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Abstract
Lewy body diseases, such as Parkinson’s disease and dementia with Lewy bodies, vary in their clinical phenotype but exhibit 
the same defining pathological feature, α-synuclein aggregation. Microbiome–gut–brain dysfunction may play a role in 
the initiation or progression of disease processes, though there are multiple potential mechanisms. We discuss the need to 
evaluate gastrointestinal mechanisms of pathogenesis across Lewy body diseases, as disease mechanisms likely span across 
diagnostic categories and a ‘body first’ clinical syndrome may better account for the heterogeneity of clinical presentations 
across the disorders. We discuss two primary hypotheses that suggest that either α-synuclein aggregation occurs in the gut 
and spreads in a prion-like fashion to the brain or systemic inflammatory processes driven by gastrointestinal dysfunction 
contribute to the pathophysiology of Lewy body diseases. Both of these hypotheses posit that dysbiosis and intestinal perme-
ability are key mechanisms and potential treatment targets. Ultimately, this work can identify early interventions targeting 
initial disease pathogenic processes before the development of overt motor and cognitive symptoms.

Keywords  Idiopathic REM sleep behavior disorder · Parkinson’s disease · Dementia with Lewy bodies · Gut–brain axis · 
Dysbiosis · Intestinal permeability

Introduction

The spectrum of Lewy body diseases ranges from incidental 
Lewy body disease, Parkinson’s disease (PD) with varying 
degrees of cognitive impairment, to dementia with Lewy 
bodies (DLB) at the most severe end [1]. PD is characterized 
by motor symptoms (bradykinesia, rigidity, and tremor [2]), 
with recent, increased appreciation that non-motor symp-
toms are common and significantly impact quality of life [3]. 
Estimated prevalence of PD ranges between 100 and 200 per 
100,000 people and an annual incidence of 15 per 100,000 

[4]. DLB is characterized by fluctuating cognition, recurrent 
visual hallucinations, REM sleep behavior disorder, and par-
kinsonism (including bradykinesia, rigidity, and tremor) [5]. 
Point and period prevalence estimates of DLB range from 
0.02 to 63.5 per 1000 persons [6], with considerable vari-
ability likely related to underdiagnosis of the disorder [7, 8].

As PD and DLB are diagnosed after there has been sig-
nificant degeneration (e.g. PD results in 50–70% loss of neu-
rons in the substantia nigra before clinical diagnosis occurs 
[9]), it is crucial to develop diagnostic tools and interven-
tions that can be used early in the disease course. Idiopathic 
REM sleep behavior disorder (iRBD) is one of the earliest 
and most specific prodromal indicators of Lewy body dis-
eases [10–12] with one in three idiopathic iRBD patients 
converting to a Lewy body disease within 5 years, 82.4% at 
10.5 years, and 96.6% at 14 years. Of the converters, 44% 
will convert to PD and 25% to dementia with Lewy bodies 
[13]. Therefore, iRBD cohorts provide a unique opportunity 
to identify early disease mechanisms and develop neuropro-
tective interventions for Lewy body diseases.

The phenotypic presentation of Lewy body diseases 
largely depends on the location of the pathological initiation 
and progression [14–16]. While the clinical phenotypes of 

 *	 Sephira Ryman 
	 sryman@mrn.org

1	 The Mind Research Network, 1101 Yale Blvd. NE, 
Albuquerque, NM 87106, USA

2	 Nene and Jamie Koch Comprehensive Movement Disorder 
Center, Department of Neurology, The University of New 
Mexico, Albuquerque, NM 87131, USA

3	 Department of Medicine, The University of New Mexico, 
Albuquerque, NM 87131, USA

4	 Section of Gastroenterology, New Mexico VA Health Care 
System, Albuquerque, NM 87108, USA

http://orcid.org/0000-0002-1758-3391
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-022-11461-9&domain=pdf


747Journal of Neurology (2023) 270:746–758	

1 3

Lewy body diseases differ, the aggregation of alpha-synu-
clein (α-syn) is a defining feature [17, 18]. Through care-
ful assessment of the propagation pattern of PD pathology, 
Braak and colleagues proposed that PD may be caused by 
an intestinal pathogen [19]. Several reviews have discussed 
the evidence to suggest that the gut plays an important role 
in the initiation or progression of pathological processes 
[20–24], though many questions remain regarding the mech-
anisms by which gut dysfunction leads to the development 
of Lewy body diseases. In the current review, we discuss 
two main hypotheses by which gastrointestinal dysfunction 
contributes to pathogenesis or disease progression. The 
first builds on Braak’s initial theory and posits that Lewy 
body diseases are caused by α-syn aggregation in the gut 
which travels in a prion-like fashion to the central nervous 
system (CNS). The second, more recent hypothesis empha-
sizes chronic intestinal proinflammatory processes as key 
mechanisms [24]. These theories are not mutually exclusive 
as there are likely interactions between immune responses 
and α-syn at all stages of the disease process. How early 
in the disease course a proinflammatory response versus 
α-syn aggregation occurs is an area of controversy and active 
investigation. Notably, both of these hypotheses emphasize 
dysbiosis (an imbalance in the microbiota) and intestinal 
permeability (translocation of lumen products across the gut 
wall, also referred to as “leaky gut”) as key mechanisms in 
the initiation and progression of pathophysiology in Lewy 
body diseases.

Gastrointestinal dysfunction

Historically, PD research had focused on the motor symp-
toms of the disorder, though it is increasingly appreciated 
that gastrointestinal dysfunction, most commonly constipa-
tion, is one of the earliest prodromal symptoms of PD [25]. 
PD patients are three times more likely to experience consti-
pation [26]. Constipation can precede motor deficits of PD 
by decades [27, 28] and is associated with worse outcomes, 
including earlier onset of dementia [29, 30]. In addition, 
patients may also experience sialorrhea and dysphagia, gas-
troparesis, and small intestinal bacterial overgrowth (SIBO), 
demonstrating pan-gut involvement [31, 32]. LBD patients 
experience similar, if not more severe gastrointestinal symp-
toms, with evidence that gastric emptying is slower in DLB 
patients relative to PD [33], though there is currently limited 
examination in DLB. Of note, objective colonic dysfunction 
is far more prevalent than subjective constipation in PD, 
highlighting the need to incorporate objective assessments 
to detect gastrointestinal dysfunction in Lewy body diseases 
[34].

SIBO was historically viewed as a cause of malabsorption 
and required invasive aspiration to obtain cultures of jejunal 
aspirate to diagnose [35]. Over time, it was recognized that 
intestinal bacteria were the sole source of certain gases, such 
as hydrogen and methane, that could be detected in exhaled 
breath. This was leveraged to develop glucose and lactulose 
breath tests for SIBO [36]. Using this approach, ~ ½ of PD 
patients test positive for SIBO [37, 38] and the occurrence 
of SIBO was associated with more severe motor fluctua-
tions [38, 39]. SIBO eradication led to a significant improve-
ment in patients OFF time and delayed ON episodes each 
day, though there is a high rate of SIBO relapse at 6 months 
(43%) [38]. SIBO was not directly related to small bowel 
transit delays [40] nor associated with worse gastrointestinal 
symptoms, but independently predicted worse motor func-
tion [41]. Gastrointestinal disorders that exhibit increased 
rates of SIBO, such as ulcerative colitis, Crohn’s disease, and 
irritable bowel syndrome are associated with an increased 
risk of PD [42, 43], suggesting SIBO may increase risk of 
PD or may play a role in the pathogenesis of Lewy body 
diseases. Evaluation of SIBO has been primarily conducted 
in more advanced patients. Given potential improvement in 
motor functioning, it is important to evaluate SIBO within 
prodromal, early stage PD, and DLB cohorts to understand 
the impact across phenotypes. For a detailed review of gas-
trointestinal symptoms in PD, refer to [26, 27, 32].

Pathological processes

Lewy bodies and Lewy neurites are the defining neuro-
pathological characteristics of PD and DLB [44–46]. Point 
mutations in the gene encoding α-syn (SNCA) were found 
to be pathogenic for familial forms of PD [47], which led to 
the subsequent discovery that α-syn is the principal compo-
nent of Lewy bodies [17]. α-syn in its normal form is found 
within the presynaptic regions of neurons, either unfolded or 
contained in alpha-helical membrane-bound forms. Aggre-
gation refers to the process by which α-syn becomes par-
tially folded and aggregates to form oligomers, protofibrils, 
fibrils, and mature Lewy bodies [17, 48, 49]. It is unclear 
whether these variants of protein structure reflect distinct 
pathologies or a continuum of conformations reflecting the 
different stages of Lewy body diseases. Further, it is likely 
that in addition to a “triggering” event that initiates α-syn 
aggregation, it is likely that additional mechanisms are nec-
essary to facilitate (allowing the disease to spread to the 
CNS) and aggravate the disease process (promote neurode-
generation beyond the basal ganglia) [50].

As noted, Braak and colleagues proposed that PD may 
be caused by an intestinal pathogen which travels through 
enteric neurons before entering the CNS via the vagus nerve 
[19]. Increasing evidence supports this hypothesis, including 
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evidence of α-syn pathology in the intestinal wall exam-
ined both antemortem [51, 52] and postmortem [53, 54]. 
The α-syn deposits have been observed up to 20 years prior 
to a PD diagnosis [55]. Examination of colonic biopsies in 
iRBD cohorts has also demonstrated the presence of α-syn 
in these prodromal cohorts [56]. Recent work has demon-
strated that gut microbes are able to promote α-syn-mediated 
motor deficits, brain pathology, and neuroinflammation in a 
mouse model of PD [57]. This evidence has led to an interest 
in identifying how intestinal dysbiosis and intestinal perme-
ability, may play a mechanistic role in the initiation of α-syn 
aggregation at the level of the gut.

However, neuropathological studies using large cohorts 
have failed to find evidence of cases in which α-syn pathol-
ogy is present in the peripheral nervous system in the 
absence of CNS pathology [58, 59]. Alternatively, intestinal 
inflammation may be the driver of disease pathogenesis in 
the periphery [24, 60]. It is well established that neuroin-
flammation is present in PD, though it was initially consid-
ered a response to α-syn aggregation rather than a primary 
mechanism of disease initiation [61]. More recently, it is 
hypothesized that intestinal dysbiosis and inflammation are 
the earliest disease processes that initiate both innate and 
adaptive immune system activation [60]. Specifically, a toxic 
trigger or changes in microbiota may contribute to dysbiosis 
and facilitate a proinflammatory environment. These pro-
cesses increase intestinal permeability, resulting in increased 
levels of circulating proinflammatory cytokines, innate and 
adaptive immune cell activation, increased blood–brain bar-
rier permeability, peripheral cell infiltration of the central 
nervous system, and neuroinflammation. While this process 
upregulates native α-syn expression which could potentially 
trigger its aggregation in the peripheral nervous system, the 
mechanistic emphasis is on the inflammatory processes.

Clinical phenotypes

Clinically, the distinction between PD and DLB is made 
based on the temporal onset of motor versus cognitive 
symptoms (e.g., motor symptoms occur first = PD; cognitive 
symptoms occur first = DLB). However, both PD (includ-
ing PDD) and DLB patients can exhibit similar clinical 
symptoms as the disease progresses. For instance, while 
hallucinations and RBD are diagnostic criteria for DLB, 
these same symptoms are present in 40–50% [62, 63] and 
39–50% [64, 65] of PD patients, respectively. Additionally, 
cognitive impairment is common in PD, with up to 83% of 
patients exhibiting dementia after 20 years [66]. It is well 
established that the motor and cognitive symptoms of the 
disorders are closely linked to α-syn aggregation suggesting 
that disease mechanisms are the same across the disorders 
[1, 67], with differences in the clinical presentation related 

to the anatomical location of disease initiation and progres-
sion [16, 68].

Revisions of Braak’s original pathological staging have 
addressed some of the heterogeneity in pathological pro-
gression within the brain that leads to PDD versus DLB 
[69]. Given the evidence for a possible gut origin in some 
patients, a recent revision to Braak’s pathological staging 
has proposed two distinct paths of pathological initiation 
and progression. Either α-syn aggregation originates in the 
CNS (brain first) or the peripheral nervous system (body 
first) [15, 70], with the spread of pathology in a bidirectional 
manner. The neural connectome thus plays a crucial role 
in determining how α-syn propagates through the nervous 
system [16]. This theory is particularly useful for under-
standing the heterogeneity in phenotypes across Lewy body 
diseases. For example, in the body-first subtype, the α-syn 
pathology presumably originates in the enteric or autonomic 
nervous system and spreads to the CNS via the vagus and 
sympathetic connectome. These patients develop iRBD in 
the prodomal phase, have more autonomic and gastrointes-
tinal symptoms, significant hyposmia, and faster motor and 
non-motor symptoms progression. This clinical presentation 
also largely overlaps with many symptoms observed in DLB, 
such as iRBD, autonomic dysfunction, and more severe 
cognitive dysfunction. Given the common neuropathology 
(α-syn aggregation) across these disorders and overlap in 
symptoms, this highlights the need to evaluate gastrointes-
tinal mechanisms of pathogenesis across Lewy body dis-
eases, as disease mechanisms likely span across diagnostic 
categories and may better account for the heterogeneity of 
clinical phenotypes.

Dysbiosis

Microorganisms that live inside and on humans, referred to 
as microbiota, have symbiotic relationships with the human 
host. However, dysbiosis can lead to many disease processes, 
such as SIBO, Crohn’s disease, and inflammatory bowel dis-
ease [71, 72], with more recent evidence supporting the role 
of microbiota in neurodegenerative conditions [73]. Initial 
estimates suggested a ratio of 10:1 between bacteria and 
human cells, with more recent evidence suggesting a 1:1 
ratio with approximately 3.9 × 1013 bacteria in/on the human 
body [74]. The sheer number of microbiota leads to com-
plex dynamics that raises considerable challenges in evalu-
ating the patterns of microbiota variation and the impact of 
dysbiosis.

The most common methodological approach includes 
the use of 16S rRNA sequencing of either fecal or intesti-
nal samples. The 16S rRNA gene is conserved in all bacte-
ria allowing for taxonomic identification. Despite over 25 
studies using this approach in fecal samples in PD, there is 
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considerable variability among findings and over 100 differ-
ently abundant taxa between PD patients and controls [75, 
76]. A meta-analysis and pooled re-analysis of ten avail-
able studies that used 16S rRNA-gene amplicon sequenc-
ing indicated that the gut microbiome significantly differs 
between PD patients and controls, though the interstudy 
variability was the main factor driving bacterial community 
structures and only 1% of the total variance was accounted 
for by group status [76]. When inconsistencies across studies 
(country of origin, sampling protocols, sample storage, DNA 
extractions, and sequencing strategies) were accounted for, 
PD patients exhibited a reduction of the genera Roseburia, 
Fusicategnibacter, Blautia, Anaerostipes (Lachnospiraceae 
family), and Faecalibacterium (Ruminococcaceae family) in 
addition to enrichment of the Lactobacillus, Akkermansia, 
and Bifidobacterium genera. No significant differences in 
enterotypes were observed. Similar reports were observed 
in a recent review [75]. Increased Akkermansia (14 out of 30 
studies), followed by Lactobacillus (7 out of 30 studies), and 
Bifidobacterium (10 out of 30 studies) whereas decreased 
abundance of Roseburia (8 out of 30), Faecalibacterium (8 
out of 30 studies), and Blautia (7 out of ten studies) were 
most consistently observed.

There are numerous reasons for variability across stud-
ies, including collection and assaying methods, with poor 
control of confounding factors, such as antibiotic use in early 
life or previous gastrointestinal infections [77]. There is an 
enormous amount of individual and geographic variability 
that raises challenges when attempting to quantify group dif-
ferences in the microbiome [78, 79]. Finally, the majority of 
prior evaluations of the microbiome quantify microbial taxa 
and metabolic pathways as fractions of the sample sequence 
generated by each analysis, rather than disease-associated 
imbalances that may occur [77, 80].

Increases in rare species of microbiota

While the prior studies often detect changes in the more 
prevalent microbiota species, it can be challenging to detect 
rare species that, when they increase in number, can exert 
adverse biological effects. As part of the pooled re-analysis 
by Romano et al. [76] discussed above, microbial alpha-
diversity and abundances of rare taxa were significantly 
increased in PD relative to control samples. This suggests 
a reduction in dominant species and an increase in rare/
low abundant ones. When commensal bacteria increase in 
number to exert adverse biologic effects, they are known 
as pathobionts. For example, sulfate-reducing bacteria are 
rare members of the gut microbiome under normal condi-
tions (a fraction of a percent) and help to support micro-
bial fermentation by converting its metabolite, hydrogen, to 
hydrogen sulfide (H2S). However, when dysbiosis occurs, 

sulfate-reducing bacteria can increase in number (bloom 
in sulfate-reducing bacteria), becoming pathogenic as an 
increase can impair intestinal barrier and increase levels of 
potentially toxic H2S. The Desulfovibrionaceae family, the 
most prominent family of sulfate-reducing bacteria [81], 
is elevated in PD patients [82, 83] and the concentration 
of Desulfovibrio species correlates with the severity of PD 
[83]. As a consequence, PD patients may exhibit excess H2S. 
H2S can be beneficial as it acts as a gaseous neurotransmitter 
produced in small quantities by the host regulating a number 
of body functions including gastrointestinal, neuronal, cardi-
ovascular, endocrine, respiratory, renal, and hepatic systems 
[84]. However, elevated levels of H2S produced by a bloom 
in sulfate-reducing bacteria can become harmful to the host 
and is associated with gastrointestinal disorders such as 
ulcerative colitis, Crohn’s disease, and irritable bowel syn-
drome [84–86]. As noted, these disorders are linked with an 
increased risk of PD [42, 43].

Consequences of dysbiosis

Reduction in short‑chain fatty acids

Roseburia, Fusicategnibacter, Blautia, and Anaerostipes 
are butyrate producers, a short-chain fatty acid (SCFA). 
SCFAs are produced by the fermentation of dietary fiber 
by microbiota and are exclusively produced in the intestine. 
They exhibit anti-oxidant and anti-inflammatory processes 
and regulate the expression of tight junction proteins, which 
can impact intestinal barrier integrity [87]. Absolute con-
centrations of SCFAs are significantly reduced in human 
PD fecal samples, including butyrate, acetate, and propi-
onate [88]. A decrease in fecal levels of butyrate has been 
associated with intestinal inflammation in PD patients [89]. 
Examination of plasma SCFAs suggested opposite effects, 
with increased SCFAs in PD relative to a matched cohort 
[90]. Taken together, the observed reductions in Roseburia, 
Fusicategnibacter, Blautia, and Anaerostipes may contribute 
to proinflammatory shifts in microbiota composition in PD.

Increase in self‑peptides

Lactobacillus, Akkermansia, and Bifidobacterium genera 
are typically considered to be beneficial bacteria, suggest-
ing either a role in PD or simply that these bacteria are 
well adapted to thrive in the context of dysbiosis. How-
ever, an enrichment of Akkermansia has been observed in 
multiple sclerosis patients and is associated with a proin-
flammatory response [91–93]. Recent evidence suggests 
that peptides produced by Akkermansia may interact with 
autoreactive T cells in multiple sclerosis [94]. Specifically, 
the human leukocyte antigen (HLA)-DR15 haplotype has 
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been associated with the pathogenesis of multiple sclero-
sis [95] via the abundant production of HLA-DR-derived 
self-peptides. Akkermansia may mimic these peptides ulti-
mately sensitizing activated CD4 T cells in the periphery 
which leads to pathogenic autoreactive T cells in the brain 
[94]. Given the increases in Akkermansia, it is possible 
that similar mechanisms may occur in Lewy body diseases.

Increase in lipopolysaccharide

The observed increase in the density of Gram-negative 
bacterial strains (including Akkermansia and Desulfo-
vibrio) in PD fecal samples [96, 97] corresponds to an 
increase in endotoxin lipopolysaccharide (LPS) content, 
as LPS is a cell wall component of Gram-negative bac-
teria [98]. LPS is a known endotoxin that can lead to 
increased intestinal permeability [99–101]. Plasma and 
serum lipopolysaccharide-binding protein is reduced 
in PD [102–104]. Lipopolysaccharide-binding protein 
increases when LPS is elevated acutely [105, 106], but 
decreased when there has been chronic exposure, sug-
gesting PD patients experience prolonged elevated LPS. 
LPS in this context may directly contribute to the initia-
tion of α-synuclein at the level of the gut [107] as it has 
demonstrated the ability to promote α-synuclein aggrega-
tion via the formation of intermediate nucleating species 
[108–110]. Alternately, LPS may lead to systemic inflam-
matory processes in the context of increased intestinal per-
meability that contribute to disease pathogenesis, as it is 
a potent stimulator of microglial activation and has been 
associated with degeneration of the neurons in the SNc and 
motor deficits [111]. Specifically, LPS activates toll-like 
receptors initiating an innate immune response stimulating 
the production of inflammatory cytokines (such as IL-1, 
TNF-α, and IL-6) and reactive oxygen species [112, 113].

Increase in H2S

Several pathological processes may occur when Desulfo-
vibrio colonizes the intestine, including increased genera-
tion of H2S in amounts that exceed detoxification capacity, 
increased inflammatory responses, and increased intestinal 
permeability (leaky gut) [114, 115]. Desulfovibrio also has 
the ability to produce magnetite (Fe3O4) [116], which may 
accelerate α-syn aggregation [117]. A recent model has 
proposed that the increase in H2S concentrations causes 
leaky membrane resulting in the release of cytochrome c 
from the mitochondria and an increase in cytosolic iron 
levels. This, in combination with magnetite nanoparti-
cles originating from Desulfovibrio species may result in 

α-syn aggregation via production of reactive oxygen spe-
cies [118].

Increase in curli protein

Preclinical studies have suggested that the amyloid protein, 
curli, produced by Escherichia coli (E. coli), may play an 
important role in the initiation of α-syn initiation. Specifi-
cally, in the context of increased proteobacteria (Gram-
negative bacteria), there will be more E. coli, a bacterium 
that secretes curli. Rats exposed to curli-producing bacte-
ria (E. coli) displayed increased neuronal α-syn deposition 
in both the gut and brain as well as enhanced microgliosis 
and astrogliosis. Together, this suggests that curli, a gut 
bacterial amyloid protein, may trigger the initiation of 
α-syn aggregation [119]. This role of curli was supported 
by the finding that curli expression was required for E. coli 
to exacerbate α-syn-induced behavioral deficits. In addi-
tion, oral treatment of mice with a gut-restricted inhibi-
tor of amyloid prevented curli-mediated acceleration of 
PD-like pathology and behavioral abnormalities [120]. A 
separate line of work showed that LPS may contribute to 
the pathophysiology by accelerating the synthesis of curli 
fibrils [121].

Increased intestinal permeability

The intestinal barrier, which consists of physical (mucus, 
tight junction proteins), and chemical (anti-microbial pep-
tides) components, shields the intestine from the contents 
of the lumen. Barrier integrity is reliant on the tight junc-
tions, which include claudins, occludin, zonula occludens, 
adheren junctions, desmosomes, and gap junctions [122]. 
Damage to the barrier can allow α-syn, microbes, environ-
mental toxins, or other luminal contents to gain access to the 
submucosal neuronal tissue or systemic circulation. Several 
studies have demonstrated that PD patients exhibit intesti-
nal barrier dysfunction [89, 123–125], referred to as ‘leaky 
gut’ that is associated with microbial translocation across the 
intestinal mucosa. Factors resulting from dysbiosis, such as 
increases in LPS [99–101] and Desulfovibrio spp. [126] also 
lead to leaky gut. Recent work has demonstrated that Des-
ulfovibrio spp. induced intestinal permeability via the snail 
pathway [126]. Snail is a transcription factor associated with 
increased intestinal permeability [127–129] via negatively 
regulating tight junctions [130, 131].

Leaky gut may contribute to the entry of known modu-
lators of α-syn aggregation, such as curli, H2S, and LPS, 
into the systemic circulation and then beyond, to end organs 
such as the brain. For example, increased intestinal perme-
ability and E. coli staining correlated with α-syn staining, 
supporting the contribution of leaky gut and this bacteria 
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to α-syn aggregation [123]. Additional evidence has also 
demonstrated associations between intestinal permeability 
and pathological α-syn aggregation [132].

Inflammation

As we discussed above, many of the observations thus far 
suggest the observed patterns of altered microbiota com-
position facilitate a proinflammatory shift in PD, including 
a reduction in SCFAs and an increase in immune system 
activating peptides. LPS activates toll-like receptors that 
initiate an innate immune response and the production of 

inflammatory cytokines. The production of H2S functions 
as an endogenous regulator of the immune system [133] and 
thus an increase in H2S secondary to a bloom in sulfate-
reducing bacteria could contribute to a proinflammatory 
response. Aspects of these processes can occur with intact 
intestinal barrier, though an increase in intestinal permeabil-
ity facilitates the release of lumen products contributing to 
a systemic inflammatory response driven by the innate and 
adaptive immune systems [134, 135], which may play a key 
role in sustaining and exacerbating α-syn aggregation [24].

Fig. 1   Proposed mechanisms of early disease processes in Lewy 
body diseases. Left panel: healthy gut. In a healthy gut, the commen-
sal microbes, epithelium and immune cells maintain an equilibrium. 
Right panel: dysbiosis includes decrease in Roseburia, Fusicategni-
bacter, Blautia, and Anaerostipes, leading to a reduction in the pro-
duction of short-chain fatty acids (SCFAs). An increase in Lactoba-
cillus, Akkermansia, and Bifidobacterium is considered beneficial 
bacteria, though Akkermansia may produce peptides that mimic self-
peptides that sensitize T cells. An increase in Gram-negative bacte-
ria strains increase lipopolysaccharide (LPS), an endotoxin that can 
damage the intestinal barrier and initiate inflammatory processes. A 
bloom in sulfate-reducing bacteria (SRB) increases hydrogen sulfide 

(H2S) production, which may facilitate α-syn aggregation, increase 
intestinal permeability, and initiate an inflammatory response. E. coli 
increases levels of curli protein, which has been implicated as a mod-
ulator of α-syn aggregation. α-Syn may aggregate locally via these 
mechanisms within the enteroendocrine cells and travel via the vagus 
nerve to the brainstem. Additionally, the activation of both innate 
and adaptive inflammatory responses increases the circulating pro-
inflammatory cytokines, reactive oxygen species (ROC), monocytes, 
macrophages, and T cells. The release of lumen products and trigger-
ing of inflammatory processes can damage the blood–brain barrier 
(BBB), facilitating infiltration of the pathogenic processes into the 
central nervous system (CNS)
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Pathways to the brain

There are multiple paths for bidirectional gut–brain com-
munications (Fig. 1), involving neural pathways as well as 
immune and endocrine mechanisms [136]. The vagal and 
spinal sensory neurons receive signals within the lamina 
propria and are directly connected to the brainstem and 
spinal cord, respectively. Additional pathways connect the 
enteric nervous system with CNS. For example, signaling 
from intrinsic primary afferent neurons are conveyed by 
intestinofugal nerves to the spinal cord via sympathetic 
ganglia.

Braak’s initial theory posited that α-syn pathology has 
the ability to spread from the gastrointestinal tract to the 
brain via the vagus nerve [19]. Epidemiological evidence 
has demonstrated that a full truncal vagotomy decreases 
the risk of PD [137, 138]. Animal models have also shown 
that recombinant α-syn injected into the intestinal wall 
could be transported via the vagal nerve to reach the dorsal 
motor nucleus in the brainstem [139]. Additionally, the 
injection of preformed α-syn fibrils into the muscle lay-
ers of the pylorus and duodenum, which is densely inner-
vated by the vagus nerve, leads to their propagation to 
the CNS following a path similar to that characterized by 
Braak [140]. The potential cellular mechanisms of α-syn 
propagation have been reviewed elsewhere [141], with 
increasing evidence supporting the notion that it propa-
gates in a prion-like fashion [142], which would provide 
a mechanism by which α-syn aggregation in the gut could 
propagate to the CNS.

There are multiple potential sites within these pathways in 
which α-syn aggregation could initiate, including the enteric 
nervous system [143]. However, recent efforts have pro-
posed that gut enteroendocrine cells may serve as sites for 
the initial emergence of pathogenic α-syn [144]. Enteroen-
docrine cells are chemosensory cells dispersed throughout 
the mucosal lining of the intestine and their apical surface 
is open to the lumen of the intestine. Historically, they were 
viewed as hormone-producing cells, but subsequent obser-
vations have demonstrated that they are electrically excit-
able, possess many neuronal features, and can communicate 
directly with the nervous system [145, 146]. Additionally, 
α-syn is expressed by the enteroendocrine cells, both in the 
small and large intestine, highlighting that they may serve 
as loci for the initial pathological α-syn aggregation [144].

This work largely supports the notion that it is physi-
ologically feasible for α-syn aggregation to begin in the gut 
and travel to the CNS. However, as noted, there has been 
limited evidence using immunohistochemical staining of 
cases in which α-syn pathology was observed in the gut in 
the absence of CNS pathology [58, 59]. Alternatively, dys-
biosis and intestinal permeability may lead to an increase 
in the entry of lumen products (including LPS, H2S, and 

curli proteins) as well as cytokines and immune cells into 
systemic circulation [147, 148]. Rather than initiating α-syn 
aggregation in the periphery, these processes may contribute 
to disease mechanisms by impacting the blood–brain barrier 
(BBB) and facilitating a prolonged immune response. This 
would facilitate peripheral cell infiltration across the BBB 
which contributes to neuroinflammation.

Increased blood–brain barrier permeability

The BBB is a physiological barrier that protects the brain 
from unwanted molecules in the blood. Similar to the 
intestinal barrier, the BBB leakage is driven by damage to 
endothelial tight junctions, which include occludin, claudins, 
zonula occludens, and adheren junctions, though the BBB 
has added complexity given the sensitivity of the brain to 
toxins and pathogens [149]. In addition to changes in tight 
junctions, BBB permeability can also be altered by dam-
age to endothelial cells or astrocytes as well as degrada-
tion of extracellular matrix components. Disruption of the 
BBB likely plays an important role across neurodegenerative 
conditions [150], with emerging evidence that permeabil-
ity of the BBB is increased in PD [151, 152]. Specifically, 
an increased ratio of cerebrospinal fluid albumin to serum 
albumin was observed in PD [153]. Thinning and fragmenta-
tion of tight junction proteins was observed in postmortem 
immunofluorescence staining evaluations of PD cases [154]. 
PET imaging has also indicated reduced P-glycopreotein 1 
activity, suggestive of BBB dysfunction, in the midbrain in 
PD patients [155].

The gut microbiota can regulate the BBB via several 
potential mechanisms [156], including the direct impact 
of intestinal microbial metabolites such as LPS [157, 158], 
immune and endocrine responses [159], or upregulation 
of α-syn [160]. In terms of the consequences of dysbiosis 
discussed above, there are several potential mechanisms 
by which dysbiosis and intestinal permeability may lead to 
increased BBB in PD. Specifically, LPS has been used to 
study the impact of systemic inflammation on BBB func-
tion, indicating potential BBB dysfunction in 60% of stud-
ies [161], with BBB change observed more consistently in 
mice versus rats. These studies, however, typically use septic 
doses of LPS, which limits the generalizability to Lewy body 
diseases. While α-syn in its non-pathologic form can travel 
bi-directionally across the BBB, transportation is enhanced 
in the presence of LPS [162, 163], suggesting potential 
upregulation of α-syn in the brain. Additionally, increased 
desulfovibrio spp. can induce leaky gut via the activation of 
the snail pathway. This same pathway has also been found to 
disrupt BBB by impacting integrity of tight junctions [164].

Systemic inflammation induced by dysbiosis and intes-
tinal permeability may also increase BBB permeability. 
For example, systemic inflammation induces migration 
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of microglia to the cerebral vasculature to maintain BBB 
integrity by expressing tight-junction proteins and con-
necting with the endothelial cells. However, during sus-
tained inflammation, microglia phagocytose the astrocytic 
end-feet of the BBB, impairing the BBB function [165]. 
Given the consistent finding of activated microglia in the 
postmortem brains of PD patients [166, 167], this would 
suggest that systemic inflammation may be driving these 
processes. Herein we focus our review on the potential 
mechanisms driven by gastrointestinal factors we have 
identified, however, for detailed review of immune dys-
function and neuroinflammation, please refer to [24, 60].

REM sleep behavior disorder

As noted above, iRBD is a prodrome of Lewy body dis-
eases, with up to 96% of iRBD patients converting to a 
synucleinopathy, the majority would be diagnosed with 
either PD or dementia with Lewy bodies. In the “body 
first” Lewy body disease phenotype mentioned above, the 
pathology would theoretically progress from the dorsal 
motor nerve of the vagus to first impact the locus coer-
uleus [16], which is inferior to the substantia nigra and 
associated with the development of iRBD [168, 169]. As 
the disease progresses to the substantia nigra or broader 
regions, individuals may begin to exhibit symptoms con-
sistent with either PD or LBD.

Self-reported gastrointestinal symptoms are elevated in 
iRBD cohorts relative to healthy controls, with signifi-
cantly greater endorsement of constipation and straining 
for defecation [170, 171]. Total gastrointestinal transit 
time, colonic volume, and 3D-Transit colonic transit time 
were significantly increased in an iRBD cohort relative to 
controls, though not to the extent observed in medicated 
PD patients [172]. iRBD patients exhibit a microbiome 
similar to that seen in patients with PD [173] and colonic 
biopsies in iRBD cohorts showed the presence of α-syn 
[56], though SCFA were not reduced in iRBD as in PD 
[174].

Additionally, interleukin-10 levels are upregulated in 
iRBD relative to controls [175] in addition to tumor necrosis 
factor-α levels, which were found to predict phenoconver-
sion to an α-synucleinopathy [176]. Increased microglial 
activation was detected by PET in the substantia nigra in 
addition to reduced dopaminergic function in the puta-
men [177]. iRBD patients’ blood monocytic cells showed 
increased expression of CD11b and decreased expression of 
HLA-DR. iRBD patients had increased classical monocytes 
and mature natural killer cells. The levels of expression of 
toll-like receptor 4 on blood monocytes was correlated with 
the nigral immune activation measured with PET [178].

Taken together, early gastrointestinal symptoms, such as 
constipation and dysbiosis, as well as systemic inflamma-
tion, are present in the prodromal stages of LBDs, however, 
there is a great need to understand the earliest changes, 
identify potential mechanisms, and whether these predict 
phenoconversion.

Early detection of pathological changes and targets 
for intervention

There are currently no disease-modifying treatments for Lewy 
body diseases, largely due to the lack of mechanistic under-
standing of disease pathogenesis and the challenges associ-
ated with targeting α-syn aggregates [179]. While there are 
numerous research questions to answer regarding the mecha-
nisms of gastrointestinal dysfunction and the pathogenesis 
of Lewy body disease, there are several potential treatments 
that are readily available spanning antibiotics, probiotics, and 
fecal microbiota transplantation [180]. For example, Rifaxi-
min is a broad-range, gastrointestinal-specific antibiotic used 
to treat SIBO, which improves motor symptoms [38]. Relat-
edly, numerous studies have evaluated the impact of probiotics 
on constipation symptoms in PD [181], with evidence of a 
reduced MDS-UPDRS total score [182]. Based on the emerg-
ing research presented herein, targeting specific bacteria offer 
intriguing possibilities.

Additionally, a major limitation of current PD medications 
is that they lose efficacy over time, with recent evidence that 
gut microbiota has been found to moderate the metabolism of 
Parkinson’s medication [183–185]. While not disease modify-
ing, targeting these bacteria may significantly improve efficacy 
of PD medications [186]. Evolving evidence support PD and 
Lewy body diseases more generally as both central and periph-
eral diseases. Targeting the pathophysiology taking place in 
the gut offers exciting opportunities for early intervention. 
Could targeting dysbiosis or intestinal permeability prior to 
the development of α-syn aggregation be an effective way of 
forestalling Lewy body diseases before the disease is clinically 
diagnosable?
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