve autonomic function testing (AFT) 
and quantitative sudomotor axon reflex testing (QSART). 
In later stages, when nerve involvement is greater, EMG 
can show fibrillation potentials, positive sharp waves, and 
large motor unit potentials with reduced recruitment, while 
nerve conduction studies show reduced axonal sensory and 
motor amplitudes with mild conduction velocity slowing.3 

The gold standard for diagnosis is tissue biopsy. The loca-
tion of the biopsy may be related to the specific clinical pre-
sentation of the patient (i.e., sural nerve for lower extremity 
neuropathy or tenosynovial tissues for median nerve in-
volvement during carpal tunnel release) or obtained from 
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more generalized locations (i.e., salivary gland, gastric mu-
cosa via endoscopy, or subcutaneous fat aspiration). Con-
current with biopsy analysis, patients also often receive 
genetic testing for specific genotypic mutations.1,3 It is im-
portant to note that due to the patchy distribution of amy-
loid deposits, negative biopsy results do not exclude the 
presence of mutated amyloid deposits. In the event of neg-
ative biopsy results but a high clinical suspicion, nuclear 
tracing with Tc-pyrophosphate can show the extent and 
distribution of mutated TTR.1,5,14,15 

INOTERSEN 

Inotersen is an RNA-targeted therapy that was recently ap-
proved by the United States Food and Drug Administration 
(FDA) for treating polyneuropathy associated with hATTR 
amyloidosis for adults in October 2018.16,17 Two months 
prior, the Europe Union approved Inotersen for treating 
adults with stage 1 or 2 hATTR polyneuropathy.18 

Inotersen has a molecular formula of 
C230H299N69Na19O121P19S19 with a molecular weight of 
7600.73 g/mole. It is classified as a 2’-O-methoxyethyl-
modified second-generation antisense oligonucleotide in-
hibitor that comes in the form of a white to pale-yellow 
solid soluble in solutions of water and phosphate buffer.19 

Based on the results and study design from the NEURO-
TTR phase 3 clinical trial, inotersen was found to be ef-
fective when given subcutaneously in 300 mg doses once 
weekly. When administered in this fashion, the drug 
reaches steady-state concentrations in the liver after ap-
proximately 13 weeks.20 The results and data of the 
NEURO-TTR study will be discussed in detail in a later sec-
tion. 

In regards to pharmacokinetics, the drug exhibits dose-
dependent properties. Following subcutaneous administra-
tion, it rapidly enters the systemic circulation and achieves 
peak plasma concentrations after a median of 2-4 hours. 
About 94% of the drug remains bound to plasma protein 
and has a mean reported volume of distribution of 293 L. 
Tissue endonucleases metabolize the drug into smaller in-
active nucleotides that are ultimately metabolized by ex-
onucleases and excreted by the kidney with a half-life of 
about one month.21,22 

Throughout the phase 2 and 3 clinical trials, several side 
effects and adverse events have been documented. Side ef-
fects included erythema, induration, and itching associated 
with the drug injection site but did not result in discontinu-
ation of the drug.20,23 The phase 3 NEURO-TTR study, how-
ever, did report adverse events requiring treatment or man-
agement. These adverse events included fatigue, nausea, 
vomiting, diarrhea, constipation, headache, pyrexia, chills, 
myalgia, and arthralgia; lastly, of all adverse events, the 
most serious are thrombocytopenia and glomerulonephri-
tis.19,20 Thus, providers should monitor platelet counts and 
kidney function to prevent life-threatening hemorrhagic 
events and renal failure requiring hemodialysis, respec-
tively.19,20 

MECHANISM OF ACTION 

Since TTR is a protein derived from the translation of 
mRNA, theoretically, one could target the mRNA respon-
sible for producing TTR as a potential site of action for a 
drug. Inotersen, an antisense oligonucleotide (ASO), was 
designed to exploit this principle. Like all other ASOs, in-
otersen follows Watson-Crick hybridization, yielding much 
more specificity than other small molecules.24 Since the 
idea of ASOs was proposed back in 1978, much research 
has gone into producing ASOs with increased affinity for 
their target sequence and resisting degradation by nucle-
ases.24–26 Structural modifications such as adding phos-
phorothioate substitutions aid in systemic distribution, al-
lowing for various routes of administration.24,27,28 ASOs 
are organized into different chemical classes, and although 
the classes share similar biological properties and physic-
ochemical characteristics, their specific analog or modifi-
cation has profound effects on potency, pharmacokinetics, 
and efficacy.29 Inotersen has a chemical structure that con-
tains 2’-O-methoxyethyl (2’-MOE) nucleic acid analogs, 
which have been associated with improved pharmacoki-
netics, improved binding affinity to RNA, increased po-
tency, and reduction in toxicity due to nonspecific protein 
binding.24 Once bound to RNA, ASOs have two ways in 
which they alter RNA metabolism/processing. The first way 
is termed occupancy-only-mediated and leads to inhibition 
or enhancement of translation and interferes with interac-
tions between the target RNA and essential proteins. The 
second way is occupancy-mediated-degradation which de-
scribes the way in which inotersen works. Specifically, inot-
ersen triggers RNA cleavage by RNase H1 found in the nu-
cleus and cytoplasm.24 

Additionally, RNase H1 is highly selective for cleaving 
RNA when it is present in the form of a DNA-RNA complex, 
and its activity is optimized when ASOs are designed to 
have a gap of 2’-deoxy nucleotides flanked by 2’-MOE 
analogs.30 Inotersen utilizes all of these factors just de-
scribed and has been explicitly designed with ten DNA nu-
cleotides flanked by five 2’-MOE analogs on the 5’ and 
3’ ends of the oligonucleotide.31–33 Thus, by binding to 
TTR mRNA within the nucleus of hepatocytes and causing 
degradation via RNase H1, inotersen ultimately prevents 
the production of TTR protein.19,31 Of note, since the bind-
ing of inotersen occurs in a 3’-untranslated region of the 
TTR mRNA where no known mutations exist, it is effective 
at preventing the production of both mutant and wild-type 
TTR by the liver.34 The ability to reduce wild-type TTR in 
addition to mutant TTR has desired implications when con-
sidering transthyretin amyloid cardiomyopathy patients as 
the initial treatment involving liver transplant could not 
treat the deposition of wild-type TTR and progression of al-
ready existing amyloid deposits stated previously.31 

ANIMAL STUDIES 

Preclinical animal studies demonstrated promising results 
that paved the way for inotersen’s use in humans and re-
vealed its ability to reduce TTR levels. A study with trans-
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genic mice, cynomolgus monkeys, and humans showed ro-
bust reductions of plasma TTR protein obtained in all three 
species treated with IONIS-TTRRx (Inotersen), which in 
mice and monkeys was also associated with substantial de-
creases in hepatic TTR mRNA levels.33 Specifically, higher 
doses of the subcutaneously administered drug resulted in 
reductions exceeding 90% for both plasma TTR and hepatic 
TTR mRNA in mice when compared to controls. Results for 
the monkeys were similar and showed an approximate 90% 
and 80% reduction in hepatic TTR mRNA and plasma TTR 
protein levels, respectively. These effects were dose-depen-
dent and lasted for weeks post-dosing.19,33 

CLINICAL TRIALS 

In recent studies, TTR silencers have demonstrated promis-
ing outcomes in the treatment of hATTR. Historically, 
hATTR has been considered a progressively fatal disease 
characterized by the deposition of mutant and wild-type 
TTR protein in the heart, peripheral nerves, gastrointesti-
nal tracts, and kidneys.5,35 In patients who have received 
the current standard of care, TTR stabilizers (tamfamidis 
and diflunisal), and orthoptic liver transplant, symptoms 
continue to progress, and the prognosis is reduced at 2 to 
15 years following the onset of neuropathy, and 2 to 5 years 
following cardiomyopathy.36–47 

With the completion of phase III trials for inotersen 
(NEURO-TTR) and patisiran (APOLLO), a short interfering 
RNA (siRNA), patients with hATTR including those with 
cardiac involvement or polyneuropathy may have new hope 
for improved prognosis, and symptom relief. Both classes of 
drugs are considered TTR silencers, and work by decreasing 
synthesis of both mutant and wild-type TTR, an effect pre-
viously unachieved by prior treatment modalities as wild-
type TTR production is unaffected and continues to precip-
itate as amyloid.20,48 

In 2002, ISIS 104838, a modified ASO belonging to the 
same class as inotersen (ISIS 420915), demonstrated proof 
of concept for ASO inhibition of protein synthesis in its 
phase I trial. The ASO was able to target TNF-alpha mRNA 
produced by lipopolysaccharide (LPS)-stimulated mono-
cytes and subsequently suppress keratinocyte expression of 
TNF-alpha protein by 85%. The plasma-terminal half-life 
was approximately 25 days, and the participants demon-
strated overall good tolerance to the administration of the 
drug. Moreover, intravenous infusions were associated with 
transient prolongation of partial thromboplastin time. 
However, those receiving subcutaneous injections had min-
imal changes to such values. Otherwise, the trial had only 
two accounts of rashes, one secondary to reversible throm-
bocytopenia and another injection site tenderness.49 

In 2013, another study demonstrated proof of concept 
for RNA interference of TTR with siRNA. At the time, ALN-
TTR01 and ALN-TTR02 were compared in a multicenter, 
randomized, single-blind, placebo-controlled phase 1 trial. 
ALN-TTR01 and ALN-TTR02 were two formulations of lipid 
nanoparticles containing identical anti-TTR siRNA. The 
lipid nanoparticles were designed to facilitate drug delivery 
to the liver and were ultimately found to be well tolerated 

and persistent in effect. At 28 days out from a single dose of 
siRNA, greater than 50% suppression of TTR was observed 
for both mutant and wild-type protein.48 

Of the two, ALN-TTR02 was considered for further stud-
ies due to its lower rates of adverse effects. A sole par-
ticipant (7.7%) in the ALN-TTR02 group (n = 13) experi-
enced mild-to-moderate infusion reactions in comparison 
to 5 (20.8%) in the ALN-TTR01 (n=24) group. Additionally, 
the one patient that experienced side effects in the ALN-
TTR02 group also received a dose of 0.5mg/kg. This dosing 
was revealed to be higher than the optimal dose of 0.3 mg/
kg, where effects on suppression begin to plateau. For such 
infusion reactions, symptoms resolved with slowing of the 
infusion rate.48 Thyroid functions and symptoms of vita-
min A deficiency were also monitored due to TTR’s role 
in binding thyroxine and vitamin A.9,48,50–52 No evidence 
of dysfunction was noted in any of the participants; how-
ever.48 

In 2018, phase III trials for patisiran and inotersen were 
completed. Both were multicentered, international, ran-
domized, double-blind, placebo-controlled studies that en-
rolled patients with a known diagnosis of hATTR with pe-
ripheral neuropathy both with and without cardiac 
involvement.20,53 In the APOLLO trial for patisiran, 225 pa-
tients were randomized in a 2:1 ratio to obtain a 0.3 mg 
IV infusion of patisiran or placebo every three weeks for 18 
months.53 In the NEURO-TTR trial for inotersen, 172 pa-
tients were randomized in a 2:1 ratio to obtain a 15-month 
trial of weekly 300 mg subcutaneous injection of inoterson 
or placebo.20 

In the APOLLO trial, patisiran demonstrated promising 
effects with only mild to moderate side effects. By three 
weeks following the first infusion, serum TTR levels were 
at their nadir, where they remained at a median of 81% 
suppression across the different subgroups.53 Clinical out-
comes were monitored through Modified Neuropathy Im-
pairment Score+7 (mNIS+7), which factors in motor 
strength, sensation, reflexes, and autonomic function, and 
the Norfolk Quality of Life-Diabetic Neuropathy (Norfolk 
QOL-DN) questionnaire (both rubrics equate higher num-
bers with increased impairment or worse quality of 
life).53,54 At 18 months, the change in the least-square 
means of mNIS+7 from baseline for the patisiran group had 
reduced by 6.0, compared with an increase of 28.0 in the 
placebo group (difference of -34.0 points, P <0 .001). Nor-
folk QOL-DN at 18 months also reflected improvements 
with patisiran group as seen by a decrease of 6.7 from 
baseline in comparison to the placebo group, which in-
creased by 14.4 (difference of -21.1 point difference, P < 
0.001). Other endpoints such as motor function and nu-
tritional status were also assessed and favored patisiran 
over placebo. Patisiran was associated with higher rates 
of peripheral edema and infusion-related reactions. These 
events were, however, mild to moderate, and were found to 
decrease over time.53 

Similarly, inotersen also had promising outcomes in 
terms of slowing the progression of hATTR in the NEURO-
TTR trial. Across 15 months, least-square means of mNIS+7 
increased by 5.8 in the inotersen group and 25.5 in the 
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placebo group in comparison to baseline (difference of 
-19.7, P < 0.001), while Norfolk QOL-DN score increased 
by 1.0 with inotersen and 12.7 with placebo (difference of 
-11.7, P<0.001). These results were independent of stag-
ing, mutation type, and presence of cardiomyopathy. Even 
though the change in least-squares means of mNIS+7 with 
inotersen is favorable as compared to patisiran, it is note-
worthy that 36% of patients in the inotersen group had im-
provements in their mNIS+7 and 50% had improvement in 
their Norfolk QOL-DN score (change from baseline was less 
than 0). On an individual level, this meant that some pa-
tients were experiencing improvements in their polyneu-
ropathy in contrast to slowed and continued progression 
of the disease. Serum TTR levels achieved steady-state at 
week 13, where it remained at a nadir of 79.0% suppres-
sion.20 

The most severe adverse effects associated with the in-
otersen group were thrombocytopenia (3%) and glomeru-
lonephritis (3%). The inotersen group had five accounts of 
death (4%); 4 of them were likely consistent with the nat-
ural progression of hATTR, although Benson et al. were un-
able to conclude whether this difference in deaths com-
pared to the placebo group (n = 0) was secondary to chance, 
rapid acceleration of the disease, or other cause. One death 
was secondary to grade 4 thrombocytopenia leading to in-
tracranial hemorrhage. Two other cases of grade 3 throm-
bocytopenia were identified and reversed with discontin-
uation of inotersen and treatment with glucocorticoids. 
Following the implementation of weekly platelet monitor-
ing, no cases of grade 3 or 4 thrombocytopenia were ob-
served. As for patients that presented with renal compli-
cations, all 3 cases revealed crescentic glomerulonephritis 
on biopsy. One patient had a return of estimated glomeru-
lar filtration rate following glucocorticoids and cyclophos-
phamide, while another went undiagnosed, resulting in 
permanent hemodialysis. Monitoring of renal function was 
subsequently scheduled more frequently at every 2-3 
weeks. A third patient with renal dysfunction was later dis-
covered in its early stages. The patient presented with only 
proteinuria without a decline in renal function. Protein-
uria resolved following glucocorticoid treatment.20 After 
comparison with clinical data from other patients receiv-
ing ASO systematic treatment from the same 2’-O-
methoxyethyl-modified chemical class, adverse events of 
thrombocytopenia and glomerulonephritis were likely a 
drug-disease interaction.55–57 

Ienotersen and patisiran have demonstrated excellent 
outcomes in patients with hATTR with polyneuropathy. In-
otersen and patisiran both slowed the progression of the 
disease and even potentially reversed progression as re-
flected by decreasing mNIS+7 and Norfolk QOL-DN 
scores.20,53 It is important to keep in mind that the 
NEURO-TTR trial for inotersen was three months shorter 
than the APOLLO trial for patisiran, and the changes in 
mNIS+7 observed in patisiran were gradual, indicating slow 

time-dependent improvement. Additionally, inotersen took 
13 weeks for suppression of TTR to reach its maximal effect, 
in comparison to less than three weeks with patisiran.20,53 

It is possible that the four deaths observed within the in-
otersen group may have potentially skewed results for the 
inotersen group as the deaths may have been due to a more 
aggressive form of the disease. 

DISCUSSION 

Polyneuropathy is the most common phenotypic presen-
tation of hATTR amyloidosis resulting in significant dis-
ability. Traditionally, definitive management included liver 
transplantation, but this is not an option for some patients. 
In recent years, RNA-targeted therapies started receiving 
attention, specifically regarding alleviating symptoms of 
neuropathies as these represent the hallmark of early-onset 
hATTR amyloidosis. Inotersen is a disease-modifying agent 
that continues to demonstrate promising results, giving 
hope that it will improve the disease course and quality of 
life for patients. 

CONCLUSION 

hATTR is a rare, progressive, and debilitating disease, com-
monly presenting with polyneuropathy and affecting mul-
tiple organs due to a mutated TTR amyloid deposition. It 
carries a very poor prognosis with a median survival of 
fewer than 12 years. Novel therapeutic options with tar-
geted therapies against TTR production and deposition are 
groundbreaking. The use of RNAi opens the door to the 
treatment of hereditary diseases by targeting them at a ge-
netic level. 
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