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Abstract  Aging is the inevitable biological process 
that results in a progressive structural and functional 
decline associated with alterations in the resting/
task-related brain activity, morphology, plasticity, 
and functionality. In the present study, we analyzed 
the effects of physiological aging on the human 
brain through entropy measures of electroencepha-
lographic (EEG) signals. One hundred sixty-one 
participants were recruited and divided according 
to their age into young (n = 72) and elderly (n = 89) 
groups. Approximate entropy (ApEn) values were 
calculated in each participant for each EEG record-
ing channel and both for the total EEG spectrum and 
for each of the main EEG frequency rhythms: delta 
(2–4  Hz), theta (4–8  Hz), alpha 1 (8–11  Hz), alpha 
2 (11–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), 
and gamma (30–45 Hz), to identify eventual statisti-
cal differences between young and elderly. To dem-
onstrate that the ApEn represents the age-related 
brain changes, the computed ApEn values were used 
as features in an age-related classification of subjects 

(young vs elderly), through linear, quadratic, and 
cubic support vector machine (SVM). Topographic 
maps of the statistical results showed statistically 
significant difference between the ApEn values of 
the two groups found in the total spectrum and in 
delta, theta, beta 2, and gamma. The classifiers (lin-
ear, quadratic, and cubic SVMs) revealed high levels 
of accuracy (respectively 93.20 ± 0.37, 93.16 ± 0.30, 
90.62 ± 0.62) and area under the curve (respectively 
0.95, 0.94, 0.93). ApEn seems to be a powerful, very 
sensitive–specific measure for the study of cognitive 
decline and global cortical alteration/degeneration in 
the elderly EEG activity.

Keywords  Approximate entropy · Frequency 
bands · Aging · Machine learning · Support vector 
machine · Electroencephalography

Introduction

Aging is a “persistent decline in the age-specific fit-
ness components of an organism due to internal phys-
iological deterioration” [1]. This definition has been 
used many times; however, it was only a generaliza-
tion of an intricate process. Over time other numerous 
descriptions have been given, e.g., the word “dete-
rioration” was substituted with the term “adaptation” 
[2].

Studying how the brain changes during aging 
is crucial for several reasons. Firstly, a better 
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understanding of how the neurobiology behind aging 
as well as some brain modifications can influence 
cognitive functions can be obtained [3]. Secondly, 
by studying healthy elderly people, it is possible to 
understand and identify brain age-related diseases, 
such as Alzheimer’s [4]. In fact, to date, age is the 
main risk factor for major debilitating conditions, 
including neurodegenerative diseases [5]. The brain 
seems to be particularly sensitive to the aging process 
since the appearance of neurodegenerative diseases 
is exponential with the aging. Furthermore, almost 
all aged brains show distinctive traits that are directly 
related to the neurodegenerative processes [6].

Over the years, functional neuroimaging approaches 
such as functional magnetic resonance imaging 
(fMRI), positron emission tomography (PET), func-
tional near-infrared spectroscopy (fNIRS), magnetoen-
cephalography (MEG), and electroencephalography 
(EEG) have allowed the non-invasive assessment of 
functional changes in the aging brain [7]. Among these 
techniques, EEG is a non-invasive approach, widely 
and easily used in clinical settings [8], for its low cost 
compared to other systems, for the lack of emission of 
radiation or production of noise due to strong magnetic 
fields, that respectively impact PET and fMRI [9]. In 
addition, the high temporal resolution (milliseconds) 
allows the investigation of the almost instantaneous 
dynamics of neural activity underlying cognitive pro-
cessing and age-related changes [9].

To date, numerous EEG studies have explored 
the effects of aging on brain activity especially dur-
ing resting state condition [7, 9, 10]. Physiological 
changes have been characterized as a progressive 
alteration in the frequency, power, and distribution 
of brain waves rhythmic oscillations; in particular, a 
progressive slowing with an increase in power in the 
delta (2–4 Hz) and theta (4–8 Hz) frequency ranges 
and a decrease in alpha (8–13  Hz) and beta power 
(13–30 Hz) have been observed in healthy aging [9].

Furthermore, additional mathematical models have 
been recently employed to describe brain architecture 
and quantify its complexity. Among these approaches, 
functional connectivity measures have emerged; in 
particular graph theory indexes have been used to 
analyze EEG data for the investigation of network’s 
alterations during aging [11–13].

However, from the idea that the human brain 
has been shown to exhibit some kind of non-linear 
chaotic behavior [14], over time it was considered 

reasonable to apply methods from the theory of 
non-linear dynamics to the EEG signal in order to 
detect its variability. One non-linear approach to 
determine the non-linearities of EEG is a meas-
ure based on the ordinal patterns of recorded times 
series, namely the entropy. Initially, the term 
“entropy” was introduced in thermodynamics in 
the nineteenth century, and only later in 1948, this 
measure was adapted for information theory and 
signal analysis [15]. Entropy was defined as a meas-
ure of information comprised in a given amount of 
signals and represents and describes the irregular-
ity, complexity, or unpredictability characteristics 
of a signal [14]. Moreover, as neural systems have 
been shown to exhibit some kind of non-linear cha-
otic behavior, entropy measures can be successfully 
applied to the EEG signal to detect its variability or 
complexity. The variability and complexity emerge 
from the interplay between individual neurons and 
their neuronal circuits and tend to extend over wide 
spatiotemporal scales in the brain [16]. Starting 
from this consideration, the entropic brain hypoth-
esis by Carhart-Harris takes hold [17], suggesting 
that any given mental state can be indexed by a 
quantitative measure of the magnitude of entropy as 
a measure to describe the spontaneous brain activ-
ity, for example, recorded with EEG [18–23].

So, entropy represents an interesting approach for 
EEG analysis, and it can be used to quantify brain 
functions and alteration across brain areas, for exam-
ple, related to the aging effects; however, to date 
only few studies exist in the literature describing this 
process. The first research, in 2009, by Takahashi 
and colleagues [18] revealed that the application 
of multiscale entropy (MSE) to the EEG signal is a 
possible approach for studying age-related changes 
in brain function; their results showed that after a 
phonic stimulation, an increase in complexity of MSE 
was found only in young subjects, instead absent in 
elderlies. McIntosh and colleagues [19] demonstrated 
the presence of age-dependent changes in MSE with 
age, indicating an increase in brain signal variability 
across the lifespan. More recently, Alù and colleagues 
[22] demonstrated that elderly subjects present higher 
approximate entropy (ApEn) values compared to the 
younger in central, parietal, and occipital areas of the 
brain, confirming that the entropy parameter can be a 
useful tool to characterize aging processes.
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Within this theoretical frame, the present study 
aims to explore the EEG brain complexity differ-
ences between two groups, respectively of young and 
elderly subjects, in terms of ApEn. Among the above-
mentioned entropy measures, the ApEn appears to 
be a non-linear complexity index that can be applied 
with good reproducibility to time series, it is almost 
unaffected by noise, and it detects the changes in 
underlying episodic behavior undetected by peak 
occurrences or amplitudes [24]. Moreover, ApEn has 
been extensively used in studies of physiologic time 
series to assess the degree of randomness [25]. For all 
the exposed reasons, ApEn could be extremely help-
ful in understanding brain aging, given the complex 
and dynamical characteristics of the cerebral system.

Furthermore, although the importance of the exist-
ing EEG biomarkers and their modulation across the 
typical EEG frequency bands in the aging process 
are widely known, still no one has studied the ApEn 
alteration in the EEG spectrum to delineate what hap-
pens in an elderly brain from this point of view. The 
novelty of the present paper has been to investigate 
the ApEn from the whole EEG spectrum (0.2–47 Hz) 
and from filtered EEG data using 7 frequency bands, 
namely delta (2–4  Hz), theta (4–8  Hz), alpha 1 
(8–11  Hz), alpha 2 (11–13  Hz), beta 1 (13–20  Hz), 
beta 2 (20–30 Hz), and gamma (30–45 Hz), in order 
to evaluate, for the first time, how this parameter can 
change during aging evaluating it across entire EEG 
frequency spectrum. Additionally, with the aim of 
testing if the ApEn represents a measure able to 
describe age-related changes occurring in the brain, 
the computed ApEn values were also used as features 
to perform an age-related classification of subjects 
employing three types of support vector machine 
(SVM) (linear, quadratic, and cubic).

Methods

Participants

A total of 161 healthy participants were recruited and 
divided according to their age in two groups. Sev-
enty-two young subjects (38 female; mean age = 24.8, 
SE = 3.4; education = 14.3, SE = 2.6) and 89 older 
adults (47 female; mean age = 69.4, SE = 4.4; educa-
tion = 10.9, SE = 3.7) compose respectively the young 
and the elderly group. Table 1 shows the demographic 

details of the two groups. Subjects with ongoing 
therapy with psychotropic or vasoactive medications 
and neurological or psychiatric disorder history were 
excluded from the study. All subjects have been clas-
sified as right-handed at the Handedness Question-
naire [26]. Following the World Medical Associa-
tion Code of Ethics (1997), each participant accepted 
an informed consent, and the experimental method 
agreed with Declaration of Helsinki.

Data recordings and pre‑processing

EEG recordings were obtained from a 32-chan-
nel system (Easycap, GmbH, Brain Products). The 
electrodes were placed on the scalp according to the 
Augmented International 10–20 system using the 
midfrontal Fpz electrode as the reference and one 
electrode as the ground; for these reasons, the num-
ber of valuable EEG electrodes is 31. Ocular move-
ments and blinking were visually monitored using 
both vertical and horizontal EOG channels, although 
the removal of ocular artifacts was successfully con-
ducted only in the later analysis phase using the 
Infomax ICA algorithm. Electrodes’ impedance was 
kept under 5 kΩ, and the sampling rate was set up at 
1000 Hz. An eyes-close (EC) resting state session of 
6 min was recorded by each participant, while seated 
on a comfortably armchair in an electrically shielded, 
sound-damped and dimly lit room. The data were 
processed using a home-made MATLAB software, 
based on EEGLAB toolbox codes (Swartz Center for 
Computational Neurosciences, La Jolla, CA, USA) 
[27, 28]. The EEG data were down-sampled with 
a frequency rate of 512  Hz, and a band-pass finite 
impulse filter (FIR) was applied to extract data in the 
frequency range from 0.2 to 47 Hz. EEG continuous 
data were segmented in 2-s length epochs and trials 
with artifact activity (such as scalp muscle activity 
and cardiac activity), or aberrant waveforms were 
removed first by an expert data visual inspection, then 

Table 1   Sex, age, and education of all subjects enrolled in the 
experiment

Young (n = 72) Elderly (n = 89)

Sex (M/F) 34/38 42/47
Age (mean ± SE) 24.8 ± 3.4 69.4 ± 4.4
Education (mean ± SE) 14.3 ± 2.6 10.9 ± 3.7
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using the Infomax ICA algorithms [29], that decom-
pose the signal in statistically independent component 
and complete the detection, cleaning, and rejection of 
epochs with artifacts [30–34]. After this inspection, 
about 5 min remained for each session.

Entropy

The complexity of brain activity was studied by 
entropy measure evaluated by approximate entropy 
(ApEn). The use of ApEn for complexity measures 
has many advantages: it maintains a good reproduc-
ibility when used with time series; it is almost unaf-
fected by noise, and it detects changes in underlying 
episodic behavior undetected by peak occurrences or 
amplitudes [24].

ApEn values were computed, in each partici-
pant, for each channel and for each frequency band 
using homemade MATLAB software. Firstly, a 
value of ApEn was computed for each channel and 
each epoch in the following frequency bands: delta 
(2–4  Hz), theta (4–8  Hz), alpha 1 (8–11  Hz), alpha 
2 (11–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), 
and gamma (30–45  Hz). Finally, for each EEG 
recording, those values were averaged among the 
epochs [35] to obtain a single ApEn value for each 
channel in each frequency band. In order to compare 
the results obtained in the present study with those 
present in the literature, the same procedure was per-
formed to compute the ApEn values in the total spec-
trum (0.2–47 Hz) [22, 23].

The homemade software estimates ApEn dimen-
sionless values. The higher the value of ApEn, the 
more irregular and less predictable the signal is. On 
the other hand, the lower this value, the more periodic 
and stable the signal tends to be [23]. In the ApEn 
analysis, two input parameters need to be defined: a 
model length m and a tolerance factor r, also called 
similarity factor, used to identify a range of similari-
ties between data points. In this study, m and r were 
set equal to the default MATLAB values: thus, m = 2 
and r = 0.2 * variance (x) [36–38] were used, in 
which x corresponds to an epoch of length of 2 s of 
a specific channel. The obtained ApEn values range 
from 0 (regular time series) to 2 (random time series) 
[39].

In particular, the calculation of ApEn is described 
as follows [40, 41]:

1.	 A point-by-point comparison is made between 
each data sequence of length m and all other 
sequences. If the distance between points is less 
than the tolerance factor r, a match is scored.

All the matches are counted as described by Expres-
sion (1):

where Yi is the m-dimensional vector sequence, 
defined as a delayed reconstruction of the time 
series{y(i)} = y(1), y(2),… , y(N) , where i ranges 
from 1 to N, number of data points:

2.	 The comparison is performed on each succes-
sive m + 1-long sequence, starting form the first 
sequence of m + 1 points, as shown in Eq. (2).

3.	 The number of matches is converted to a natural 
logarithm value and afterwards normalized by 
the number of data points (N):

Finally, the ApEn is calculated using the following 
expression:

Moreover, using the algorithm implemented in 
MATLAB, the topographic distribution of the ApEn 
values both in the total spectrum and in each fre-
quency band was obtained for the young group and 
the elderly one. At each electrode was associated 
a single value of ApEn. The software computes the 
interpolation between the ApEn values of the elec-
trodes and represents the entropy values by a color 
scale. In this way, it was possible to analyze the distri-
bution and age-related modulation of entropy on the 
scalp, which represent one of the innovations of the 
present study compared with the literature.

The entropy concept

The concept of entropy was initially introduced in 
thermodynamics by Clausius and developed by Boltz-
mann and Gibbs in the course of nineteenth century. 

(1)Ni =

N�

i=1,i≠k

�
‖Yi − Yk‖∞ < r

�

(2)Yi =
[
y(i), y(i + 1),… , y(i + m + 1)

]

(3)Φm = (N − m + 1)−1
∑N−m+1

i=1
log

(
Ni

)

(4)ApEn = �m − �m+1.
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Entropy was then adapted for information theory 
and signal analysis in 1948 by Claude Shannon who 
defined it as the level of information, surprise, uncer-
tainty, or a “gradual decline into disorder” in a given 
amount of a signal [42]. This theory was then applied 
to the brain signal analysis starting from the hypoth-
esis that entropy can be a powerful explanatory tool 
to describe any mental state, providing a quantita-
tive index of the brain dynamic system’s randomness 
or disorder [43]. Small fluctuations in brain entropy 
are natural, but according to Carhart-Harris’ model, 
many brain states can be classified as “low entropy” 
or “high entropy” [17]. From the physics point of 
view, high entropy means high disorder and low 
energy: to maintain a structure, energy is required.

Following this line, to explain how entropy can 
facilitate the study and analysis of brain activity, it is 
useful to imagine the brain’s neural population as a 
system that persists in a sort of firing baseline state, 
although this is obviously an oversimplification of 
how the brain may function. In response to a stimuli, 
or the presence of physiological or pathological aging 
conditions, the hypothesis is that the brain’s neuronal 
population can deviate from its baseline state to a 
different firing state that may give rise to a less com-
plex system (more regular firing pattern) or to a more 
complex one (neural activity is more random) [16].

Statistical evaluation

The two-tailed unpaired Student’s t-test was per-
formed to analyze the ApEn values to highlight the 
statistical differences in each frequency band (total, 
delta, theta, alpha 1, alpha 2, beta 1, beta 2, and 
gamma) between groups (young, elderly). To account 
for multiple comparisons, the Bonferroni correction 
was performed on MATLAB. The function main-
tains the same threshold for the hypothesis rejection 
(p < 0.05) but changes the p-values of the statistical 
analysis according to the number of comparisons. 
The new p-values obtained are reported in Table 2.

Classification

To demonstrate that ApEn represents age-related 
changes in the brain, the computed ApEn values 
were used as features to perform an age-related clas-
sification of subjects. A classification procedure is a 
method to create a boundary between two or more 

classes that enables their best prediction from one or 
more feature vectors. The boundary arrangement is 
carried out according to an established criterion [44]. 
This rule depends on the type of the chosen classi-
fier. For example, support vector machine (SVM), the 
most common method used with linear and non-lin-
ear problems in machine learning [45–47], constructs 
an optimal hyperplane based on the training data that 
best separate two or more classes [48]. To build the 
decision boundary among the classes and to optimize 
hyperparameters, a quadratic optimization problem 
needs to be solved [49]. To do this, the SVM classi-
fier uses the sequential minimal optimization (SMO) 
algorithm. Unlike other methods, SMO chooses to 
solve, at every iteration of classifier training, the as 
small as possible optimization problem by decompos-
ing the original problem into simpler sub-problems. 
In this way, it is solved quickly and analytically, sig-
nificantly improving the computation time [50].

In this work, three different types of SVM were 
evaluated (linear, quadratic, and cubic SVM) using 
homemade scripts based on SVMs’ implemented 
function on MATLAB. The linear SVM builds a lin-
ear hyperplane using a linear kernel K

(
xi, xj

)
= xT

i
xj , 

given the observation xi, i = 1,… , l . Instead for 
quadratic and cubic SVM, a polynomial kernel was 
employed: K

(
xi, xj

)
= (xT

i
xj + 1)

d , where d is the 
degree of the polynomial kernel. d is equal to 2 for 
quadratic SVM and to 3 for cubic SVM [51]. Quad-
ratic and cubic kernel enables to model higher dimen-
sional and non-linear models [20, 52].

Two different datasets were used for the classifi-
cation. The first one consists of all the ApEn values 
obtained for each of the 31 recording channels and in 
each of the 7 frequency bands for a total of 217 fea-
tures (31 channels × 7 frequency bands). The second 
database contains 21 features selected from the above 
dataset with an automatic feature selection technique 
called the stepwise regression function, which adds 
and removes terms from the initial model based on 
their significance in explaining the classification [53] 
in order to determine the best ApEn features that 
explain the data. There are three different variants 
of this technique. Forward selection starts from an 
empty model and then, based on a quality criterion, 
adds features; backward selection starts from all fea-
tures and then, based on a quality criterion, removes 
features; the third variant is a combination of both. In 
high-dimensional problems, also a stopping criterion 
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needs to be defined. A popular stopping criterion is 
no improvement in the quality assessment of the clas-
sifier. In the present work, a forward feature selection 
technique was applied. Considering all the possible 
combinations, it starts from an empty model and then 
adds at each iteration one variable at time based on 
its p-value obtained from an F-test that evaluate the 
statistical change of the sum squared error that results 
from adding the term. Unless the F-test p-value is 
lower than 0.05, the variable will be added to the 
model. So features with near-zero variance and sig-
nificantly correlated features are removed from the 
model since they contribute complexity to the SVM 
without adding predictive power [54]. This selection 

procedure, together with the cross-validation tech-
nique, was employed also to avoid overfitting.

Indeed, for each SVM classifier, in order to eval-
uate the accuracy, a tenfold cross-validation was 
performed [33, 55, 56]. More specifically the data-
set was randomly split into mutually exclusive and 
equal-sized 10 subsets, and for each subset, the clas-
sifier was trained using all the other subsets. In this 
way, 90% of the data was on the training set, and the 
rest 10% was on the test set. Moreover, to have an 
exhaustive model evaluation, the tenfold cross-vali-
dation was performed 100 times. This classification 
pipeline is explained in Fig. 1.

Table 2   Significant 
p-values obtained after 
Bonferroni correction for 
each channel and in each 
frequency band

Total Delta Theta Alpha 1 Alpha 2 Beta 1 Beta 2 Gamma

Fp1 - - - - - - - -
Fp2 - - - - - - - -
AF7 - - - - - - - -
AF8 - 0.034419 - - - - - -
F7 - - - - - - - -
F3 0.045618 - - - - - - 0.003588
Fz 1.86E-06 - 0.035483 - - - - 0.002459
F4 8.88E-06 - - - - - - 0.017365
F8 - 0.00145 - - - - - 0.033302
FC5 - - 0.024336 - - - - 0.036875
FC1 7.38E-05 - 0.026024 - - - - 0.041576
FC2 1.84E-06 - 0.016836 - - - - 0.0236994
FC6 0.001513 0.008887 - - - - - 0.046002
T7 - - 0.001656 - - - - -
C3 0.002459 - 0.030691 - - - 0.037925 0.041576
Cz 3.47E-05 - 0.003536 - - - - 0.032632
C4 7.25E-07 - 0.015533 - - - - 0.030968
T8 7.38E-05 0.0035288 0.021555 - - - - 0.032632
CP5 0.045618 - 0.023193 - - - 0.004028 -
CP1 4.62E-05 - 0.026411 - - - - -
CP2 1.36E-06 - 0.012672 - - - - -
CP6 1.13E-07 - 0.024336 - - - - -
P7 - 0.03362 - - - - 0.001698 -
P3 0.000215 - - - - - - -
Pz 2.29E-06 - - - - - - -
P4 1.86E-06 - - - - - - -
P8 2.09E-05 - - - - - - 0.030657
PO7 - 0.0004723 - - - - - -
PO8 0.000144 - - - - - - 0.009817
O1 - 0.001409 - - - - - -
O2 0.00194 0.000654 - - - - - -
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The accuracy is computed as the mean of accu-
racy for all the 10-folds. In order to assess the vari-
ance between each fold, the standard deviation was 
also computed [33]. The same approach was followed 
to evaluate the specificity, sensitivity, area under the 
curve (AUC), and receiver operating characteristic 
(ROC) curve. Finally, the best classifier was selected 
based on the accuracy parameter, firstly because the 
latter correctly reflects the classification performance 
when the two classes are well balanced, as in our 
case, and secondly because the classification prob-
lem (elderly vs young) does not require to distinguish 
between a pathological and a non-pathological state 
(i.e., it does not require to distinguish between the 
amount of false negative or false positive).

Results

To investigate the difference between the young 
and elderly group, ApEn values were estimated for 
each participant and for each EEG frequency band 
in a resting state condition. For each frequency 
band and for the total spectrum, the topographi-
cal maps of the obtained ApEn values of the young 
and elderly and the distribution of the statistically 

significant differences between the two groups were 
also computed.

A statistically significant difference between the 
ApEn values of the two groups was found in the 
total spectrum and in the following frequency bands: 
delta, theta, beta 2, and gamma. The analysis of the 
total spectrum was performed to compare the results 
obtained in this work with the entropy studies present 
in the literature.

In the total ApEn, a statistically significant differ-
ence between the two groups was found in the centro-
parietal, right occipital, and right temporal regions. In 
all the three regions, the elderly group had a signifi-
cantly higher ApEn values than the young one.

Moreover, in delta ApEn, results showed a signifi-
cant difference in the left occipital and right fronto-
temporal brain areas. Additionally, the elderly group 
showed higher ApEn values in the left occipital 
region that the young one; instead, in the right fron-
toparietal region, the elderly revealed lower ApEn 
values than the young.

Regarding the theta ApEn, the elderly exhibited 
in the entire central region significantly higher ApEn 
value than the young. In the beta 2 ApEn, a signifi-
cant difference between the two groups was found in 
the centrotemporal brain area. Particularly, the elderly 

Fig. 1   Pipeline for the classification procedures of young and 
elderly subjects, starting from the raw EEGs to the computa-
tion of ApEn values for each channel and each frequency band 
for testing the performance of linear, quadratic, and cubic sup-
port vector machine classifiers. The two approaches which can 

be used are shown in the top line (where all 217 features have 
been used for the classification) and in the bottom line (where, 
after the feature selection, 21 features have been used for the 
classification)
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group displayed lower ApEn values than the young 
group.

Furthermore, in the gamma band, the elderly group 
showed significantly lower ApEn values in the fronto-
central region than the young one.

Finally, no statistically significant differences 
between the two groups were found in the alpha 1, 
alpha 2, and beta 1 frequency bands.

All the topographic maps based on ApEn values 
and the statistical difference between the two groups 
are illustrated in Fig.  2. The significant p-values of 
the statistical results obtained with Bonferroni correc-
tion were reported for each electrode in Table 2.

For the classification process, each type of SVM clas-
sifier was performed using both all the ApEn values 
(i.e., the ApEn values obtained for each electrode and in 
each frequency band) and using only the most represent-
ative features. More specifically, in the latter case, only 
21 features were selected and then used for the classifi-
cation. The resulting performances of the best classifier, 
selected after 100 iterations, for the linear, quadratic, 
and cubic SVM, both before and after the features selec-
tion, are shown in Table 3. Each classifier’s performance 
parameter (accuracy, AUC, specificity, and sensitivity) 
is reported in terms of mean value ± SE. For each type 
of SVM, the receiver operating characteristic (ROC) 
curve of the best classifier was calculated and illustrated 
in Fig. 3 with its 95% of confidence interval, computed 
over its 10-folds.

Discussion

Age is the main risk factor for major debilitating 
conditions, including neurodegenerative disease [6]. 
Since most people experience changes in cognitive 
functions and in macrostructural brain properties, by 
comparing the brains of young people and healthy 
elderly, a deeper comprehension of the neurobiologi-
cal process of aging and brain cognitive changes can 
be obtained [3]. Moreover, by comparing elderly and 
young people, it is possible to better identify age-
related pathology, especially Alzheimer’s disease [4].

The aim of this work has been to achieve a better 
understanding of the effects of physiological aging on 
the neurobiological process and a deeper understand-
ing of the brain’s cognitive age-related changes. The 
ApEn values were calculated in the total spectrum 
and in seven main EEG frequency bands (delta, theta, 

alpha 1, alpha 2, beta 1, beta 2, and gamma) in order 
to detect changes in brain activity related to the aging 
process. Moreover, the topographic distributions of 
the ApEn values were also evaluated in the young 
and elderly group, thanks to the possibility to map the 
entropy values on the scalp.

The results, that have been reached in this study, 
can be divided into two principal findings: in the 
total EEG spectrum and in the lower frequency bands 
(delta and theta), higher ApEn values in the elderly 
group compared to the young were found; vice versa, 
in the higher frequency bands (beta 2 and gamma), 
lower ApEn values were obtained in the elderly group 
with respect to the young one.

Particularly, in the total EEG spectrum, the 
increase of entropy values is statistically significant 
in the centroparietal, right occipital, and right tempo-
ral regions. In the delta frequency band, a statistically 
significant difference is found in the left occipital 
brain areas, where the elderlies show higher entropy 
values than the young subjects, and in the right fron-
toparietal regions, where instead elderlies exhibit 
lower entropy values than the young. Regarding the 
theta frequency band, elderlies exhibit, in the entire 
central region, significantly higher entropy values 
than the young.

On the other hand, in the higher frequencies, the 
decrease of entropy values in the elderly group is sta-
tistically significant in the left centrotemporal brain 
area, regarding the beta 2 frequency band, and in the 
frontocentral region, regarding the gamma frequency 
band.

Finally, in order to demonstrate the relevance of 
entropy measures as an optimal biomarker sensitive to 
the effects of age-related changes on the brain activ-
ity and functionality, a procedure of classification 
was also realized. In our study, we have employed the 
support vector machine classifier. The latter is widely 
used for classification in the field of neuroscience. 
It solves the classification problem by identifying 
the best reproducible hyperplane (i.e., the boundary 
between the features of the two classes) that maxi-
mizes the distance between the support vector of both 
classes’ features. There are many advantages reported 
in the literature in using this type of classifier. Firstly, 
SVM allows to optimize both the accuracy and the 
reproducibility (i.e., the classifier is generalizable to 
new data) [54], reducing even the possibility to occur 
in overfitting. Another fundamental characteristic is 
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Fig. 2   Topography based 
on the ApEn values and 
statistically significant 
difference between the two 
group. Each row shows the 
ApEn across EEG band 
(total, delta, theta, alpha 
1, alpha 2, beta 1, beta 2, 
gamma). The ApEn values 
of young and elderly groups 
are shown, respectively, 
in the first and second 
column. The entropy value 
is represented by a color 
scale, namely the more 
red, the higher the ApEn 
value, and the more blue, 
the lower the ApEn value. 
For every frequency band, 
the colorbar limits were 
set from the minimum of 
the ApEn values of the two 
groups to the maximum of 
the ApEn values of the two 
groups ± 2*Standard Devia-
tion (SD). The last column 
represents the distribution 
of the p-values between the 
two groups obtained with 
Bonferroni correction
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that SVM is very efficient compared to other classifi-
ers in high-dimensional space. In fact, since the deci-
sion boundary is identified using the kernel methods, 
the computing complexity does not increase in high-
dimensional space [57]. The latter is a very interest-
ing advantage since the classification performed in 
our study included a high number of features. Finally, 
the SVM can be considered a very stable classifica-
tion method. Indeed, since a small change of the data 
does not greatly affect the hyperplane, by removing 
one or more features, the classification performances 
do not significantly change. In the literature, three dif-
ferent types of SVM are mainly used: linear, quad-
ratic, and cubic SVM. We decide to test all of them 
to identify which one of the three returned the best 
performance for the automatic detection of the young 
versus elderly group. The results of the present paper 
revealed that the three SVMs showed optimal clas-
sification performances that increase after the appli-
cation of a feature’s reduction strategies. In fact, not 
only cubic but also quadratic and linear SVM exhibit 
high accuracy, respectively of 90.62 ± 1.86 (%), 
93.16 ± 1.81 (%), and 93.20 ± 1.42 (%) indicating that 
the entropy has an optimal capability in the detection 
of age changes in brain activity.

Regarding the first result of the present research, 
it has shown that aging is associated with an increase 
of the total spectrum ApEn in the frontocentral, cen-
troparietal, and occipital areas. This confirms the 
previous findings by Alù and collaborators [22], who 
showed that elderly subjects presented higher entropy 
than young participants in the central parietal and 
occipital brain areas, justifying that it could reflect a 
reduced synchronization of neural networks caused 
by aging. Furthermore, in line with this result, previ-
ous research found the cause of the changes in ana-
tomic and functional connectivity as well as in the 

alteration of biophysical properties such as the reduc-
tion of the gray matter and the decrease of skull con-
ductance [58]. All the mentioned reasons lead conse-
quently to the increase of signal variability [58].

Actually, our hypothesis was that the alteration 
in the global entropy can reflect the reduced abil-
ity of the brain activity to sustain the typical EEG 
rhythmicity. For these reasons, it could be crucial to 
investigate what really happen at the EEG frequency 
rhythm level.

The entropy alterations, or rather the increase, 
occurring in delta and theta bands can be explained 
by the numerous findings of the current literature in 
which aging is associated with clear changes in delta 
and theta rhythms, in particular in the power spectral 
density [9, 59].The alteration of low-frequency bands 
was considered a marker of brain sufferance, cogni-
tive dysfunction, and mental deterioration especially 
when their synchronization appears in a waking brain 
[60]. In particular, variations in theta activity in the 
elderly can suggest that brain aging alters the cortical 
circuitries of that specific band dynamics, leading to 
impairment in some brain functions, such as focused 
attentional and working memory processing [61]. 
Additionally, some studies, in which graph analysis 
was employed, showed that delta and theta connectiv-
ity’s increase might reflect a process of progressive 
disconnection of the aging brain that could appear as 
a loss of communication efficiency between different 
areas of the brain [56, 62] and as a more chaotic EEG 
signal too, explaining an increase in entropy.

Concerning the high-frequency bands findings 
in beta 2 and gamma, the latter exhibit the oppo-
site behavior compared to the low-frequency bands, 
showing a decrease of ApEn values in the elderly 
with respect to younger participants. Aging can 
be effectively related to a reduction in beta power 

Table 3   Linear, 
quadratic, and cubic SVM 
performance parameter 
values represented by 
mean ± SE before and after 
the feature selection

Classifier Accuracy (%) AUC​ Specificity (%) Sensitivity (%)

All features
  SVM linear 89.45 ± 2.46 0.89 91.96 ± 2.00 87.78 ± 3.1
  SVM quadratic 89.45 ± 2.56 0.93 88.92 ± 2.77 89.86 ± 3.61
  SVM cubic 90.11 ± 2.14 0.92 93.21 ± 2.59 87.78 ± 2.26

After the feature selection
  SVM linear 93.20 ± 1.42 0.96 91.40 ± 1.31 94.30 ± 2.25
  SVM quadratic 93.16 ± 1.81 0.95 94.29 ± 1.37 92.2 ± 2.38
  SVM cubic 90.62 ± 1.86 0.95 90.0 ± 2.24 90.97 ± 3.64

1140



GeroScience (2023) 45:1131–1145

1 3
Vol.: (0123456789)

Li
ne

ar
 S

V
M

Q
ua

dr
at

ic
 S

V
M

C
ub

ic
SV

M

Fi
g.

 3
  A

ve
ra

ge
 r

ec
ei

vi
ng

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
 (

RO
C

) 
cu

rv
es

 a
nd

 th
ei

r 
co

nfi
de

nc
e 

in
te

rv
al

s 
at

 9
5%

 le
ve

l, 
ill

us
tra

tin
g 

th
e 

cl
as

si
fic

at
io

n 
of

 th
e 

16
1 

pa
rti

ci
pa

nt
s 

ba
se

d 
on

 th
e 

fe
at

ur
es

 s
el

ec
te

d 
by

 s
te

pw
is

e 
re

gr
es

si
on

 p
er

fo
rm

ed
 b

y 
lin

ea
r, 

qu
ad

ra
tic

, a
nd

 c
ub

ic
 S

V
M

. T
he

 a
re

a 
un

de
r t

he
 c

ur
ve

 (A
U

C
) w

as
, r

es
pe

ct
iv

el
y,

 0
.9

5,
 0

.9
4,

 a
nd

 0
.9

3,
 in

di
ca

tin
g 

an
 

op
tim

al
 c

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

1141



GeroScience (2023) 45:1131–1145

1 3
Vol:. (1234567890)

spectral density [9]; as in numerous studies [63, 64], 
beta synchronization was correlated with better cog-
nitive skills, particularly the higher the beta power, 
the higher the cognitive performances. Specifically, 
EEG beta 2 power was found positively correlated 
with cognitive abilities in the study of Wang and 
collaborators [65], and it resulted to have an impor-
tant role in cognitive processes in the research of 
Guntekin and colleagues [66]. Moreover, gamma 
rhythm was also demonstrated to have an important 
link with aging [67, 68]. In fact, several cognitive 
functions have been linked to the gamma band, like 
working memory and attentional processes. Abnor-
malities in gamma frequency are associated with the 
wrong processing of information in cognition and 
might reflect the need for more resources for efficient 
network integration [68].

Furthermore, gamma connectivity has been dem-
onstrated to be a biomarker of working memory 
impairment in physiological aging. For example, in 
the study of Vecchio and colleagues [69], gamma 
connectivity, measured by Small World properties, 
positively correlates with memory, namely higher 
Small World characteristics in EEG gamma fre-
quency during the resting state, better performance 
in short-term memory, evaluated by specific memory 
tests.

Additionally, the entire high-frequency spectrum 
(beta 2 and gamma) was found related to hippocampus 
atrophy [70, 71]. It was demonstrated that the atro-
phy of the hippocampus, which could lead to memory 
impairments, is correlated to the modulation of high-
frequency Small World characteristics. Moreover, 
the elderly tend to show less complex networks than 
younger participants; in particular, in older subjects, a 
decrease of high EEG frequency global integration val-
ues and thus a decrease in randomness were revealed 
[70, 71], although Vecchio and collaborators did not 
find any differences in graph metrics in beta 2 and 
gamma between young, adult, and elderly participant 
[11]. Some of the results, obtained from graph analysis, 
although with a slightly different meaning, are in line 
with the present study, which clearly shows a decrease 
in entropy values, so a less chaotic signal in beta 2 and 
gamma bands. Additionally, the low entropy values in 
Gamma bands have been found in the frontal areas of 
the scalp. This localization is in agreement with other 
previous studies [72, 73] in which a synchronization 

of gamma bands in the frontal cortex, in particular in 
Brodmann area 9, was found.

However, to date, the studies widespread in the 
literature, across the EEG spectrum, are those that 
demonstrated alterations by means of power spectral 
density and functional connectivity. In this sense, the 
study of entropy across frequency bands is still in its 
infancy. Even if other studies have previously ana-
lyzed the modulation of ApEn across the EEG spec-
trum [74–77], this is the first time it has been tested 
to distinguish an elderly brain from a younger brain.

Through the machine learning approach and thanks 
to the SVM classification, it was evident as the param-
eters derived from ApEn values are highly capable of 
distinguishing between these two age-different popula-
tion categories, reaching remarkable accuracy, sensitiv-
ity, and specificity values with three different classifiers. 
The underlying characteristics of EEG rhythms in terms 
of entropy contain relevant information on degenerative 
processes that normally occurred during aging.

To the best of our knowledge, this is the first study 
in which entropy parameters are evaluated across the 
typical EEG frequency bands to delineate the EEG 
complexity of a young and an old brain. Further-
more, for the first time, the entropy features are also 
used in a machine-learning context to classify elder-
lies with respect to young subjects. This study was 
conducted with a quite larger number of participants 
with respect to the current literature, demonstrating 
as approximate entropy seems to be a powerful meas-
ure for the detection of the age-related changes in the 
human brain. This measure appears to be a very sen-
sitive and specific biomarker for the study of cogni-
tive decline and global cortical alteration and degen-
eration in the elderly EEG activity.

Actually, the present research could be considered 
a preliminary analysis to test the use of entropy as 
an optimal biomarker for distinguishing age-related 
changes occurring in the brain. This is a starting point 
for using these types of parameters to distinguish 
also pathological conditions, such as neurodegenera-
tive diseases, or intercept stages prior to the disease 
manifestation. Now, our main aim was to demon-
strate as entropy (taken together the indexes both in 
the total EEG spectrum and in each frequency band) 
could be a powerful measure with very high levels of 
performance, and thus we believe that in the future, 
these parameters should be tested for the predic-
tion, the diagnosis, and the prognosis of neurological 
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disorders, giving a more important contribution to 
clinical research.
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