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The AURORA US Metastasis Project was established with the goal to identify
molecular features associated with metastasis. We assayed 55 females with
metastatic breast cancer (51 primary cancers and 102 metastases) by RNA
sequencing, tumor/germline DNA exome and low-pass whole-genome

sequencing and global DNA methylation microarrays. Expression subtype
changes were observed in ~30% of samples and were coincident with DNA
clonality shifts, especially involving HER2. Downregulation of estrogen
receptor (ER)-mediated cell-cell adhesion genes through DNA methylation
mechanisms was observed in metastases. Microenvironment differences
varied according to tumor subtype; the ER*/luminal subtype had lower
fibroblast and endothelial content, while triple-negative breast cancer/
basal metastases showed a decreasein Band T cells. In17% of metastases,
DNA hypermethylation and/or focal deletions were identified near HLA-A
and were associated with reduced expression and lower immune cell
infiltrates, especially in brain and liver metastases. These findings could
have implications for treating individuals with metastatic breast cancer with
immune- and HER2-targeting therapies.

Agreatdeal of effort has gone into understanding the molecular causes
of metastatic breast cancer (MBC), to which -45,000 individuals per
year succumb in the United States'. An early focus on metastatic dis-
ease hasbeentoidentify somatic DNA-based alterations that might be
uniqueto thissetting and/or that may be clinically actionable, especially
when metastasis surgical resection may not be a viable option. Numer-
ous seminal publications on MBC genomics have shown that almost
no recurrent mutations are unique to the metastatic landscape, with
perhaps the exception of ESRI mutations, most of which are thought to
be tied to endocrine therapy resistance””. Instead, modestly increased
frequencies of known pathogenic somatic variants (thatis, TP53, PTEN
and RBI) and/or altered mutational signatures have been identified
in metastases®, as have similarly modest increases in the frequency
of DNA amplifications/deletions?’. Thus, much of the aggressive

behavior of metastatic disease remains unexplained by DNA-based
changes, invoking the need for a multiomic evaluation of this disease
setting. Among the most impactful therapeutic advances in MBC has
been the development and use of CDK4/CDK&6 inhibitors®°, novel
HER2-directed agents"'? and immune checkpoint inhibitors (ICls)
targeting CTLA4, PD-1or PD-L1 (refs. 13-15). These latter therapies
target theimmunosuppressive tumorimmune microenvironment, thus
highlighting theimportance of non-tumor-intrinsic factors as a major
determinant of disease outcomes. Human leukocyte antigen (HLA)
classIdownregulation could also be abarrier to effective T cell-based
immunotherapy. Alterations in major histocompatibility complex
(MHC) class I molecules can prevent tumor cells from being recog-
nized by cytotoxic lymphocytes'® 8. In BC, ICIs have gained arole in
both the early-stage and metastatic settings, albeit with some mixed
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results', thus highlighting the need for an improved understanding
of the MBC-intrinsic and MBC-extrinsic landscapes. Here, we present
results from the AURORA US retrospective metastatic project that,
along with the AURORA EU project’, represent two of the most ambi-
tious programs to improve our molecular knowledge of MBCs.

Results

Clinical features of the cohort and global genomic patterns

A consortium of academic medical centers in the United States was
formed (AURORA US Metastatic Project) based on the infrastructure
of the Translational Breast Cancer Research Consortium to pursue a
multiplatform genomic study of matched metastatic and primary BCs,
similar to The Cancer Genome Atlas (TCGA) effort on primary BCs*.
Eligibility criteriafor thisretrospective study included the availability of
afresh-frozen (FF) metastatic specimen, its associated primary tumor
(FF or formalin-fixed paraffin-embedded (FFPE) samples), a source
of normal DNA and corresponding tumor pathology and molecular
analyte metrics (Fig. 1a). These requirements identified 55 individu-
als, including 19 individuals with more than one metastasis analyzed;
20 participant samples were collected at autopsy (representing the
individuals with more than one metastasis). The clinical demograph-
ics of this group constituted a young cohort with a median age at pri-
mary diagnosis of 49 years, of which 18% were African American and
7% were of Hispanic ethnicity. In the metastatic setting, these individu-
als received a median of three lines of systemic therapy. As might be
expected, the overall survival of these individuals was generally poor
and differed according to clinical subtype (Extended Data Fig. 1a,b).
The median overall survival from BC diagnosis was 4.5 years and from
metastatic diagnosis was -2 years. Compared to TCGA primary tumors,
the AURORA cohortalso had a higher frequency of triple-negative BC
(TNBC) and basal-like primary tumors (Extended DataFig.1c,d). Therisk
ofrecurrence score-based genomic features and the proliferation score
itself were higher in metastatic samples than in AURORA and TCGA
primary tumors (Extended Data Fig. 1e-g). Metastases were obtained
from multiple sites, with the most common being liver (n=28), lung
(n=13),lymphnodes (n=12), brain (n =11) and 16 other sites; the rela-
tionships between clinical or genomic subtype and site of metastasis
are shown in Extended Data Fig. 2. Additional clinical demographics
are shown in Supplementary Table1.

Tumor DNA and RNA wereisolated from each specimenandusedin
four different assays: DNA exome and low-pass whole-genome sequenc-
ing (WGS; tumor and normal), whole-transcriptome RNA sequencing
(RNAseq) using rRNA depletion and DNA methylation microarrays. In
total, 88 of 153 specimens had all four assays successfully performed,
and 141 0f153 had three of four completed (Fig. 1b); this multiplatform
genomic dataset of 102 metastases and 51 paired primary tumors thus
represents an unprecedented resource for the study of MBC. Global
profiling of the DNA methylation landscape using the top 5,000 most
variably methylated CpGs displaying cancer-associated hypermethyla-
tion showed aremarkable conservation of overall methylation profiles
within most primary tumor-metastasis pairs (Fig. 1c); indeed, 32 of
36 tumor-metastasis pairs showed the highest correlation to each
other. Similar to the DNA methylation findings, gene expression-based
hierarchical clustering using a 1,710-gene breast tumor ‘intrinsic’

list” also identified the individuality of each primary tumor-metas-
tasis pair, where 31 of 39 pairs were coclustered in the dendrogram
(Fig. 1d), as seen in other studies of metastases®>**. To quantify the
degree of similarity between pairs, we compared the average cor-
relation between random pairs and matched pairs (Extended Data
Fig.3a-d). These comparisons revealed that overall, primary tumorsare
more similar to paired metastatic samples than to other breast tumors.
Lastly, the somatic mutation landscape identified TP53, KMT2C, FLG
and PIK3CA as the most frequently mutated genes, together with the
presence of ESRI mutations in metastases from four individuals with
estrogen receptor-positive (ER") BC AF94, AER2, AD91 and AD9YE (Fig.
1le).Similarly, most somatic mutations withinbonafide BC driver genes
(defined in TCGA) found in AURORA primary tumors were also pre-
sent in the paired metastasis (Fig. 1e). TP53 and FLG genes were more
frequently mutated in metastases thanin primary tumors (66% versus
33% (P=0.006) and 28% versus 3% (P = 0.003), respectively); however,
this finding did not reach statistical significance after false discovery
rate (FDR) adjustment. For the somatic DNA copy number landscape,
we calculated 533 recurrent DNA segment-level scores (Methods and
Supplementary Table 8) and observed that 11 segments were found
to be more frequently amplified in metastases (g < 0.05). Of these 11
segments, all overlapped an amplified region found in Bertuccietal ?,
and 2 overlapped amplified regions found in Aftimos et al.’ related to
MYCand MDM4 amplifications.

Gene expression subtype switching and genomic signature
differences

To evaluate gene expression differences between primary tumors and
their metastases, we performed PAM50 molecular subtyping from
RNAseq datafor each of the 123 specimens”** and tested subtype con-
cordance within each individual (Fig. 2a,b). Of the 39 RNAseq cases
tested, 13 of 39 showed subtype ‘switching’ between a primary tumor
and its metastasis. We note that the normal-like distinction typically
reflectslow tumor cellularity (tumor cellularity and ESTIMATES scores
are in Supplementary Table 2); therefore, if we disregard switching
to or from the normal-like group, then the basal-like phenotype is
the most stable, with 15 of 16 pairs being basal-like in all specimens.
Conversely, the ‘luminal’ phenotypes that include Luminal A (LumA),
Luminal B (LumB) and HER2 enriched (HER2E), experienced subtype
switchingin 8 of 19 individuals. We also performed TNBC subtyping®
on the TNBC samples (Extended Data Fig. 2), and, interestingly, we
observed adecreased frequency of theimmunomodulatory (IM) sub-
type, from 13% in the primary tumor to 2% in the metastatic setting
(Supplementary Table 2).

We next performed additional RNAseq-based statistical analyses
specifically comparing primary tumors to various groupings of the
metastases. We first transformed the gene expression data into a set
of 749 previously published gene expression signatures representing
many features of tumor cells and their microenvironment, including
>100 signatures of immune cells, which showed significant correla-
tion with pathologist-assessed percent immune cell infiltration and
with DNA methylation-based assessments of leukocyte infiltration**?’
(Extended Data Fig. 4a-d); the complete list of signatures is shownin
Supplementary Table 2. Throughout our analyses, we relied on multiple

Fig.1|Study design and global genomic patterns of metastatic breast
tumors. a, Cohort description of the AURORA Metastatic Project. b, Diagram of
the shared or individual tumor DNA methylation, WGS/whole-exome sequencing
(WES) and RNAseq data successfully performed on each of the 55 participants;
DNAme, DNA methylation; prim, primary; met, metastasis. ¢, Global profiling

of the DNA methylation landscape using the top 5,000 most variable cancer-
associated hypermethylated CpGs in 97 paired and 34 unpaired primary and
metastatic tumors. Samples were intentionally ordered by participant to visually
inspect the within-participant conservation of DNA methylation patterns.

d, Supervised hierarchical cluster analysis 0f 102 paired and 21 unpaired primary

and metastatic RNA-sequenced tumors using the so-called 1,900 intrinsic
genelist (-1710 genes found in this dataset)?. e, OncoPrint panel of DNA

somatic mutations displaying 37 of the most frequently mutated genes in

41 primary and 93 metastatic tumors. The percentage on the right indicates

the mutation frequency of each gene across samples; LumA, Luminal A; LumB,
Luminal B, Claudin, Claudin-low; normal, normal-like; Del, deletion; Ins,
insertion. This figure was partly generated using Servier Medical Art, provided
by Servier, licensed under a Creative Commons Attribution 3.0 unported license
(smart.servier.com).
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validated immune cell signatures, including many that have shown
prognostic and predictive value***”%, as our main measures of immune
cell presence/involvement. These immune signatures include many

focused on adaptive immunity and include CIBERSORT signatures
of T cells and B cells* and signatures of cooperating immune cells,
including an IgG signature®, a B cell/T cell cooperativity signature®
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arerow ordered from high to low according to S-coefficients (or regression
coefficients) and divided according to upregulated (positive) or downregulated
(negative) in metastasis. Individuals are column ordered according to PAM50
molecular subtype and divided according to primary tumor and metastasis.
Signature scores were calculated in the level 4 RNAseq data (Methods). Normal-
like tumors and post-treatment primaries were removed from the analysis in

the AURORA cohort. For more information about the background/origin of the
signatures listed in cand d, see Supplementary Table 3, sheet 2. LumA, Luminal A;
LumB, Luminal B; LN, lymph node.

and a GP2-immune-metagene signature (Methods). We performed
supervised analyses of all primary tumors versus all metastases using
thislibrary of signatures and identified 135 signatures as being differen-
tially expressed (g < 0.05; Extended Data Fig. 5a), including signatures

of fibroblasts/stromal cells and endothelial cells and many adaptive
immunity signatures as being lower in metastases. However, when
supervised analyses were performed withinagene expression subtype,
whichisknown to associate with the likelihood of metastasis®**, then
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Fig. 3 |Individuals with multiple metastases were examined forimmune
featuresin the AURORA-RAP combined cohort. a, Gene expression signature
scores of GP2-immune-metagene are shown according to individual specimens
from participants with at least two metastases analyzed by RNAseq data (n =14
individuals). The star indicates liver specimens with the lowest expression of
signature. b, Expression changes between paired primary tumors and liver

(36 pairs), brain (15 pairs), lung (21 pairs) or ‘rest’ (110 pairs) metastases of the
GP2-immune-metagene signature (individuals with more than one metastasis in
the same organ were averaged). Comparisons between two paired groups were

performed by a two-sided paired samples Wilcoxon test. Statistically significant
values are highlighted in red. Allbox and whisker plots display the median value
on each bar, showing the lower and upper quartile range of the data (Q1to Q3).
The whiskers represent the lines from the minimum value to Ql and Q3 to the
maximum value; LumA, Luminal A, ; LumB, Luminal B; Brt, breast; Adr, adrenal;
Liv, liver; Dip, diaphragm; Per, peritoneum; Rct, rectum, Skn, skin; Stm, stomach;
Thy, thyroid; SoftT, soft tissue; LN, lymph node; Ple, pleura; Lun, lung; Brn, brain;
Bon, bone; Kid, kidney; Che, chest; Spl, spleen; Mes, mesentery; Pan, pancreas;
AUR, AURORA.

subtype-specific differences were observed (Fig. 2c,d). Specifically,
luminal/ER" subtype metastases (LumA, LumB and HER2E combined)
showed low expression of fibroblast and endothelial signatures,
and very few adaptive immune features were different. Conversely,
basal-like/TNBC metastases had significantly lower expression of adap-
tive immune features, including multiple T cell-, B cell-, natural killer
(NK) cell-and HLA-related signatures, while signatures of fibroblasts
and endothelial cells were unchanged (Fig. 2d).

We next asked if there were expression signature differences
accordingto site of metastasis, and here we focused on the three most
frequent sites (that is, liver, lung and brain). Using only the AURORA
dataset, testing of primary versus paired brain metastases yielded
48 signatures as being lower in brain metastases, most of which were
features of immunity and fibroblasts/stromal cells (Extended Data

Fig. 5b). Supervised analysis of liver metastases versus their primary
tumors yielded 22 signatures as differentially expressed (Extended
Data Fig. 5¢), while a similar analysis of lung metastases yielded no
significant signatures. The small number of differentially expressed
features suggested that we may be limited by our sample size; there-
fore, we obtained asecond dataset of primary tumor-metastasis pairs
from our University of North Carolina (UNC) Rapid Autopsy Program
(RAP; 2 primary tumor-metastasis pairs, 10 primary tumor-multi-
ple metastasis pairs and 22 unpaired metastases represented by 82
specimens) and a third dataset from the public domain that had 102
primary tumor-metastasis pairs from the GEICAM/2009-03 Conver-
tHER (GEICAM) trial?%. Using this RNAseq combined cohort to compare
primary tumors and liver metastases (n = 58 tumors, 27 primary tumors
and 31 metastases) yielded a larger set of significant signatures that
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included many adaptive immunity signatures as being lower in liver
metastasis (Extended Data Fig. 5e). In addition, the combined cohort
allowed us to refine our analysis of brain metastases in the setting of
the basal-like/TNBC phenotype (n =13 tumors, Sprimary tumorsand 8
metastases), which also yielded more significant signatures, including
upregulated cell differentiation-related signatures and lower immune
and stromal-related signatures (Extended Data Fig. 5d). Lastly, the
combined analysis of primary lung metastases (n = 36 tumors, 18 pri-
mary tumors and 17 metastases) still yielded no significant signatures.

These comparative analyses suggest that immune features may
systematically vary according to site of metastasis. To directly address
this hypothesis, we took advantage of the combined AURORA-RAP
datasets that contain 14 participants with at least two metastases ana-
lyzed by RNAseq (one of which is from the liver) to examine immune
signature levelsin different metastatic sites within the same individual.
Thisanalysis showed thatin 9 of 14 individuals, the lowest levels of the
GP2-immune-metagene signature were in liver metastases (Fig. 3a,b),
andinmany of these individuals, thisimmune signatureis lowerin the
liver metastases than in the matched primary tumor butis often higher
in lung metastases (Fig. 3a,b). Next, we performed statistical testing
using the combined AURORA-RAP-GEICAM cohort and comparing
liver to lung metastases and liver to lymph node metastases, both of
which demonstrated significantly decreased immune signatures in
liver metastases (Supplementary Table 3). We also compared liver
metastases and brain metastases and saw 76 differential signatures
that were primarily non-immune related (except for higher y6 T cells
in brain metastases). When brain metastases were compared to lung
orlymphnode metastases, brain metastases also demonstrated lower
expression ofimmune-associated signatures.

Finally, to evaluate the gene expression signatures as a predictive
variable in survival analysis, we performed Cox proportional hazard
models from time of BC diagnosis to death (overall survival) in the
AURORA cohort. The major determinant of survival in this cohort
was, as might be expected, a luminal/ER*-related (better outcomes)
signature versus a basal-like related phenotype signature (worse out-
comes). When adjusting for clinical or molecular subtype, the main
survivalfindings wereimmune-related signatures that predicted better
outcomes (Supplementary Table 4).

HLA-A dysregulation and impact on antitumor immunity
The decreased expression of an HLA metagene signature in basal-like/
TNBC metastases led us to examine the multiplatform data of the

individual genes comprising this signature, including HLA-A, HLA-B,
HLA-C and B2M. Examining promoter CpG islands for HLA-A, HLA-B,
HLA-Cand B2M, we identified HLA-A methylationin 23 tumors (12 indi-
viduals), and HLA-A promoter methylation was significantly more fre-
quentin metastases thanin primary tumors when comparing unpaired
data (P=0.035), whereas paired analyses were not significant but trend-
ingin the same direction (Fig. 4a and Extended Data Fig. 6a). By con-
trast, only three tumors (one individual) demonstrated methylation
at HLA-B, and only one tumor had HLA-C or B2M methylated (Fig. 4a).
To further validate these results, we quantified HLA-A proteinin 62 of
the metastatic samples (Fig. 4b). We found a positive correlation of
HLA-A protein with HLA-A mRNA (Fig. 4c) and with HLA-BmRNA but not
HLA-C mRNA (Extended Data Fig. 6b). We also observed lower HLA-A
mRNA expressionin HLA-A-methylated tumors (Fig. 4d, left) and anear
significant positive trend between HLA-A protein expression and HLA-A
DNA methylation (Fig. 4d, right). DNA copy number analysis also dem-
onstrated 23 samples from eight participants with focal deletions inthis
region, butinonly 13 samples from three participants were these focal
deletions near an HLA gene (<40 kb; Fig. 4e). From these 13 samples,
only three tumors (two participants) had RNAseq data, and these focal
deletions appeared nominally mutually exclusive from samples with
HLA-A methylation (Fig. 4f). Following the same threshold applied to
the HLA-A gene, three tumors from three different individuals had a
focal deletion in the B2M gene (Fig. 4f). Other HLA class I-associated
DNA methylation events appeared to be rare, except for TAPBP.
Consistent with a functional role for these events, metastatic
samples with HLA-A methylation or focal deletion had reduced mRNA of
HLA genes and multipleimmune signatures compared to their matched
primaries (Fig. 4f). The HLA-A-, HLA-B- and HLA-C-altered samples
also demonstrated a higher degree of HLA-A-predicted neoantigens
(Fig. 4f). We also analyzed the relationship between HLA-A mRNA
expression in primary tumors and paired metastases relative to
immune signatures in the RAP dataset of 12 primary tumor-metastasis
pairsandidentified the same relationship of low HLA-A mRNA and low/
lowerimmune cell gene expression features, which again was the most
frequentin basal-like/TNBC (Extended Data Fig. 7a-d).
Interestingly, we noted a strong inverse association of
HLA-A-predicted neoantigens with HLA-A gene expression, as opposed
to HLA-B or HLA-C,inbasal-like samples from both primary tumors and
metastases (Extended Data Fig. 6c). In basal-like primary and meta-
static tumors, those tumors with HLA-A alterations had significantly
higher numbers of MHC class I-associated neoantigens, which was not

Fig.4 | HLA-A dysregulation and impact onimmune-related featuresin
metastatic tumors. a, Hypermethylated CpG sites in HLA-A (8 CpGsites), HLA-B
(14 CpGsites) and HLA-C (12 CpG sites) of 133 primary and metastatic tumors;
TSS, transcription start site. b, Representative images of 37 metastatic samples
showing HLA-Aimmunofluorescence staining for two different levels of HLA-A
protein expression (top third and bottom third). HLA-A protein expression
values were divided into tertiles on the basis of low (lower third), intermediate
(middle third) or highintensity (upper third). ¢, Correlation analysis of HLA-A
protein expression and HLA-A gene expression values (n = 37 metastases). The
correlation was measured using the Spearman correlation coefficient. d, Box
plots of HLA-A mRNA gene expression levels in metastases (left; n = 75 metastatic
tumors) and HLA-A protein expression (right; n = 34 metastatic tumors)
according to DNA methylation status when data were available. e, HLA-A, HLA-B,
HLA-Cand HLA-DRBS focal deletions in the HLA region of 49 individuals. f, Heat
map representation of the difference in HLA-A, HLA-B, HLA-C, B2M and TAPBP
gene expression values and GP2-immune-metagene and hallmark interferon-y
(IFNy) response gene signature scores, calculated between paired primary
(n=36) and metastatic (n = 60) tumors. Normal-like paired and unpaired tumors
were removed from this analysis (paired normal and unpaired group from the
‘Pairs-PAMS50-Prim’ column of Supplementary Table 2). Gene and signature
scores are ordered according to HLA-A gene expression changes. For the 60
metastases, the association is shown with HLA-A, HLA-B, HLA-C, B2M and TAPBP
gene methylation/DNA focal deletion status, PAMS0 and site of metastasis; NK,

natural killer. g, Left, MHC class I-associated neoantigen levels in MHC class
l-altered tumors (HLA-A, HLA-B, HLA-C, B2M and TAPBP hypermethylation or focal
deletion) versus non-altered tumors (Others) when data were available (basal-like
tumors: n =25, 5 primaries and 20 metastases; luminal/HER2E tumors: n=39,9
primaries and 30 metastases). Right, TMB in MHC class I-altered tumors versus in
other tumors when data were available (basal-like tumors: n = 35, 11 primaries and
24 metastases; luminal/HER2E tumors: n = 52,15 primaries and 37 metastases);
NS, not significant. h, HLA-A, HLA-B, HLA-C and B2M gene expression values are
shown in HLA-A-altered versus other tumors when data were available (n=37,13
primaries and 24 metastases). i, MHC class | metagene signature scores according
to lines of therapies in metastatic samples (N =77). j, MHC class | metagene
signature score differences between primary and metastatic tumors according
to molecular subtype in AURORA (n=46) and RAP (n=57) cohorts. Normal-like
tumors were removed from the analysis. All box and whisker plots of the figure
display the median value on each bar, showing the lower and upper quartile
range of the data (Q1to Q3) and data outliers. The whiskers represent the lines
from the minimum value to Q1 and Q3 to the maximum value. All comparisons
between more than two groups were performed by ANOVA with a post hoc Tukey
test (one sided), and Pvalues are shown in red (i and j). Comparison between only
two groups was performed by unpaired Mann-Whitney test (two sided), and
significant Pvalues are highlighted inred (d, gand h). LumA, Luminal A; LumB,
Luminal B; LN, lymph node; Unme, unmethylated; HyperMe, hypermethylated.
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driven by a higher tumor mutational burden (TMB; Fig. 4g); in particu-
lar, participant AER2 showed more than 50 times higher neoantigen
load in primary tumors and liver metastases than observed in other

b

participants. In this participant, HLA-A was methylated in primary and
metastatic tumors,and HLA-A mRNA and immune signatures were even
lower inthe liver metastasis. By contrast, luminals and HER2E primary
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LN, lymphnode;R. Lung, right lung; L. Lung, left lung; R. Liver, right liver; L. Liver,
leftliver; M, metastasis; ES, embryonic stem. PGR, progesterone; ESR1, estrogen
receptor; TAC, docetaxel (Taxotere), doxorubicin hydrochloride (Adriamycin),
and cyclophosphamide; CBDCA, carboplatin; Gem, gemcitabine; RT, radiation
therapy; Cape, capecitabine; THP, docetaxel, trastuzumab, and pertuzumab;
WBRT, whole brain radiation therapy.

and metastatic tumors demonstrated higher TMB and MHC class |
neoantigensin cases withMHC class I genetic or epigenetic alterations
thaninallother cases (Fig. 4g). Moreover, ageneral decrease in HLA-A,
HLA-B, HLA-C and B2M gene expression was observed in basal-like
samples with HLA-A genetic or epigenetic alterations (Fig. 4h). Taken
together, these results point toward a high selective pressure on MHC

classI-restricted neoantigens, CD8' T cell-mediated immunity and MHC
class I gene expression in basal-like BC. Of note, lower expression of
MHC class I genes was observed in metastatic samples procured after
increased lines of metastatic therapy (Fig. 4i), regardless of subtype.
We next tested the association of primary/metastasis-specific
downregulation of an MHC class I metagene signature composed of
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acomposite expression of HLA-A, HLA-B, HLA-C, B2M, TAP1, TAP2 and
NLRC5between metastasis and matched primary tumor according to
intrinsic subtype. Across the AURORA and RAP datasets, only basal-like
BCs demonstrated consistent and significant downregulation of the
MHC class | metagene signature in metastatic disease (Fig. 4j). This
downregulation was observed for HLA-A, HLA-Band HLA-Cgenes only in
basal-like tumors (Extended DataFig. 6d,e). Changesin gene expression
for HLA-A, HLA-B and HLA-C genes were consistently altered within a
given metastaticsample, supportingacommon regulation of all three
genes (Extended Data Fig. 6d,e).

To determine how antigen presentation viaMHC class I expression
and associated neoantigens may impact the tumor immune microen-
vironment, we performed CIBERSORTx* deconvolution on RNAseq
datain ‘relative mode’. We constructed a correlation matrix that was
further analyzed by unsupervised hierarchical clustering. We observed
four associated clusters of features, two of which reflected positive
feature correlation patterns and two of which reflected negative fea-
ture correlation patterns (Extended Data Fig. 6f). The first positive
cluster reflected associations of MHC class I neoantigens (specifi-
cally those with predicted binding affinity to HLA-A and HLA-C) with
tumor-associated macrophages, regulatory T cells and y5 T cells. The
second positive cluster showed enrichment of cytotoxic CD8" T cells,
memory-activated CD4" T cells, B cells, dendritic cells (DCs) and inflam-
matory macrophagesin high-MHC class I-expressing tumors, consist-
entwithamoreinflamed phenotype andintact antigen processing and
presentationand adaptive immunity. Consistent with our prior finding
that BCs with high MHC class I neoantigens appear to downregulate
MHC class I gene expression, the first negative association cluster
showed that tumors with more abundant neoantigens often were
associated with poor DC cell activation hallmarks (negative cluster 1)
and low expression of MHC class I genes (negative cluster 2).

Given the finding of HLA-A loss in the metastatic setting, we also
sought to determine whether this might occur in early-stage dis-
ease and how frequently by evaluating TCGA-BRCA data that con-
tain RNAseq, DNA-sequencing and DNA methylation data®. Of 761
TCGA-BRCA tumors tested, 68 showed methylation of HLA-A, and 8
showed methylation of HLA-B (Extended Data Fig. 8a-c). Primary tumor
HLA-A methylation was associated with lower HLA-A mRNA levels and
lower expression of multiple adaptive immunity signatures (Extended
Data Fig. 8d-f). Importantly, tumors with HLA-A methylation showed
worse survival outcome, even in multivariate analyses adjusting for
stage and PAMS50 subtype (Extended Data Fig. 8g,h).

Epigenetic suppression of cell adhesion in metastases

We conducted a systematic analysis of DNA methylation changes
associated with metastasis to uncover additional genes affected by
anepigeneticmechanism. Cellular composition hasaprofound impact
on DNA methylation profiles; thus, different metastatic sites could
produce false-positive results through contaminating stromal DNA
methylation signals. We circumvented this metastatic site contamina-
tion problem by screening for loss of methylation in metastatic tumors
atcis-regulatory elements that are consistently methylated in normal
tissues representing the metastatic target tissues. We selected 19,607
CpGsitesindistal enhancer-like elements defined by the ENCODE pro-
ject? that are constitutively methylated in eight normal tissue types.
Statistical testing analyses comparing primary tumors to metastases
identified 123 CpG sites that were significantly hypomethylated in
metastatic tumors compared to their matched primaries. Using 11,348
chromatinimmunoprecipitation with sequencing (ChIP-seq) datasets,
we found a significant overrepresentation of 47 DNA binding sites for
21 proteins at the 123 hypomethylated CpG sites (Fig. 5a). Proteins
involvedin estrogen signaling dominated binding at these hypometh-
ylated CpGs, including those encoded by ESRI1, FOXA1, TFAP2A and
TFAP2C, consistent with other reports of estrogen signaling in BC
progression®**’, We further investigated the distal elements bound

by ESR1 and FOXA1 by performing Gene Ontology (GO) enrichment
analysis of putative target genes regulated by these elements (Meth-
odsandFig.5b). We found that genesinvolved in the regulation of cell
adhesionare frequently represented among the target genes (Fig. 5b).
However, surprisingly, we found that distal element hypomethylation
issignificantly associated with reduced expression of these associated
genes, suggestive of negative regulation of these genes by estrogen
signalingwhen analyzingindividuals with ER*BC only (Fig. 5c,d) or even
whenusingallindividuals (Extended Data Fig. 9a-d). We confirmed the
significant association between distal element hypomethylation and
reduced expression of JAM3 and FOXF1in TCGA (Fig. 5e,f).

We conducted a similar screen for gain of methylation at promot-
ers by selecting CpG sites that are constitutively unmethylated in
normal tissues representing the metastatic target tissues. We identi-
fied metastasis-associated promoter DNA hypermethylation of three
genes (JAM3, YBX3and SYNDGI), one of which was also identified in the
distal element DNA hypomethylation analysis (Extended DataFig. 10,
left and middle). Gene expression of all three genes was significantly
lower in metastatic tumors than in the matched primaries, and this
observation was more pronounced in HER2E or luminal subtypes
(Extended Data Fig.10c¢,fi).

Clonal evolution and subtype switching

Many publications have studied DNA-based clonal evolution in lon-
gitudinal samples and in response to therapeutic selection***!, We
focused here on three cases that showed gene expression-based sub-
type switchingto address the question of whether this change in expres-
sion phenotype was accompanied by DNA clonality changes (Fig. 6a-0).
Participant AER8 was diagnosed with an ER*/progesterone receptor
(PR)'/HER2” LumA subtype primary tumor and received neoadjuvant
chemotherapy and adjuvant endocrine therapy plus everolimus; par-
ticipant AER8 was diagnosed with liver metastases after -20 months of
treatment, received anadditional three lines of therapy and succumbed
to disease, at which time biopsies of several metastatic lesions were
obtained (Fig. 6a). The two assayed liver metastases were of the same
clonal lineage (orange), which was distinct from the dominant clonal
lineage of the primary (purple; Fig. 6b,c), a finding also supported by
the DNA hypermethylation profiles (Fig. 6e). Metastasis M2 was assayed
by RNAseq and showed a subtype switch to HER2E (yet remained clini-
callyHER2"), withanincreasein proliferation signature and a decrease
in HLA-A mRNA levels and immune cell features (Fig. 6d). Acquisition
of the HER2E subtype in the absence of gain of HER2 amplification in
metastatic samples has been reported®**,

Asecond example of subtype switching was participant AFR3, who
was diagnosed with an ER/PR*/HER2” LumA BC. Participant AFR3 was
treated with chemotherapy then endocrine therapy and progressed
with multiple metastases, of which the brain metastasis was surgically
removed (Fig. 6f). The brainspecimenshowed a dramaticchangetoER”/
PR/HER2',and gene expression analysis confirmed anincrease of HER2
expression and asubtype switch to HER2E (Fig. 6f), with aconcomitant
DNA clonality change that included the acquisition of copy amplifica-
tionofthe HER2 region and an ERBB2/HER2E668Q activating mutation
(Fig. 6g,h). This DNA clonal change was alsoreflected in the DNA hyper-
methylation landscape (Fig. 6j) and was associated with adownregula-
tion of ESRI and PGR and upregulation of ERBB2 mRNA (Fig. 6i).

In contrast to participant AFR3 whose BC switched to the HER2E
subtype, likely due to an acquired HER2 amplification, participant
AFE4 showed areverse trend. Namely, this participant presented with
anER'/PR*/HER2" BC (HER2E expression subtype), where it was noted
that the clinical HER2 immunohistochemistry (IHC) result was 2+and
fluorescenceinsitu hybridization (FISH) inconclusive but was HERmark
assay positive. After 30 months of trastuzumab, tumor progression was
documented, alung biopsy was obtained, and the clinical receptor sta-
tus was remeasured, indicating an ER"/HER2" status. Additional treat-
ments were given; however, the tumor progressed, and the participant
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died 18 months later. At autopsy, multiple metastatic tumor specimens
were obtained (Fig. 6k). Interestingly, the three metastatic specimens
assayed by RNAseq showed subtype switches to LumA or LumB, DNA
clonality changes and loss of HER2 amplification (Fig. 61,m), while
HER2mRNA levels were slightly decreased (Fig. 6n). DNA methylation
featureslargely agreed with the DNA clonal evolution except for right
lung metastasis (M1) that presented with the lowest DNA tumor purity
score (Fig. 60). Interestingly, liver metastasis (M6) was the most clon-
ally distinct metastasis (as it is shown by clonal evolution history and
DNA methylation), showing a subtype switch to LumA and the lowest
levels of HLA-A expression and immune-related signatures compared
to the other metastases.

Discussion

Established metastatic tumors are challenging to treat, and their
biology is complex. Overall, when primary tumors are compared to
their matched metastases, the dominant genomic patterns seenin
the primary tumors tend to be maintained in the metastases; however,
significant differences have beenidentified that may contribute to the
poor prognosis associated with MBC. In performing multiplatform
analyses of primary tumors versus metastases, we discovered several
patterns that may explain some metastatic tumor behaviors, including
events derived from epigenetic, genomic and transcriptomic evolution.

Akey epigenetic mechanismidentified here was DNA methylation
of HLA-A and HLA-A small focal deletions, typically in basal-like/TNBC
metastatic disease, leading to lower expression of HLA-A and associated
lowered expression ofimmune cell features. Alterations in HLA-A have
also been described using loss of heterozygosity (LOH) analyses in
BCs* and by simply lower mRNA**. Here, we show a lower expression of
HLA-Ainthose TCGA primary cancers with DNA methylation and, when
observed, was linked to lower immune cell features and aworse overall
survival. These findings provide amolecular explanation for the loss of
immune cell features in some metastatic tumors, which has potential
therapeuticimplications. One such implicationis that ICIs may have lit-
tle effect onthese HLA-A-low tumors, as these cannot be recognized by
CD8" Tcells (noting these HLA-A-methylated tumors tend to have high
neoantigen burdens). These results also suggest a biomarker-driven
therapeutic approach wherein HLA-A DNA-methylated tumors (that
is, the biomarker) could be targeted with DNA demethylating drugs
in combination with ICIs*.

Changes in the somatic genetics of metastatic breast tumors are
well documented®?, and here we extend the changes seen in metastatic
tumors into the epigenetic landscape. Gene expression subtype dis-
cordance between primary and metastatic tumors hasbeen previously
described?***, and the AURORA study here identified similar findings.
Namely, inone of three individuals with BC, we identified agene expres-
sion tumor subtype switch, which was especially frequentinindividu-
als with luminal/ER* BC. In addition to possible epigenetic changes
in tumor cells, RNAseq analysis of multiple immune cell signatures
showed dramatic differences simply according to site of metastasis.
Itisalready appreciated that the brainis animmune-privileged site*s,
and our results confirmthis finding. There is also growing evidence that
theliver is similarly immune privileged*, and our results confirm low
immune cell features in liver metastases. Using this unique resource,
we found that in 9 of 14 individuals with multiple metastases, liver
metastases had the lowest immune cell features of any synchronous
site of metastasis. These comparative metastatic tissue site findings
have clinicalimplications because the liver isacommonly biopsied site
for metastatic evaluation, and our data suggest that liver metastases
aremore likely to have low immune cell features, which may bias assay
results ofimmune therapy biomarker positivity.

Interestingly, we discovered through systematic screening for
metastasis-associated DNA methylation changes mechanisms lead-
ing to downregulation of JAM3 expression in metastatic tumors,
namely DNA hypomethylation at a distal ESR1 binding site and DNA

hypermethylation of the gene promoter. Notably, ithasbeen reported
that JAM2 overexpression (a second JAM family member) in BC cell
lines blocks invasion and migration®®, JAM3 s silenced by DNA hyper-
methylation in colorectal cancers, and JAM3 suppression promotes
migration®. Inaddition, a causal interaction between DNA methylation
and ER-mediated repression of gene expression has been previously
reported”, and our finding that multiple genes regulating cell adhe-
sion appearing to be negatively regulated by estrogen signaling may
have functional consequences for progression to metastasis. This is
consistent with prior reports of estrogen-mediated downregulation
of E-cadherinin BC cells™.

Finally, our three examples of clonal evolution highlight DNA clon-
ality shifts coincident with gene expression-based subtype changes. In
participant AERS8, the clonal shift and altered expression subtype did not
include any new actionable mutations, which may represent the most
commonfinding with respect to changesin DNA-based actionable muta-
tionsin the metastatic setting™. In participant AFR3, an actionable variant
wasidentified (thatis, gain of HER2), and trastuzumab therapy was given,
although the tumor progressed. Participant AFE4 highlights yet another
challenge of precision medicine wherein an actionable DNA-based feature
is identified and targeted (that is, HER2 amplification), yet the tumor
eventually evadesthe treatment by deleting the therapeutic target. Each
ofthese participantsillustrates athird clinicalimpact of this study, which
is if medically possible, biopsy and characterize the metastatic disease
asithaslikely changed relative to the primary tumor.

There are limitations to this study. The first challenge was that
the sample size was likely underpowered to find somatic mutation
frequency differences. The second challenge was the integration of
data from FF specimens with data from FFPE specimens. The third
challenge was that participants received multiple adjuvant and/or
metastatic treatments, and we were not able to evaluate the treat-
ment effects (noting each participant had an average of three lines of
therapy). Nonetheless, we identified many multiplatform-supported
findings concerning tumor clonal evolution and immune evasion that
are common in MBCs. This multiplatform genomic data resource of
metastatic disease presented here is highly complementary to the
TCGA resource of primary disease®**>*° and has already begun toiillu-
minate the molecular landscape of MBC.

Methods

Clinical summary

Allresearchinvolving human tumor tissues was reviewed and approved
by the appropriate Institutional Review Board of Research at Baylor
College of Medicine, Dana Farber Cancer Institute, Duke University,
Georgetown University Medical Center, Indiana University, Mayo Clinic,
Memorial Sloan Kettering Cancer Center, University of Pittsburghand
UNC at Chapel Hill, and the studies were performed in accordance
with recognized ethical guidelines. We obtained a waiver of written
informed consent for some participants for the use of their biological
specimens, and in other protocols, we obtained informed consent for
theresearch procedures. Samples from atotal of 55 female participants
with MBC were the final dataset of the AURORA US cohort. Of these 55
participants, 10 (18%) were of African American descent, and 4 (7%)
were of Hispanic ethnicity. The median age atinitial BC diagnosis was 49
years (range: 25-76). Forty-nine participants (89%) initially presented
with stageltostage llIBC, of which 19 (38%) received neoadjuvant sys-
temic therapy, and 6 (10%) presented with de novo metastatic disease.
Inthe metastatic setting, participants received amedian of three lines
of systemic therapy (range: 0-20). Metastatic samples from a total of
20 participants were collected at autopsy. Additional clinicopathologic
features are displayed in Supplementary Table 1.

Pathology review
Pathology quality control (QC) was performed on each tumor speci-
menand normal tissue specimenas aninitial QC step. Hematoxylin and
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eosin-stained sections from each sample were subjected toindependent
pathology review to confirm that the tumor specimen was histologically
consistenttothe reported histology. The percent tumor nuclei, percent
necrosis and other pathology annotations were also assessed. Tumor
samples with >30% tumor nuclei and normal tissue with 0% tumor nuclei
were submitted for nucleic acid extraction. All hematoxylin and eosin
images are also available and part of this dataresource.

AURORA sample acquisition and biospecimen processing

RNA and DNA were extracted from frozen tissues using a modifica-
tion of the AllPrep DNA/RNA kit (Qiagen). The flow-through from the
Qiagen DNA column was processed using a mirVana miRNA isolation
kit (Ambion). RNA and DNA were extracted from FFPE solid tissues
using a modification of the AllPrep DNA/RNA FFPE kit (Qiagen). The
flow-through from the Qiagen DNA column was processed using a mir-
VanamiRNA isolation kit (Ambion). For cases in which whole blood or
blood derivatives were received, DNA was extracted from blood using
the QiaAmp DNA blood midi kit (Qiagen). RNA samples were quantified
by measuring absorbance at 260 nmwith a UV spectrophotometer, and
DNAwas quantified by PicoGreen assay. DNA specimens were resolved
by 1% agarose gel electrophoresis to confirm high-molecular-weight
fragments. A custom Sequenom single-nucleotide polymorphism
panel or the AmpFISTR Identifiler (Applied Biosystems) was used to
verify that tumor DNA and germline DNA representing a case were
derived fromthe same participant. RNA was analyzed viathe RNA600O
Nano assay (Agilent) for determination of an RNA integrity number.
Only cases yielding a minimum of 250 ng of tumor DNA, 500 ng of
tumor RNA and 250 ng of germline DNA were included in this study.
A minimum of one QC-qualified tumor sample and one QC-qualified
normal tissue sample were required for a case to become part of the
study (n =55total cases).

RNAseq, gene expression data values and normalization

Gene expression profiles from primary and metastatic tumors for the
AURORA dataset were generated by RNAseq using an Illumina HiSeq
and an rRNA depletion method. Briefly, 300-500 ng of total RNA was
converted to RNAseq libraries using the TruSeq Stranded Total RNA
Library Prep kit with Ribo-Zero Gold (Illumina) and sequenced on
an Illlumina HiSeq 2500 using a 2 x 50 base pair (bp) configuration.
QC-passed reads were aligned to the human reference CGRh38/hg38
genome using STARv.2.7.6a. Transcript abundance estimates for each
sample were performed using Salmonv.1.4.0, an expectation maximi-
zation algorithm using the University of California Santa Cruz gene
definitions. Raw read counts for allRNAseq samples were normalized
to a fixed upper quartile (UQN). The raw reads files are available in
dbGAP (phs002622.v1.pl).

Gene expression analysis of RNAseq data and batch effect
adjustments

RNAseq UQN gene counts from 123 primary and metastatic tumors
comprised of 35 FFPE and 88 FF RNA-sequenced tumor data were log,
transformed, genes werefiltered for those expressed in 70% of samples,
and zeros were returned to the empty values. To improve the batch
effect between the two data types (that is, FFPE and FF), we merged
asecond dataset of 101 paired primary and metastatic tumors (UNC
RAP cohort) comprised of 20 FFPE and 81 FF sequenced tumors. This
second dataset was partially previously published in2018 (ref. 23), but
some new samples were added and sequenced for the present work,
and many of the published samples were resequenced here using the
rRNA depletion method (dbGAP phs002429). The RAP101samples of
the present work were created with the same RNA extraction, library
preparation and sequencing protocol as the AURORA samples and
represent a second dataset of FFPE and FF samples thatincreases our
sample size for adjustments of FFPE versus FF effects. The clinical
information of the RAP101 dataset is found in Supplementary Table 2.

To address this systematic effect, we merged the raw read counts
for all RNAseq samples of the previously mentioned RAP101 dataset
with 123 samples of the AURORA study (level 1 data). These counts
were normalized using DESeq2-normalized counts (median of ratios
method)”’. Briefly, we created a DESeq2Dataset object and generated
size factors using the estimateSizeFactors() function. Next, to retrieve
the normalized counts matrix, we used the counts() function and added
the argument normalized=TRUE. After generating the normalized
count matrix, genes with an average expression lower than 10 were
filtered from the dataset. RNAseq-normalized gene counts from the
224 dataset were log, transformed (level 2 data). Next, we used the
removeBatchEffect() function from the limma R package®®, including
bothbatchesinthe formula. Last, we subtracted only the 123 samples
from the AURORA study and used this normalized, log,-transformed
and batch-corrected dataset for further RNAseq gene expression analy-
sis (level 3 data).

To minimize false-positive results due to the normal tissue con-
tamination generated by normal brain (n =10), liver (n=8) or lung
tissue (n =7), the most common sites of metastasis in this study, we
removed those genes whose expression was solely coming from these
three tissue sites. Specifically, we used statistical testing to determine
normal brain, liver and lung signatures by comparing each normal
tissue to normal breast tissue (n =5; Supplementary Table 3; dbGAP
accession number for AURORA phs002622.v1.pland for RAPand 9830
phs002429). This normal tissue dataset was also created using the same
RNA extraction, library preparation and sequencing protocols. From
normalized, filtered and median-centered counts, we performed linear
model (LM) regression using Ime4 (ref. 59) and ImerTest®® R packages
given the formula, fit = Im(genes ~ normal site of metastasis/breast
normal), and Pvalues were adjusted for multiple comparisons using the
Benjamini-Hochbergapproach®>, We obtained the most significant
upregulated genesin each normaltissue (FDR < 0.00001) by compar-
ing each normal tissue to normal breast tissue (brain versus breast,
liver versus breast and lung versus breast); we merged these three lists
andidentified 1,900 genes as the distinctive upregulated genes of our
‘normal tissue signature’. To build a second signature characteristic
of breast primary tumors, we did a second LM analysis between the
46 primary tumors from the AURORA study and the 5 normal breast
tissue samples from the above-mentioned normal tissue cohort, and
we obtained 833 significant upregulated genes (FDR < 0.01). Some
of these genes were also present in the ‘normal tissue signature’, and
thus we removed these common 449 genes from the ‘normal tissue
signature’ list, considering these genes not unique to normal tissues
butalsoimportant markers for primary tumorsin the AURORA cohort.
Finally, the remaining 1,451 genes of the ‘normal tissue signature’ (Sup-
plementary Table 3) were removed from the original normalized and
batch-corrected gene expression data matrix of the 123 AURORA
cohort samples (referred to as the normalized, log,-transformed,
batch-corrected and normal-adjusted data or level 4 RNAseq data).

PAMS5O0 subtype classification. To better maintain methods with
past intrinsic subtyping methods*, for PAM50 subtype classifica-
tion assignments, we normalized the RNAseq data in a different way
than described immediately above that is based on within-dataset
row and column standardizations. Briefly, RNAseq-normalized gene
counts from123 primary and metastatic tumors comprised of 35 FFPE
and 88 FF RNA-sequenced tumor data were log, transformed, genes
were filtered for those expressed in 70% of samples, and zeros were
returned to the empty values. To address the FFPE versus FF effects,
we again used the AURORA and RAP101 datasets as described above
and made an adjustment for FFPE versus FF. Namely, using only com-
mon genes between both datasets, we merged, row median centered
and column standardized FFPE and FF groups separately, where each
gene was arow, and each sample was a column. Next, we subtracted
only the FFPE and FF normalized batches from the AURORA study
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and used these values for receiver operating characteristic (ROC)
curve and Youden cutoff analysis for ER, PRand HER2 status compari-
sons, which provide external validation that the adjustments do not
adversely affect the gene expression data using tests of correlation
to the external clinical standards.

For PAMSO0 subtype classification, we applied a HER2/ER
subgroup-specific gene-centering method as described in the sup-
plemental methods of Fernandez-Martinez et al.>*. For applying this
subgroup-specific gene-centering method, we need the IHC status
for all samples assayed by RNAseq. Six percent of primary tumors
and 39% of metastatic samples did not have HER2 IHC information,
and 38% of metastatic samples were missing ER status. ‘Profiled Pri-
mary ER/HER2/PR’ columns of Supplementary Table 2 were used for
this analysis. We again used ROC curve and Youden cutoff values for
inferring protein clinical status using ESRI and ERBB2 gene expression
datafromall tumors, and we assigned ER and HER2 clinical status to
those samples that had missing clinical values using the mRNA sur-
rogates. The ROC curve analysis showed a value of 0.92 for ER status
by ESRI mRNA and of 0.87 for HER2 status using ERBB2 mRNA. The
new RNAseq-inferred ER/PR/HER2 protein status was used for the
subgroup-specific gene-centering method (inferred ER/PR/HER2
column of Supplementary Table 2). Finally, the gene expression values
ofthe PAM50 genes using the UQN gene counts were then normalized,
and the PAMS50 predictor® was applied using the provided centroids
toassign subtype calls using correlation values for all primary tumors
and metastases (Supplementary Table 2).

Gene expression signatures. For eachbatch-corrected and adjusted
for normal tissue gene expression dataset/subset (level 4 RNAseq
data), we applied a collection of 747 gene expression modules (Sup-
plementary Table 3), representing multiple biological pathways and
cell types, to all primary and metastatic tumors®>*"*,

Finally, we developed an immune metagene signature named
‘GP2-immune-metagene’, a signature that we developed to capture
immune cell features as derived from the AURORA dataset. Briefly, we
used TCGA gene expression data to calculate all 747 module scores,
which was then used for hierarchical clustering analysis, and the
resulting clusters of modules were tested for significance of these
groups of modules using SigClust®. Fifty-six clusters with a Pvalue
of <0.001 were identified, and 16 immune-related signatures from
cluster 5S1were grouped as anew ‘immune meta-signature’ named the
GP2-immune-metagene signature (Supplementary Table 3); included
within this group ofimmune clusters were signatures of T cells, B cells,
macrophages and DCs. Next, using our previously calculated 747 gene
expression module scores from the AURORA dataset, we selected the
16 immune-related signatures and calculated the means of these 16
signatures for each participant and called this newly derived signature
‘GP2-immune-metagene’.

Merging UNC RAP, GEICAM and AURORA cohorts (RNAseq only).
To study metastasis in an organ-specific manner, we increased the
number of the most common sites of metastasis (lung, liver and
brain) creating alarger dataset. We merged the data of the AURORA
and RAP101 cohorts and 204 samples of the GEICAM cohort*. Sample
acquisition and biospecimen processing followed the same protocols
asthe AURORA cohort and were also sequenced at UNC through the
High-Throughput Sequencing Facility.

Next, we corrected the technical bias detected between the gene
expression of 259 FFPE and 169 FF samples from 176 primary and 411
metastatic tumors (428 tumors in total) following the same scheme
as for correction of AURORA batch effects (including FFPE and FF
as batches in the formula). To minimize the false-positive results
due to the normal tissue contamination, we proceeded as we did
in the AURORA dataset, 1,451 genes of the ‘normal tissue signature’
(Supplementary Table 3) were removed from the data matrix of the

428 AURORA-RAP-GEICAM cohort. From this merged set that is
already batch corrected and adjusted by normal tissue, we subtracted
samples from the RAP cohort that were exact duplicates or coming
from the same original tissue also used in the AURORA cohort; this
removed 20 of the RAP101 samples. The final cohort of 82 tumors is
listed in Supplementary Table 2, sheet 5 (RAP study), column name
‘Freeze cohort_RAP’. Thisyielded a final cohort of 409 tumorsintotal
(155 participants with 155 primaries and 211 paired metastases and 11
unpaired primaries and 32 unpaired metastases), each summarized
inSupplementary Table 2.

Next on the three-dataset combined data matrix, we calculated
thegenessignature score for eachmodule as described before, and we
performed a linear mixed model (LMM) using ImerTest®® and Ime4 R
packages to identify significantly changed modules between meta-
static and primary tumors. In the LM, we included the term ‘patient’
as random effect or confounding variable, fit = Imer(genes ~ met/
prim + (1|patient), using all the primary and metastatic tumors except
the primaries identified as post-treatment primaries (participants who
received neoadjuvant therapy before primary tumor collection). To
avoid the possible confounding factor of intrinsic molecular subtype
inthe subsequent analysis, we divided tumors into two datasets based
onthesubtype of the primary tumor fromeach pair: a‘luminal set’com-
prisingall LumA, LumB and HER2E subtype participants and a ‘basal-like
set’ containing basal-like subtype participants only; samples called
normal-like in the primary or metastatic tumors or post-treatment pri-
mary tumors were removed from the analysis (column ‘Groups PAM50
Gene Expression Analysis’ from Supplementary Table 2). To identify
significantly changed modules betweenbrain or liver and their corre-
sponding primary tumors only, the studied sites of metastasis versus
the corresponding primary pair were compared using the same Imer
function. The significantly differentially expressed modules (g < 0.05)
were hierarchically clustered using the ComplexHeatmap R package.
HeatmapAnnotation and Heatmap functions were used to show the
heatmap that was previously row ordered by primary and metastatic
tumors and column ordered by estimates or S values. Differential gene
expression module analysis in the merged AURORA-RAP-GEICAM
set was performed in the same way as AURORA only. Multimetastatic
samples derived from AURORA and RAP and single primary-tumor
pairs derived from GEICAM with PAM50 classification of normal-like
in primary or metastatic tumors and post-treatment primary tumors
were removed from the analysis. For the comparisons between site
of metastasis using the merged set, we performed SAM®® analysis of
the list of 747 gene expression modules between 46 liver metastases
and 18 brain metastases, 46 liver metastases and 24 lung metastases,
46 liver metastases and 35 lymph node metastases, 18 brain metastases
and 35 lymph node metastases and 24 lung metastases and 18 brain
metastases (FDR =0; Supplementary Table 3).

Statistics and reproducibility

No statistical method was used to predetermine the sample size that
was limited by the size of the samples provided and successfully assayed
for this study.

For LMM/linear mixed-effects model and LM analyses between
primary and metastatic tumors, the ImerTest® R package summary
includes a coefficient table with estimates and Pvalues for ¢-statistics
using Satterthwaite’s method. These P values were adjusted for mul-
tiple comparisons using the Benjamini-Hochberg approach®-%,
Non-parametric, two-sided exact tests were used to make comparisons.
At-test (twosided) was used for comparisons between two groups, and
a Mann-Whitney U-test was used when the dependent variable was
either ordinal or continuous but not normally distributed. A paired
t-test (two sided) was used for analyzing repeated measures within the
same groups. Comparisons between more than two groups were per-
formed by analysis of variance (ANOVA) with a post hoc Tukey test (one
sided). Exact Pvalues were provided whenever possible. The strength
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of correlations was measured using the Pearson (P) or Spearman (p)
correlation coefficient and the probability of observing a correlation
with the corresponding P values. Clinical, RNAseq, DNA-sequencing
and DNAme analyses were performed using RStudio version 1.4.1103
(http://cran.r-project.org), GraphPad Prism 9.0 software and/or Micro-
soft Excel (version 2210 build 16.0.15726.20070). More details about
each particular platform analysis are found in each methodology
section. Norandomization or blinding was done in the data collection
or analyses. No data points were excluded from the analyses unless is
specified otherwise.

TCGARNAseqdata

We analyzed the BC dataset from TCGA project profiled using the
Illumina HiSeq system. We included 1,095 primary tumors and 97
adjacent non-malignant tissues for developing theimmune signature
named ‘GP2-immune-metagene’ and 761 primary tumors and 74 adja-
cent non-malignant tissues for the HLA-A-methylated primary tumor
analysis and prognostic value of HLA-A. TCGA files were downloaded
from Broad GDAC Firehose (Supplementary Table 7).

HLA-A immunofluorescence staining

FFPE tissue was sectioned at 4 pm and stained with a CK/HLA-A assay
developed and optimized at Vanderbilt University Medical Center
using tyramine signal amplification for increased antigen sensitivity.
Sections were deparaffinized. Antigen retrieval was performed with
citrate buffer at pH 6. Endogen peroxidase was blocked with hydrogen
peroxide, and protein block was applied. Sections were thenincubated
with the first primary antibody, pan-cytokeratin (pan-CK) AE1/AE3
Biocare, at 1:1,600 overnight at 4 °C, followed by incubation with the
secondary antibody conjugated with horseradish peroxidase. TSA
reagent was applied according to manufacturer’s recommendations.
After washing, antigen retrieval and protein block steps, the second
primary antibody, HLA-A C6 Santa Cruz at 1:1,300, was incubated
overnight as described. Counterstaining was performed with DAPI for
nucleiidentification. Tonsil and placentatissue were used as positive-
and negative-control tissues.

Whole-slide images were digitally acquired using an AxioScan Z1
slide scanner (Carl Zeiss) at x20 magnification. Automated quantifi-
cationwas performed via a pathologist-supervised machine learning
algorithm using QuPath software. Cell segmentation was determined
on DAPI. Object classifiers were trained on annotated training regions
from control tissue and tumor samples to define cellular phenotypes.
Tumor cells were defined by pan-CK expression and subcellular char-
acteristics. Once the algorithm was performing at a satisfactory level,
itwas used for batch analysis. For cases with low, heterogenous or null
CK expression in which the classifier performance was not optimal,
tumor areas were manually annotated. Out-of-focus areas, tissue folds,
necrosis, normal breastand in situ carcinomawere excluded from the
analysis. Single-cell data were exported from QuPath, and mean HLA-A
intensity on tumor cells was further calculated inR.

Array-based DNA methylation assay

DNA methylation was evaluated using the lllumina HumanMethyla-
tionEPIC (EPIC) array. The EPIC platform analyzes the DNA methyla-
tion status of up to 863,904 CpG loci and 2,932 non-CpG cytosines,
spanning gene-associated CpGs and alarge number of enhancer/reg-
ulatory CpGsinintergenic regions®. Briefly, DNA was quantified by
Qubit fluorimetry (Life Technologies), and 500 ng of DNA from each
sample was bisulfite converted using the Zymo EZ DNA methylation
kit (Zymo Research) following the manufacturer’s protocol using
the specified modifications for the Illumina Infinium methylation
assay. After conversion, all bisulfite reactions were cleaned using
the Zymo-Spinbinding columns and eluted in Tris buffer. Following
elution, bisulfate-converted DNA was processed through the EPIC
array protocol. For FFPE samples, the entire bisulfate-converted

eluate was used as input for the Infinium HD FFPE DNA Restore kit
and processed through the separate restoration workflow. To per-
formthe assay, converted DNA was denatured with NaOH, amplified
and hybridized to the EPIC bead chip. An extension reaction was
performed using fluorophore-labeled nucleotides per the manu-
facturer’s protocol.

DNA methylation data packages
DNA methylation data were packaged into the following four levels.

Level 1. Level 1 data contain raw IDAT files (two per sample with
the extensions_Grn.idat and Red.idat for the two-color channels) as
produced by the lllumina iScan system. The mapping between IDAT
filenames and AURORA sample barcodes is provided in Sample.map-
ping.tsv.

Level 2. Level 2 data contain the signal intensities corresponding
tomethylated (M) and unmethylated (U) alleles and detection Pvalues
for each probe as extracted by the readIDATpair functioninthe R pack-
age SeSAMe (https://github.com/zwdzwd/sesame) from the IDAT files.
The Pvalues were calculated using pOOBAH (Pvalue with out-of-band
probesfor array hybridization), whichis based on empirical cumulative
distribution function of the out-of-band signal from all type I probes®®.

Level 3. Level 3 data contain S values defined as S,,/(S,, + Sy) for
each locus calculated using the R package SeSAMe, where Sy, and S
represent signal intensities for methylated and unmethylated alleles.
The raw signal intensities are first processed with background cor-
rection and dye bias correction. The background correction is based
on the noob method®. The dye bias is corrected using a non-linear
quantileinterpolation-based method using the dyeBiasCorrTypelNorm
function®®; B values are then computed using the getBetas function.
Probes with a detection P value greater than 0.05 in a given sample
aremasked as NA. Whether the probe is masked due to detection fail-
ureis recorded in an extra column (Masked_by Detection_P_value)
to distinguish from experiment-independent masking of probes
(N=105,454) subject to cross-hybridization and genetic polymorphism.
The experiment-independent masking is based on the MASK_general
column of the file named EPIC.hg38.manifest.tsv (release 20180909)
downloaded from http://zwdzwd.github.io/InfiniumAnnotation®.
Fromthe same source, anadditional file (EPIC.hg38.manifest.gencode.
v22.tsv)isalsoincluded to provide detailed annotation of transcription
association for each probe.

Level 4. Level 4 data contain a merged data matrix with S values
across all samples. Probes masked as NA concerning the probe design
in level 3 data were removed. Six FFPE samples that initially yielded
low-quality data were rerun. The resulting two datasets values were
merged probe-wise by taking the mean Svalue. If data were masked in
one of the runs, we took available data from the other run.

Nomenclature for control samples. We included several cell line
control samples in each batch to allow for the evaluation of potential
batch effects and to facilitate correction of observed batch effects.

Control sample IDs that start with ‘VARI-Control-’ can be inter-
preted as

VARI-Control-[batch number]-[(cell line name)-(DNA isolate ID
(A,B,..)]-[assay technical replicate (1,2,3...sequential across batches
for the same DNA isolate)].

External DNA methylation datasets

We processed additional normal tissue DNA methylation data from
ENCODE and Gene Expression Omnibus (GEO). We collected raw IDAT
files for 24 samples from seven tissue types, including adrenal gland
(n=5),liver (n=1),lung (n=4),ovary (n=2),skin (n=4),blood (n=6)
and brain (n = 2), that were frequently represented as a site of metas-
tasis. We generated B values using the R package SeSAMe as described
above forthe AURORA samples. Furtherinformation on these datasets
isprovided in Supplementary Table 5.
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Global DNA hypermethylation analysis

To examine cancer-associated DNA hypermethylation profiles, we
first used DNA methylation datafrom normaltissues to eliminate CpG
sites that are involved in tissue-specific methylation (mean f value of
>0.2 in any of the eight tissue types). We eliminated additional CpGs
that were significantly differentially methylated between FF and FFPE
samples (¢-test FDR-adjusted P value of <0.01 and absolute mean 8
value difference of >0.25). For the heat map analysis shown in Fig. 1c,
we used 5,000 of the most variably methylated CpGs across tumors.
The probeslacked methylationin the normaltissues (N =146,385),and
the subset (N =5,000) used inthe heat mapis listed in Supplementary
Table 5. Tumor samplesin the heat map in Fig. Ic were logically sorted as
follows to help assess the similarity of DNA methylation profilesamong
matched samples: (1) cases were stratified by PAMS0 callin the primary
tumor; (2) withinsubtypes, cases were ordered by decreasing median 8
valueinthe primary tumor; (3) within cases, a primary tumor was listed
first, followed by metastases for each case; and (4) metastases from the
same case were ordered by decreasing tumor purity.

Distal element DNA hypomethylation associated with metastasis
We identified 152,211 CpGs in distal enhancer-like signatures (dELSs),
which fall more than 2 kilobases (kb) from the nearest transcription
start site, defined by the ENCODE project®. We then selected 19,607
CpGs that are constitutively methylated across eight normal tissue
types (mean S value of >0.8). Using the 19,607 CpGs sites, we fitted a
probe-wise linear mixed-effects model with terms including primary
versus metastasis, tumor purity and participant (coded as arandom
effect) asimplemented in the R package Ime4 (ref. 59). P values were
estimated based on Satterthwaite’s approximation method included
inthe ImerTest® package in R and adjusted for multiple testing using
the Benjamini-Hochbergapproach®. To examine transcription factors
that bind to the CpG sites hypomethylated in metastatic tumors, we
analyzed 11,348 ChIP-seq datasets on 1,359 individual DNA binding
factors curated in the Cistrome Data Browser’. The statistical signifi-
cance of enrichment for transcription factor binding sites among the
hypomethylated CpGs was determined using Fisher’s exact test, with
200-bpregions centered onthe target CpGs using the R package LOLA.
All CpGs on the array overlapping the distal enhancer-like signatures
were used as the background set. P values were adjusted for multiple
comparisons using the Benjamini-Hochberg method®.

Putative ESR1and FOXAl enhancer target genes affected by
metastasis-associated DNA hypomethylation

Weidentified 47 significantly hypomethylated CpGs overlapping the
binding sites for ESR1 or FOXAL. To investigate putative target genes
affected by DNA hypomethylation, we first collected 4,681 putative tar-
gets of either ESR1or FOXAlin BCs as predicted by Cistrome Cancer’.
We then considered at most 10 of the nearest genes within 1,000 kb
upstream and 10 of the nearest genes within 1,000 kb downstream
from the affected CpG sites, resulting in a list of 121 potential target
genes (Supplementary Table 5). GO term overrepresentation analysis
was performed using the enrichGO function with default parameters
asimplemented in the R package clusterProfiler.

Identification of DNA hypermethylation associated with
metastasis

Toidentify CpGsites hypermethylated in metastatic tumors compared
toin primary tumors, we used 146,385 probes unmethylated in normal
tissues defined above. We fitted a probe-wise linear mixed-effects
model with terms including primary versus metastasis, tumor purity
and participant (coded as a random effect) as implemented in the R
package Ime4 (ref. 59). P values were estimated based on Satterth-
waite’s approximation method included in the ImerTest®° package in
R and adjusted for multiple testing using the Benjamini-Hochberg
approach®.

CpG target analysis

Probes located in the PcG target sites (Fig. 6e,j,0) were determined
using H3K27me3 ChIP-seq peaks onthe Hlembryonic stem cells gener-
ated by the NIH Roadmap Epigenomics Consortium’. The broad peaks
were downloaded using the R package AnnotationHub (ID AH28888).

TCGA DNA methylation data

We analyzed the BC dataset from TCGA project, including 761 pri-
mary tumors and 74 adjacent non-malignant tissues profiled using
the Infinium HumanMethylation450 (HM450) array (Supplementary
Table 7). IDAT files were processed using the openSeSAMe pipeline
implementedin the R package SeSAMe.

DNA sequencing of tumor and normal tissue

Due to variable DNA quality, ranging from high (>2 kb; 131 samples)
tomedium (0.5-2 kb; 18 samples) and low (<0.5 kb; 44 samples), the
193 AURORA samples were binned into three different batches. For
each batch, library construction used the NEBNext Ultrall FS DNA
library prep kit (New England Biolabs) with a 15-min enzymatic
fragmentation. Eachlibrary received a unique dual-indexed adapter
(Integrated DNA Technologies), allowing for both low-pass WGS
and multiplex hybrid capture enrichment. Libraries were pooled
at2-4 plbased onfinallibrary quality and yield. To evaluate library
representation due to variable DNA quality, we performed a survey
of WGS sequencing for proper library balancing. The pooled librar-
ieswere concentrated and diluted to 2.25 nM for survey sequencing
onthe NovaSeq 6000.

Exome hybrid capture used the IDT xGen Exome Research Panel
v1.0 enhanced with the xGenCNV Backbone Panel-Tech Access (Inte-
grated DNA Technologies). The remaining pooled libraries were
hybridized to this probe set according to the manufacturer’s pro-
tocol. The captured products were eluted following precipitation
with streptavidin-labeled magnetic beads, amplified by PCR and
quantitated before dilution and preparatory flow cell amplification
for Illumina sequencing. Illumina paired-end sequencing (recipe:
151 x 17 x 8 x 151) was performed on the NovaSeq 6000 using the S4
flow cell configuration. For WGS, we targeted 5x coverage, and for
whole-exome sequencing, we aimed for an average unique, on-target
sequencing coverage depth of 500x for the tumor and 250x for the
matched normal tissue.

Churchill secondary analysis for DNA sequencing

The Nationwide Children’s Hospital (NCH)-developed Churchill sec-
ondary analysis pipeline® was used to process paired-end read data
for all samples, using attached unique molecular identifiers. Reads
were aligned to reference genome GRCh38.d1.vd1 viabwa-mem, with
theresulting alignment deduplicated using GATK’s (Picard) MarkDu-
plicates and base scores recalibrated using GATK’s BaseRecalibrator
and ApplyBQSR. Variant calling was then performed on the final
deduplicated, recalibrated BAM files. Germline variants were called
using GATK’s HaplotypeCaller; somatic variants were called using
GATK’s Mutect2, with the paired normal samples used to exclude
germline variants. Somatic variant filters from Mutect2 were applied,
and additional filtering of somatic variants from FFPE sources was
performed using corrected variantallele frequency, read start diver-
sity and unique read ends as indicators of preservation-sourced
artifacts. Descriptions of the specific filters can be found below.
All single-nucleotide variants (SNVs) and insertions and deletions
(indels) were annotated via SnpEff using the GDC.h38 GENCODE
v22 database. To ensure that samples were of usable quality, depth
and breadth metrics were generated by mosdepth, oxidation and
insert size metrics were generated by GATK’s CollectOxoGMetrics
and CollectMultipleMetrics tools, and sequence usability (duplicate,
softclipping, mapqO, unaligned) metrics were generated viasamtools
and custom scripts.
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FFPE filtering

FFPE_filter_LMR_VAF_0.04. Local mismatch rate-corrected variant
allele frequency below 4%. The local mismatch rate of a variant is the
number of mismatched bases in all reads aligned within a 10-bp win-
dow on each side of the position divided by the total number of bases
aligned in this region. This value (LMR) is subtracted from the variant
allele frequency, andiftheresultis below 4%, the variant will be filtered.

FFPE_filter_RSD. Read start diversity filter. The number of unique
start positions of all variants supporting reads are counted (after soft
trimming). For variants with over 15 supporting reads, at least four
unique starting positions are required to pass this filter. For variants
with over five supporting reads, at least two unique starting positions
arerequired.

FFPE_filter_URE. Unique nearest read endfilter. For all variant support-
ingreads, either the start position or the end position, whichever s clos-
est to the variant (after soft trimming), is recorded. For variants with
over 15 supporting reads, at least four unique positions are required
to pass thisfilter. For variants with over five supporting reads, at least
two unique positions are required.

Analysis of genomic alterations between primary and
metastatic tumors

For the analysis of significantly mutated genes between primary and
metastatic tumors, we first filtered the MAF file to only include the
following variant classifications: Frame_Shift_Del, Frame_Shift_Ins,
In_Frame_Del, In_Frame_Ins, Missense_Mutation, Nonsense_Mutation,
Nonstop_Mutation, Splice_Site and Translation_Start_Site. We next
constructed abinary gene by sample matrix (1= any mutation, 0 = no
mutation) only using gene mutations that were presentin10 or more
AURORA samples (n =100). To mitigate the possible impact of FFPE
artifacts coming mainly from primary tumors, mutation calls were
filtered by removing any primary mutation calls that were not present
ina paired metastatic sample (two primary samples without a paired
metastatic sample were removed), with a total of 78 samples (39
pairs). Metastatic samples were aggregated by participant and were
considered mutated if atleast one metastatic sample for the partici-
pantwas mutated. We constructed a contingency table for mutated or
non-mutated samples and tested for statistical significance between
primary tumor and metastasis using Fisher’s exact test.

DNA copy number variations (CNVs) and LOH
Copy number changes and LOH events in WGS samples were detected
using GATK’s GermlineCNVCaller, with the Churchill pipeline’s final
BAM alignments asinput. Reads were counted for CNV detection across
abinned1,000-nucleotide intervals, and allele counting for LOH detec-
tion was confined to single-nucleotide polymorphisms withingnomAD
that had a frequency of 0.01% or greater. Germline CNV events were
identified by comparing individual normal samples to a panel of nor-
malsamples composed of all other germline normal samples. Somatic
CNVevents were identified by comparing each somatic sample for an
individual to thatindividual’s paired germline normal sample. Follow-
ing this, CNV events were annotated with the symbols of genes they
affected, producing gene-specific denoised log, copy ratios.
Additionally, copy numbers derived from the raw denoised copy
ratio signal were produced and plotted across the HLA locus chro-
mosome 6:28510120-33480577. A smoothing factor was applied by
reducing the number of regions into bins by 50-fold and calculating
the meanlog, value for each bin. HLA-A/HLA-B/HLA-C/HLA-DRBS genes
were specifically noted for overlap with prominent deletions in the
region (log, ratio < -0.75, focal mean difference between tumor and
normal of >0.25 and -40 kb upstream of the HLA-A gene). Following the
same threshold applied to the HLA-A gene, the B2M gene was adjusted
by tumor purity (>-0.4).

DNA copy number analysis (CNA) between primary tumors
and metastases

For the analysis of DNA copy number between primary tumors and
metastases, we first collapsed the log, copy ratio mean denoised val-
ues (gene-level CNA values) to 533 segment-level CNA scores. The
complete list of genesin each segment was previously described” (we
excluded ‘Y chromosome’and ‘chr2:53680282-53845245.BeroukhimsSS5.
amp’ segments that scored 0 in all samples). Each segment score was
calculated as the mean of gene-level CNA values across genes within
the segment. CNA segment values were transformed into binary data
(CN gain or loss cutoff of 0.2 and —0.2, respectively). Only samples in
the WGS_DNA Seq FreezeSet 135 set and the Pairs. WGS_DNAseq sets of
Supplementary Table 2 were used, and from the two primary samples
for participant AER5, the A738_HO04 sample was removed. We next
compared CNA segment gains and losses in AURORA primary versus
metastatic samples using Fisher’s exact test to determine if there were
non-random associations between gain or loss on 46 primaries and
87 metastases. We constructed a contingency table for gains and a
contingency table for losses for each segment of interest and tested
for statistical significance.

Clonality and tumor purity

Clonal variation within and among tumor samples was assessed using
superFreq. Output BAM alignments from the Churchill pipeline were
filtered down to only unique reads overlapping a probe-targeted
region. The filtered alignments were then regenotyped using Var-
scan2 to identify the presence or absence of each of a case’s variants
in each of its samples. With these inputs, superFreq assesses likely
copy number and LOH events in combination with SNVs and indels
to generate the most likely substructure of clones for each sample.
The percent composition of tumor cells of all clones was totaled to
determine the cellularity of each sample. For each clone, variants
in ClinVar- and COSMIC-listed genes are highlighted as well as likely
damaging mutations (frameshift and nonsense); these variants were
then queried in the VarSome database, with ‘pathogenic’ and ‘likely
pathogenic’ variants being considered as potentially consequential
clonal variation..

Neoantigen prediction

Somatic variants from samples where both RNAseq and
DNA-sequencing datawere available were evaluated as potential neo-
antigens using pVACseq, part of the pVACtools package. SNVs and
indels, after Mutect2 filtering and FFPE filtering, when appropriate,
were combined with gene expression data to identify and prioritize
tumor-specific neoepitopes that are both expressed and have a pre-
dicted increased binding affinity compared to the wild-type epitope
inthe context of the participant’s HLA class I alleles. Parameters used
within the pVACseq pipeline and subsequent filtering are included in
Supplementary Table 6.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Accession numbers and datasharing are summarized in Supplementary
Table 7. Briefly, all newly generated data are in dbGAP (AURORA study:
phs002622.v1.p1; RAP study: phs002429.v1.p1) and GEO (AURORA
study: RNAseqdata (GSE209998), DNA methylation data (GSE212375);
RAPstudy: RNAseqdata (GSE193103)). All of the resources used during
the studies outlined in this manuscript are summarized in Supplemen-
tary Tables 1-5 and in the Methods. Supplementary Table 2 includes
the clinical and molecular characteristics available for each cohort
used in this manuscript. Previously published GEICAM trial data that
were reanalyzed here are available in dbGAP (phs001866) and GEO
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(GSE147322). The humanBC datawere derived from the TCGA Research
Network (http://cancergenome.nih.gov/). Previously published human
TCGA-BRCA DNA methylation and TCGA-BRCA RNAseq data are avail-
ableat NCIGDC (https://portal.gdc.cancer.gov/legacy-archive) and at
dbGaP (phs000178) (https://gdac.broadinstitute.org/runs/stddata_lat-
est/data/BRCA/20160128/), respectively. All other data supporting
the findings of this study are available from the corresponding author
uponreasonable request.

Code availability

Rpackages and scripts used to analyze the data, along withinput data,
are explained in the Methods. All packages are public and are freely
available online. No new code or mathematical algorithms were gener-
ated from this manuscript.
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Extended DataFig. 1| Survival outcomes according to clinical subtypes

of AURORA cohort. a. Kaplan-Meier, log-rank test and Cox proportional
hazards regression model methods were used to study the overall survival

from breast cancer diagnosis (‘First Primary Receptor at diagnosis’ column of
Supplementary Table 2) in HER2 positive (HER2+, n = 10 patients), Hormone
receptor positive and HER2 negative (HR + /HER2-, n = 17 patients) and TNBC
(triple-negative breast cancers, n =19 patients). b. Kaplan-Meier, the log-rank
test and Cox proportional hazards regression model to study the overall survival
from metastatic breast cancer diagnosis (‘Metastasis original receptors’ column
of Supplementary Table 2) in HER2 + (n = 9 patients), HR + /HER2- (n =24
patients) and TNBC (n =21 patients). In absence of HR/HER2 status in the
metastatic relapse we used the data from the most recent biopsy. c-d. Frequency
bar chart displaying the frequency of clinical subtype (c) and molecular subtype
(d) in AURORA (n =123 tumors) compared with TCGA (n =1027 tumors). In the

AURORA cohort, we assigned ER and HER2 clinical status to those samples that
had missing clinical values using the mRNA surrogates. e-g. Boxplot displaying
therisk of recurrence based on subtype (ROR-S) (e) and proliferation (ROR-P)
(f) and Proliferation score from PAMS50 predictor (g) comparing TCGA primary
tumors (n =1027 tumors) vs AURORA primary tumors (n = 44 tumors) vs
AURORA metastatic tumors (n = 70 tumors). Statistically significant values are
highlighted in red. Comparison between more than 2 groups was performed
by ANOVA with post hoc Tukey’s test, one-sided (panels e, f, and g). Normal-like
samples were removed from this analysis. Box-and-whisker plots from panels
e, f,and g, display the median value on each bar, showing the lower and upper
quartile range of the data (Q1 to Q3) and data outliers. The whiskers represent
thelines from the minimum value to Q1 and Q3 to the maximum value. EBC,
early breast cancer; MBC, metastatic breast cancer; confidence interval (CI).
Statistically significant values are highlighted in red.
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Extended Data Fig. 2| Clinical subtype and molecular subtype distribution
according to site of metastasis. a. Distribution of the 55 diagnosed primary
tumors (n =39 primaries) by clinical receptor status (TNBC, ER+/HER2-, HER2+,
and unknown, left side) linked to their anatomic sites of metastasis (n = 63
metastases). Clinical receptor status at the time of first primary diagnosis
(‘First Primary Receptors’ column of Supplementary Table 2). b. Distribution
of 39 diagnosed primary tumors by gene expression-based intrinsic molecular

subtype when available (left) linked to their anatomic sites of metastasis (right).

¢. TNBC and non-TNBC subtype proportions of primary (left, n =39 primaries)
and paired metastatic (right, n = 64 metastases) tumors by TNBCtype®. d.
Comparison of subtype classifications between TNBC subtype and PAMS50 of
primary (left, 39 primaries) and paired metastatic (right, 63 metastases) tumors.
LumA, Luminal A; LumB, Luminal B; CL, Claudin-low; NL, normal-like; BL1, basal-
like 1; BL2, basal-like 2; IM,immunomodulatory; LAR, luminal androgen receptor;
M, mesenchymal-like; MSL, mesenchymal stem-like.
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genomic approach. a-d. Correlation heatmap representing the correlation
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Extended Data Fig. 5| Supervised analysis of gene expression signatures
according to site of metastasis in AURORA or combined AURORA-RAP-
GEICAM cohorts. a. Heatmap depicting the differentially expressed (DE)
signatures between primary (n = 26) and metastasis (n = 69) in the AURORA
cohortusingall samples. b. Heatmap depicting the DE signatures between paired
primary (n =5) and brain metastasis (n = 5) in the AURORA cohort. c. Heatmap
depicting the DE signatures between paired primary (n = 6) and liver metastasis
(n=6)inthe AURORA cohort. d. Heatmap depicting the DE signatures between
basal-like paired primary (n = 5) and brain metastasis (n = 8) in the AURORA-
RAP-GEICAM cohort. d. Heatmap depicting the DE signatures between luminals
(LumA, LumB, and HER2E) paired primary (n = 21) and liver metastasis (n = 24)
inthe AURORA-RAP-GEICAM cohort. Significance of the differences between

primary and metastasis was calculated using linear mixed models (q < 0.05in
AURORA and q < 0.02in AURORA-RAP-GEICAM). Significant signatures are row
ordered from high to low according to  coefficients (or regression coefficients)
and divided according to upregulated (positive) or downregulated (negative)
inmetastasis. Patients are column ordered according to PAM50 molecular
subtype and divided according to primary and metastasis. Signatures scores
were calculated in the Level 4 RNAseq data (see Methods). Normal-like tumors
and post-treatment primaries were removed from the analysis. For more
information about the background/origin of the signatures listed in this figure,
see Supplementary Table 3, sheet 2. LumA, Luminal A; LumB, Luminal B; LN,
lymphnode.
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Extended Data Fig. 6 | HLA-A gene and protein expression levels in metastatic
samples and impact onimmune-related features in metastatic tumors. a.
Bar plot depicting the frequency of HLA-A Unmethylated, and HLA-A methylated
samples divided by primary and metastatic tumors. Fisher’s exact test was used
to compare the proportion of categories (the number of samples is shown in

the figure). b. Boxplots of HLA-A, -B, and C mRNA gene expression levels and
according to HLA-A protein expression (n = 37 metastasis). HLA-A protein
expression values were divided into tertiles on the basis of low (lower third;
n=14),intermediate (middle third; n =12), or highintensity (upper third, n =11).
Comparison between more than 2 groups was performed by ANOVA with post
hoc Tukey’s test, one-sided. Statistically significant values are highlighted inred.
Comparisons between 2 paired groups were performed by ¢-test. Comparison
between more than 2 groups was performed by ANOVA with post hoc Tukey’s
test, one-sided. All Box-and-whisker plots display the median value on each

bar, showing the lower and upper quartile range of the data (Q1to Q3) and data
outliers. The whiskers represent the lines from the minimum value to Q1 and Q3
to the maximum value. Normal-like samples were removed from this analysis.
Statistically significant values are highlighted in red. c. Linear relationship
between number of neoantigens and HLA-A, -B and C gene expression Level 4

RNAseq data (see Methods) of basal-like only primary and metastatic tumors.
The correlation was measured using the Pearson correlation coefficient. d.
Violin plots showing changes in gene expression for HLA-A, -B, and -Cbetween
primary and metastatic samples (Difference: Metastasis - Primary gene
expression values) in basals (right panel, n = 34 tumors) and luminals/HER2E
metastatic tumors (right panel, n =34 tumors). e. Patient-specific changes in
gene expression for HLA-A, -B, and -C between primary and metastatic samples
(Difference: Metastasis - Primary gene expression values) in basal-likes, (left
panel, n =24 tumors) and luminals/HER2E metastatic tumors (right panel,

n =34 tumors) of AURORA cohort. Normal-like paired and unpaired tumors
were removed from this analysis (Paired Normal and unpaired group from the
‘Pairs-PAM50-Prim’ column of Supplementary Table 2). f. Correlation matrix and
unsupervised hierarchical clustering of CIBERSORTx-based immune-cell scores
in basal-like samples (n =42,17 primary and 25 Metastasis). Positive clusters
(PCland PC2) and negative clusters (NC1and NC2) reflect the highest or lowest
correlated immune-related signature scores per CIBERSORTX. Correlation was
measured using the Pearson correlation coefficient and p values <0.05 are shown
as (*). ns, non-significant. Prim, primary; Met, metastasis; LumA, Luminal A;
LumB, Luminal B.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Difference in HLA-A and immune-signature expression
between primary and metastatic tumors. a. Waterfall plot of AURORA cases
showing the difference between primary (n = 36 tumors) and metastasis (n = 60
tumors) (Difference: Metastasis - Primary gene expression value) ordered from
the highest (left) to the lowest (right) signature score for HLA-A mRNA expression
(upper panel). The bottom panel shows the difference between primary and
metastases for GP2-Immune-Metagene values. Yellow stars highlight HLA-A
Hypermethylated cases and green stars highlight the samples with DNA HLA-A

focal deletions. b. Waterfall plot of RAP cases showing the difference between
primary (n =12 tumors) and metastasis (n = 40 tumors) (Difference: Metastasis

- Primary gene expression value) ordered from the highest (left) to the lowest
(right) signature score for HLA-A mRNA expression (upper panel). The bottom
panel shows the difference of primary versus metastases for GP2-Immune-
Metagene values. Pairs with a Normal-like primary tumor were removed from the
analysis. LumA, Luminal A; LumB, Luminal B.
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Extended Data Fig. 8 | HLA-A methylated primary tumors and prognostic
value of HLA-A in TCGA data. a. Oncoprint diagram depicting HLA-A and HLA-B
methylated cases using 761 primary tumors of TCGA-BRCA dataset according

to PAM50 molecular subtype. b. Proportion of each molecular subtype found in
HLA-A (68) and HLA-B (8) methylated tumors. c. Hypermethylated CpG sites in
HLA-A (9 CpGsites) using 761 TCGA primary breast tumors and 74 tumor-adjacent
breast tissues (n = 835 samples). d. Boxplots of HLA-A mRNA gene expression
levels according to DNA methylation status (n = 761 tumors). Comparisons
between 2 paired groups were performed by t-test, two-sided. e. Scatter plot
showing the correlation between HLA-A mRNA expression values and DNA
methylation levels (B-values) (n = 761 tumors). f. Boxplots of gene expression
signature B cell/T cell cooperation and IgG scores according to DNA methylation
statusin tumors and tumor-adjacent breast tissues in TCGA-BRCA (n = 761
tumors). Comparison between 2 groups was performed by ANOVA with post hoc

Tukey’s test, one-sided. Statistically significant values are highlighted in red. Each
mark represents the value of a single sample. g. Kaplan-Meier plots using the log-
rank test of overall survival from primary tumors according to HLA-A methylation
status (n =760 tumors). h. Multivariable Cox proportional hazards analyses of
TCGA BRCA patients for overall survival prediction using the covariates of HLA-A
methylation status, PAMS50 subtypes, and tumor stage (10 Stage IV patients were
removed from the analysis) (n = 744). Hazard ratio (HR) = 1: no effect. HR < 1:
reductioninhazard. HR > L:increase in hazard. Statistically significant values are
highlighted in red. All Box-and-whisker plots display the median value on each
bar, showing the lower and upper quartile range of the data (Q1 to Q3) and data
outliers. The whiskers represent the lines from the minimum value to Q1 and

Q3 to the maximum value. Unme, unmethlylated; HyperMe, hypermethylated.
LumA, Luminal A; LumB, Luminal B.
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Extended DataFig. 10 | DNA methylation alterations associated with
metastatic tumors. a-i. Analysis of metastasis-associated promoter DNA
hypermethylation of three genes (JAM3, YBX3 and SYNDIGI) encoding
components of tight junctions or regulation of adhesion molecules. For each
gene, acomparison of promoter CpG DNA methylation between primary

and metastatic tumors is shown on the left (a, d, g), asecond comparison of
promoter CpG DNA methylation between ® unmethylated primaries (B-value

of <0.3) and their paired metastasis and @ methylated primaries (3-value of
>0.3) with their paired metastasis (b, c, e) is shown in the middle, and a third
comparison of gene expression between primary and metastatic tumors based
onall samples (All), Luminal A-B and HER2E only (luminals/HER2E), and basal-
like subtype only (basals) is shown on the right (c, f, i). LumA, Luminal A; LumB,
Luminal B; P, primary; M, metastasis; P-Unme, Unmethylated primary; P-Me,
Methylated primary.
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55 women, 10 (18%) were of African American descent and 4 (7%) were of Hispanic ethnicity. Median age at initial breast
cancer diagnosis was 49 years (range: 25-76). Forty-nine patients (89%) initially presented with stage I-Ill breast cancer, of
which 19 (38%) received neoadjuvant systemic therapy, and six patients (10%) presented with de novo metastatic disease.
Ductal histology was most prevalent among the cohort (n=44, 80%); 7 patients (12%) were diagnosed with lobular or mixed
lobular/ductal carcinoma. The distribution of breast cancer receptor subtype per clinical testing at initial diagnosis was triple-
negative, n=19 (34%); hormone receptor (HR)-positive/HER2-negative, n=17 (30%); HR-positive/HER2-positive, n=6 (10%);
HR-negative/HER2-positive, n=4 (7%); and unknown, n=9 (16%). In the metastatic setting, patients received a median of 3
lines of systemic therapy (range: 0-20). Metastatic samples from a total of 20 patients were collected at autopsy. Additional
clinicopathologic features are displayed in Table 1 and Supplementary Table 1 of the manuscript.

Recruitment Each participating institution provided samples from existing banked tissues with appropriate permissions for secondary
research use. All de-identified patient clinical data was collected in a central RedCap database (https://projectredcap.org/
software/).
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Randomization  Randomization was not applicable to the study

Blinding Blinding was not applicable to the study
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Antibodies

Antibodies used PanCK AE1/AE3 Biocare, at 1:1600; HLA-A C6 Santa Cruz at 1:1300.

Validation AE1/AE3 s a mouse monoclonal that recognizes the acidic and basic (Type | and Il) subfamilies of cytokeratins. The cocktail of these
two antibodies can be used to detect most human epithelia. The acidic cytokeratins have molecular weights of 56.5, 55, 51, 50, 50,
48, 46, 45, and 40 kDa. The basic cytokeratins have molecular weights of 65-67, 64, 59, 58, 56 and 52 kDa. HLA-A (C-6) is a mouse
monoclonal antibody specific for an epitope mapping between amino acids 61-93 within an internal region of HLA-A of human origin.
Antibody testing was performed on control tissues with chromogenic and fluorescence immunohistochemistry (IHC) to ensure
expression patterns corresponding to their biologically expected distribution. Tonsil and placenta were used as a positive and
negative control tissues.
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