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had at least one WMH measurement and cognitive 
scores examining global cognition, executive func-
tioning, and memory. Only amyloid-positive MCI 
and AD participants were included. A total of 1573 
participants with 7381 timepoints over a maximum 
period of 13  years were included. Linear mixed-
effects models examined group differences in WMH 
burden and associations between WMH burden and 
cognition. People with MCI and AD had increased 
total and regional WMHs compared to NCs. An 
association between WMHs and cognition was 
observed for global cognition, executive functioning, 
and memory in NCs in all regions. A steeper decline 
(stronger association between WMH and cognition) 
was observed in MCI compared to NCs for all cog-
nitive domains in all regions. A steeper decline was 
observed in AD compared to NCs for global cogni-
tion in only the temporal region. A strong association 
is observed between all cognitive domains of interest 
and WMH burden in healthy aging and MCI, while 
those with AD only had a few associations between 
WMH and global cognition. These findings suggest 
that the WMH burden is associated with changes 
in cognition in healthy aging and early cognitive 
decline.

Keywords  Older adults · Mild cognitive 
impairment · Alzheimer’s disease · Cognitive 
decline · White matter hyperintensities

Abstract  White matter hyperintensities (WMHs) 
are pathological changes that occur with increased 
age and are associated with cognitive decline. Most 
WMH research has not examined regional differ-
ences and focuses on a whole-brain approach. This 
study examined regional WMHs between normal 
controls (NCs), people with mild cognitive impair-
ment (MCI), and Alzheimer’s disease (AD). We also 
examined whether WMHs were associated with cog-
nitive decline. Participants from the Alzheimer’s Dis-
ease Neuroimaging Initiative were included if they 
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Introduction

Increased age is associated with changes in brain 
structure and function, which may be typical (i.e., 
normal) or pathological (i.e., abnormal). These 
changes may result in the development of cognitive 
decline, including mild cognitive impairment (MCI) 
or dementia. Declines in cognitive functioning char-
acterize MCI that are not severe enough to interfere 
with everyday functioning [1]. When the cognitive 
decline progresses to interfering with everyday func-
tioning, the impairment is then considered demen-
tia [1]. MCI and dementia prevalence increase with 
aging and is associated with neurodegenerative brain 
changes [2, 3]. Alzheimer’s disease (AD) is the most 
common form of dementia, accounting for between 
60 and 80% of dementia cases [3].

One common pathological brain change seen in 
the aging population is the increase in white mat-
ter hyperintensity (WMH) burden [4–6]. WMHs 
are measured as a proxy of cerebrovascular disease 
and are observed as areas of increased signal in 
T2-weighted or fluid-attenuated inversion recovery 
(FLAIR) magnetic resonance images (MRIs) [7]. 
WMHs are observed in clinically healthy older adults 
[4–6]; however, WMHs may be one of the first patho-
logical changes associated with cognitive decline in 
cognitively unimpaired older adults (NCs) [8]. High 
WMH burden is an indicator of future cognitive 
decline [9] and progression to MCI and dementia [6, 
10, 11].

WMH burden is generally increased in each pro-
gressive stage of cognitive decline. That is, WMHs 
are lower in NCs and progressively increase from 
MCI to AD [6]. Research examining WMH burden 
tends to measure global WMH burden as opposed 
to regional WMH burden [9, 12]. The studies that 
have observed NC and MCI/AD group differ-
ences in regional WMH burden have found dif-
ferences in all regions. For instance, some studies 
report that the largest NC-AD group difference in 
WMH volume is observed in the parietal, tempo-
ral, or occipital regions [12–14]. However, previ-
ous research notes that WMHs are mostly distrib-
uted in both the parietal and frontal lobes [14, 15], 
with MCI and AD patients also showing increased 
WMHs in frontal regions relative to controls [14]. 
The regional distribution of WMHs has also been 

suggested to correlate with different etiologies, 
with anterior WMHs linked to physiological aging 
and posterior WMHs associated with AD [14, 16]. 
Finally, increases in WMH volumes in both aging 
and AD have shown associations with future cogni-
tive decline [6, 10, 11].

Studies examining the relationship between WMH 
and cognition in aging and AD have shown vary-
ing results. Many studies have noted an association 
between declines in executive functioning [17, 18], 
memory [17, 19, 20], and global cognition [12, 21] 
with WMH volumes in aging and MCI/AD, while 
other studies have observed no association between 
executive functioning [12], memory [12, 22, 23], and 
global cognition [24] with WMHs in aging and MCI/
AD. A recent meta-analysis examined 22 studies that 
investigated WMH and cognition in MCI and AD 
[25]. These authors found a small to medium effect 
size between cognition and WMH. More specifically, 
the strongest associations between WMH and cogni-
tion were observed with attention, executive function-
ing, and processing speed. These associations were 
medium-sized in MCI but small in AD. However, the 
problem with many of the studies in this review is 
their cross-sectional nature (only 1 was longitudinal). 
WMHs are known to be more strongly associated 
with future cognitive decline than immediate cogni-
tive functioning [9]. Therefore, not examining future 
cognitive decline is a limitation of these studies. 
Few of the above-mentioned studies have assessed 
regional changes longitudinally and compared these 
regional changes to cognition.

The progressive increase in WMH burden from 
healthy older adults to people with MCI and people 
with AD is relatively well established in research. 
However, spatial WMH distributions and regional 
effects on domain-specific cognition  between the 
groups  remains unknown. Also unexplored is how 
the association between cognitive change over time 
and WMH burden in MCI and AD differs from that 
of cognitively healthy older adults. Using data from 
the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), the present study will look to answer these 
questions by investigating the regional accumula-
tion of WMH burden across amyloid-beta positive 
(Aβ-positive) adults with AD, Aβ-positive adults 
with MCI (i.e., those on the AD trajectory), and 
cognitively healthy older adults. The study will 
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also examine the association between cognition and 
regional WMH across groups, both at baseline and 
over time.

Methods

Alzheimer’s Disease Neuroimaging Initiative

The data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). 
The ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. 
Weiner, MD. The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). The study received 
ethical approval from the review boards of all par-
ticipating institutions. Written informed consent was 
obtained from participants or their study partner. 
Participants were included from all ADNI cohorts 
(ADNI-1, ADNI-2, ADNI-GO, and ADNI-3).

Participants

Full participant inclusion and exclusion criteria are 
available at www.​adni-​info.​org. All participants 
were between 55 and 90 years of age at the time of 
recruitment and exhibited no evidence of depres-
sion. Healthy older adult controls (NCs) had no evi-
dence of either memory decline, as measured by the 
Wechsler Memory Scale, or impaired global cogni-
tion as measured by the Mini-Mental Status Exami-
nation (MMSE) or Clinical Dementia Rating (CDR). 
MCI participants obtained scores between 24 and 30 
on the MMSE, 0.5 on the CDR, and exhibited abnor-
mal scores on the Wechsler Memory Scale. AD par-
ticipants exhibited abnormal memory function on the 
Wechsler Memory Scale, obtained an MMSE score 
between 20 and 26 and a CDR of 0.5 or 1.0, and 
had probable AD according to the National Institute 
of Neurological and Communicative Disorders and 

Stroke and the Alzheimer’s Disease and Related Dis-
orders Association criteria [26].

To ensure that the MCI and AD participants 
included in this study were in fact MCI due to AD, 
and AD (as opposed to another form of dementia), 
they were only included if they were amyloid posi-
tive. This selection criterion ensured that both MCI 
and AD participants were actually on the AD tra-
jectory. Both PET and cerebrospinal fluid (CSF) 
values were used to determine amyloid positivity 
in people with MCI and AD because some partici-
pants had only one measurement available. Amy-
loid positivity was identified based on the follow-
ing criteria: (1) a standardized uptake value ratio 
(SUVR) of > 1.11 on AV45 PET [27], (2) a SUVR 
of > 1.2 using Pittsburgh compound-B PET [28], 
(3) a SUVR of ≥ 1.08 for Florbetaben (FBB) PET 
[29], or (4) a CSF Aß1-42 ≤ 980  pg/ml as per 
ADNI recommendations.

A total of 977 MCI and 372 AD participants 
had WMH measurements with 6524 follow-ups. Of 
those participants, 564 MCI and 259 AD partici-
pants were amyloid positive. The amyloid-positive 
MCI and AD participants were included in this 
study along with the 750 NCs, for a total of 1573 
participants with 7381 follow-up timepoints. Partic-
ipants were included from all ADNI cohorts includ-
ing ADNI-3.

Structural MRI acquisition and processing

All participants were scanned consistently using the 
standardized acquisition protocols provided by the 
ADNI. Longitudinal MRI data were downloaded 
from the ADNI public website. For the detailed 
MRI acquisition protocol and imaging parameters, 
see http://​adni.​loni.​usc.​edu/​metho​ds/​mri-​tool/​mri-​
analy​sis/. T1w scans for each participant were pre-
processed through our standard pipeline including 
noise reduction [30], intensity inhomogeneity cor-
rection [31], and intensity normalization into range 
[0–100]. The pre-processed images were then lin-
early (9 parameters: 3 translation, 3 rotation, and 
3 scaling) [32] registered to the MNI-ICBM152-
2009c average template [33]. The quality of the lin-
ear registrations was visually verified by an experi-
enced rater (author M.D.), blinded to the diagnostic 
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group. Only seven scans did not pass this quality 
control step and were discarded.

WMH measurements

A previously validated WMH segmentation technique 
that has been extensively tested for the assessment 
of WMHs in aging and neurodegenerative diseases 
was used to obtain WMH measurements. This tech-
nique uses nonlinear warping (performed within the 
toolbox) combined with intensity distribution and 
spatial priors to perform WMH segmentation. This 
method and has been previously employed in other 
multi-center studies [8, 9, 34] and has also been 
validated in the ADNI cohort [35]. Automatic seg-
mentation of the WMHs was completed using only 
the T1w contrasts, along with location and intensity 
features from a library of manually segmented scans 
(50 ADNI participants independent of the ones stud-
ied here) in combination with a random forest clas-
sifier to detect the WMHs in new images [8, 36]. 
The decision to use only the T1w images for WMH 
segmentation was made since the ADNI1 study only 
includes T1w and T2w/PD images, whereas ADNI2/
GO includes T1w and axial 2D FLAIR images and 
ADNI3 includes T1w and sagittal 3D FLAIRs. Since 
the resolution of the images (i.e., voxel sizes) was 
very different between T2w/PD (1 × 1 × 3 mm3) and 
FLAIRs (0.5 × 0.5 × 5 mm3 and 1 × 1 × 1.2 mm3), 
to be able to reliably combine and use WMH vol-
umes from all these studies, we only used the T1w 

images for WMH segmentation. We have previously 
validated the performance of our pipeline in detect-
ing WMHs based on T1w images both in ADNI and 
another independent dataset and have shown that the 
T1w-based WMH volumes (1) hold strong correla-
tions with T2w/PD and FLAIR-based WMH volumes 
and (2) have similar relationships with clinical/cogni-
tive scores [37]. Finally, the quality of all WMH seg-
mentations was visually assessed by M.D. (blinded 
to clinical diagnosis), and those that did not pass this 
quality control step were discarded from the analyses 
(N = 59). WMH load was defined as the volume of all 
voxels identified as WMH in the standard space (in 
mm3) and were thus normalized for head size (Fig. 1). 
Regional and total WMH volumes were calculated 
based on Hammers Atlas [36, 37]. All WMH vol-
umes were also log-transformed to achieve normal 
distribution.

A previously validated patch-based label fusion 
segmentation technique was used to segment the 
ventricles based on T1w images [38, 39]. The train-
ing library of the method includes patients with AD, 
ensuring that the technique is able to accurately seg-
ment the larger ventricles in these patients. The seg-
mentations were visually assessed and those that 
did not pass this quality control step were excluded 
for the periventricular (PV) WMH and deep WMH 
analyses (N = 9). The ventricle mask was dilated by 
8 mm and applied to the WMH masks to calculate PV 
WMH and deep WMH volumes, i.e., all voxels inside 
the dilated ventricular mask were taken as PV WMH, 

Fig. 1   This image shows the dilated ventricular mask for longitudinal timepoints of one subject (in yellow), overlaid on WMH seg-
mentations. Notes: An example of longitudinally registered T1w images (first row) for a participant with 9 follow-up timepoints 
(follow-up duration: 72 months). The second row shows the WMHs, dilated ventricle masks, and the lobe masks overlaid on the 
longitudinally registered images
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and all remaining voxels outside the dilated ventricu-
lar mask were taken as deep WMH. Figure 1 shows 
the dilated ventricular mask as well as lobe masks for 
longitudinal timepoints of one subject (in yellow), 
overlaid on WMH segmentations.

Cognitive scores

Participant cognitive scores were also downloaded 
from the ADNI website. The Alzheimer’s Disease 
Assessment Scale-13 (ADAS-13) was included as a 
measure of global cognitive functioning. Ray’s Audi-
tory Verbal Learning test (RAVLT) was included as 
a measure of episodic memory, and the Trail Mak-
ing Test Part B (TMT-B) was included as a measure 
of executive functioning. While other neuropsycho-
logical tests were completed throughout ADNI, these 
three  specific tests were included because over 80% 
of the participants completed these assessments.

Statistical analysis

Baseline assessments

Participant demographic information is presented 
in Table  1. T-tests and chi-square analyses were 

performed on the demographic information and cor-
rected for multiple comparisons using Bonferroni 
correction. The following linear regression models 
were used to investigate group differences in total, 
regional, deep, and periventricular WMH loads, 
including age, sex, years of education, and APOE4 
status as covariates

To investigate whether the WMHs were dispropor-
tionately distributed across lobes in different diagnos-
tic groups, the lobar WMH volumes (frontal, parietal, 
temporal, and occipital) were further normalized over 
the total WMH volume. Similar linear regression 
models were then completed to investigate whether 
there were differences in WMH proportions (frontal, 
temporal, parietal, occipital, total, deep, and periven-
tricular) across groups. 

Clinical‑anatomical signatures

The partial least squares (PLS) method was used to deter-
mine the baseline patterns of association between WMH 
measures and the cognitive domains in each diagnostic 

(1)
Baseline WMH ∼ Age + Education + Sex

+Diagnosis + APOE4

Table 1   Demographic and clinical characteristics for NCs, MCI, and AD

Values are expressed as mean ± standard deviation or number of participants (percentage %). Statistically significant results were reported 
if they survived Bonferroni correction. 1Statistically significant difference from NC. 2Statistically significant difference from MCI. BMI 
body mass index, APOE ε4 + number and percentage of people with at least one ε4 allele, NC normal control, MCI mild cognitive impair-
ment, AD Alzheimer’s disease, ADAS13 Alzheimer’s Disease Assessment Scale–13, TMT-B Trail Making Test-B, RAVLT Ray Auditory 
Verbal Learning Test, Perc-forgetting percent forgetting. For baseline ADAS-13, TMT-B, and RAVLT-Perc-forgetting, higher scores rep-
resent poor performance. For RAVLT-immediate and RAVLT-learning, lower scores represent poor performance

Demographic information NC n = 750 MCI n = 564 AD n = 259

Baseline age 73.2 ± 6.2 73.2 ± 7.2 74.2 ± 8.01
Education 16.4 ± 2.6 16.0 ± 2.81 15.6 ± 2.71

APOE ε4 +  230 (31%) 349 (62%)1 190 (73%)1,2

Male sex 339 (45%) 332 (59%)1 147 (57%)1

BMI 26.9 ± 5.1 26.5 ± 4.9 25.6 ± 4.71

Hypertension 326 (43%) 261 (46%) 130 (50%)
Diabetes 52 (7%) 42 (7%) 19 (7%)
Baseline ADAS13 8.9 ± 4.4 17.3 ± 6.71 30.6 ± 8.31,2

Baseline TMT-B 81.6 ± 41.2 121.6 ± 68.61 198.7 ± 85.71,2

Baseline RAVLT-immediate 45.3 ± 9.9 33.0 ± 9.71 22.4 ± 7.41,2

Baseline RAVLT-learning 6.0 ± 2.4 4.0 ± 2.61 1.8 ± 1.81,2

Baseline RAVLT-Perc-forgetting 35.6 ± 22.1 64.35 ± 31.11 88.96 ± 22.11,2
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group. PLS is a singular value decomposition-based 
multi-variate method that relates two sets of variables to 
each other, by finding the linear combinations of the vari-
ables that maximally covary with each other [40–42]. We 
entered WMH measures, as well as age, sex, years of edu-
cation, and APOE4 status as the contributing factors, and 
the scores for ADAS-13, TMT-B, and RAVLT learning, 
immediate and percent forgetting as the cognitive domain 
variables. The 500 bootstraps were performed to calculate 
the effect sizes and confidence intervals for the loadings 
of contributing factors and cognitive domains for each 
latent variable. The p values for each latent variable were 
calculated using permutations (N = 500).

Longitudinal assessments

WMH differences between NC, MCI, and AD were inves-
tigated using linear mixed-effects models to examine the 
association between WMH load (frontal, temporal, pari-
etal, occipital, total, deep, and periventricular) and diagno-
sis. Regional WMH values (i.e., frontal, temporal, parietal, 
and occipital) were summed across the right and left hemi-
spheres to obtain one score for each region. All results were 
corrected for multiple comparisons using a false discovery 
rate (FDR), and p values are reported as raw values with 
significance and then determined by FDR correction [43].

The categorical variable of interest was diagno-
sis (i.e., NC, MCI, AD) based on baseline diagnosis, 
contrasting MCI and AD against the NCs. The model 
also included age, sex, education, and APOE4 status as 
covariates. The categorical variable apolipoprotein E 
(APOE4) was used to contrast subjects with one or two 
APOE ɛ4 alleles against those with zero. Participant ID 
was included as a categorical random effect.

The following linear mixed-effects model was con-
ducted to examine whether total or regional WMH 
would influence cognitive scores. The variables of inter-
est were diagnosis (contrasting MCI and AD against the 
NCs), WMH burden, and their interaction (contrasting 
the slopes of change in cognition in relation to WMH 
burden for MCI and AD against the NCs). Cognitive 
measure represents cognitive scores for global function-
ing, episodic memory, and executive function

(2)WMH ∼ Age + Education + Sex + Diagnosis + APOE4 + (1|ID)

(3)

Cognitive Measure ∼ Age + Education + Sex +WMH ∶ Diagnosis

+WMH + Diagnosis + APOE4 + (1|ID)

For follow-up measurements, 1578 participants 
had follow-up scores over a maximum period of 
13 years. WMHs were examined in both a regional 
approach and overall. Analyses were completed 
separately for frontal, temporal, parietal, occipital, 
total, deep, and periventricular WMHs. The model 
also included age, sex, education, and APOE4 sta‑
tus as covariates. Participant ID was included as a 
categorical random effect. All continuous values 
were z-scored within the population prior to the 
regression analyses.

All statistical analyses were performed using 
MATLAB version 2021a. To complete the baseline 
analysis, we used function fitlm and for longitudi-
nal assessments we used fitlme. All models were 
repeated including risk factors (diabetes, hyperten-
sion, and BMI) as additional covariates.

Results

Demographics and cognitive scores

Table 1 presents demographic information and clini-
cal characteristics of the participants included in the 
study. NCs had significantly greater education levels 
than both MCI (t = 3.32, p < 0.001) and AD (t = 5.21, 
p < 0.001), fewer males than both MCI (x2 = 23.51, 
p < 0.001) and AD (x2 = 9.84, p = 0.001), and fewer 
people with APOE ɛ4 + than both MCI (x2 = 146.44, 
p < 0.001) and AD (x2 = 188.62, p < 0.001). There 
were also fewer APOE ɛ4 + positive participants in 
MCI than in AD (x2 = 9.84, p = 0.001). These effects 
remained significant after correction for multiple 
comparisons.

Baseline cognitive performance decreased with 
each stage of progressive decline for the ADAS-
13 (NC:MCI, t =  − 25.84, p < 0.001; MCI:AD, 
t =  − 22.41, p < 0.001), TMT-B (NC:MCI, 
t =  − 12.23, p < 0.001; MCI:AD, =  − 12.05, 
p < 0.001), RAVLT learning (NC:MCI, t =  − 14.32, 
p < 0.001; MCI:AD, t = 13.59, p < 0.001), RAVLT 
immediate (NC:MCI, t =  − 22.40, p < 0.001; 
MCI:AD, t =  − 17.26, p < 0.001), and RAVLT per-
cent forgetting (NC:MCI, t =  − 17.49, p < 0.001; 
MCI:AD, t =  − 12.95, p < 0.001).
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Baseline assessments

Figure  2 shows boxplots of baseline WMHs overall 
and separately for each lobe. As expected, MCI and 
AD groups had significantly greater WMH burden 
than the NC group overall and across all regions 
(p < 0.01, Fig.  2, first row). The normalized WMH 
loads were not significantly different between diag-
nostic groups across frontal and occipital lobes, 
whereas parietal WMHs had a disproportionately 
higher WMH burden (t = 2.79, p = 0.005) and the 
temporal WMHs had a disproportionately lower 
WMH burden (t =  − 3.61, p < 0.001) in the AD group 
in contrast to NC and MCI (Fig. 2, second row).

Clinical‑anatomical signatures

The first latent variables were statistically signifi-
cant for all diagnostic groups (permuted p < 0.05)  
and accounted for 93.78% of the shared covariance 
between WMHs and cognitive measures for NC, 
85.18% of the shared covariance for MCI, and 52.61% 
of the shared covariance for AD. Figure 3 shows the 
loadings of the contributing factors (first row) and 
cognitive domains (second row) for the first latent 
variables in each diagnostic group (columns). In the NCs, 
greater age, male sex, lower education, and greater 
WMH burden in all lobes were associated with poorer 

performance in all 5 cognitive domains (indicated by 
higher scores in ADAS13, TMT-B, and RAVLT per-
cent forgetting, and lower scores in RAVLT immedi-
ate and learning). In MCI, a similar WMH pattern 
emerged; however, RAVLT percent forgetting was no 
longer statistically significant. In AD, only parietal 
WMHs, lower education, and RAVLT immediate sig-
nificantly contributed to the first latent variable.

Longitudinal assessments

WMH analysis of group differences

Table 2 summarizes the results of the longitudinal lin-
ear mixed-effects models for MCI and AD, contrasted 
against NCs across different lobes. Table  3 summa-
rizes the results of the longitudinal linear mixed-effects 
models for MCI and AD, contrasted against NCs 
across different WMH measures (total, PV, and deep). 
MCI (t belongs to [3.25–5.57], p < 0.001) and AD (t 
belongs to [4.76–7.66], p < 0.001) had significantly 
increased WMH load in all regions compared to NCs. 
In all regions except temporal, people with AD had 
increased WMH burden compared to MCI (t belongs 
to [3.60–12.18], p < 0.001). No differences were 
observed between groups in total deep WMH. MCI 
(t = 6.74, p < 0.001) and AD (t = 7.23, p < 0.001) had 
significantly increased total PV WMH load compared 

Fig. 2   Boxplots showing baseline WMH distributions. Notes: Baseline WMH distributions (log-transformed and normalized) across 
diagnostic groups for each lobe. The first row shows the log-transformed WMH loads for each group by lobe. The second row shows 
the normalized WMH loads for each group by lobe. NC normal controls, MCI mild cognitive impairment, AD Alzheimer’s disease, 
WMH white matter hyperintensity
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to NCs. AD (t = 4.65, p = 0.03) had significantly 
increased total PV WMH load compared to MCI.

Cognition and regional WMH

Table 4 and Fig. 4 summarize the results of the lin-
ear mixed-effects models examining the longitudi-
nal relationship between cognitive scores and WMH 
load. Table 5 summarizes the linear regression model 
results showing interactions between cognition and 
total WMH, deep WMH, and PV WMH. For global 
cognition as measured by ADAS13, there was a sig-
nificant association with WMH in NC for all regions 

except temporal, total deep WMH, and total PV 
WMH (t belongs to [3.64–5.33], p < 0.001), dem-
onstrating that increased WMH is associated with 
increased ADAS13 scores (i.e., worse cognition) 
in NCs. The interaction between WMH and global 
cognition was significant for MCI in all regions (t 
belongs to [10.45–12.55], p < 0.001), total deep 
WMH (t = 2.12, p = 0.03), and total PV (t = 8.46, 
p < 0.001). The interaction between WMH and AD 
was marginally significant only in the parietal region 
(t = 2.18, p = 0.03).

For executive functioning as measured by TMT-
B, there was a significant association with WMH in 

Fig. 3   First latent variables from the parietal least squares analysis. Notes: Each column represents each diagnosis group, Row 1 AD, 
Row 2 MCI, and Row 3 NC. The first row shows the contributing factors loadings, while the second row shows the cognitive domains 
for the first latent variables. NC normal controls, MCI mild cognitive impairment, AD Alzheimer’s disease

Table 2   Linear regression model results showing differences between NCs, MCI, and AD

* Results that are significant when uncorrected and bolded values represent those that remained significant after correction for multi-
ple comparisons

Frontal Temporal Parietal Occipital

T stat p T stat p T stat p T stat p

WMH
  NC vs MCI 5.57  < .001* 4.93  < .001* 5.07  < .001* 3.25 .001*
  NC vs AD 7.66  < .001* 5.61  < .001* 6.60  < .001* 4.76  < .001*
  MCI vs AD 12.18  < .001* 3.60 .057 7.85 .005* 5.48 .019*
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NC for all regions except total deep WMH, and total 
PV WMH (t belongs to [3.27–6.03], p < 0.001, i.e., 
decreases in executive functioning were associated 
with increases in WMH burden in all regions). When 
examining the WMH by diagnosis interaction for 
executive functioning, there was a significant inter-
action between MCI and WMH load in all regions 

and measures except total deep WMH (t belongs to 
[3.01–6.51], p < 0.001), whereas the interactions with 
AD were not significant in any region (p > 0.05). 
That is, the slopes of changes in executive function-
ing score associated with WMHs were significantly 
steeper in MCI (for all regions) but not AD compared 
to NCs (Fig. 4, second row).

Table 3   Linear regression model results showing differences between NCs, MCI, and AD across different WMH measures

* Results that are significant when uncorrected and bolded values represent those that remained significant after correction for multi-
ple comparisons

Total WMH Total deep WMH Total PV WMH

T stat p T stat p T stat p

WMH
  NC vs MCI 5.50  < .001* 1.59 0.11 6.74  < .001*
  NC vs AD 7.29  < .001* 1.50 0.13 7.23  < .001*
  MCI vs AD 10.07 .002* 0.09 0.76 4.65 .03*

Table 4   Linear mixed model results showing interactions between cognition and WMH at all regions of interest for NCs, MCI, and AD

* Results that are significant when uncorrected and bolded values represent those that remained significant after correction for 
multiple comparisons. WMH white matter hyperintensity, MCI mild cognitive impairment, AD Alzheimer’s disease, ADAS13 
Alzheimer’s Disease Assessment Scale-13, RAVLT Ray’s Auditory Verbal Learning test, TMT-B Trail Making Test-B, Perc-
forgetting percent forgetting

Frontal Temporal Parietal Occipital

T stat p T stat p T stat p T stat p

ADAS13
  WMH 4.58  < .001* 1.74 .08 4.68  < .001* 3.64  < .001*
  MCI:WMH 12.18  < .001* 10.45  < .001* 11.84  < .001* 12.10  < .001*
  AD:WMH 0.86 0.39 1.53 0.12 2.18 0.03* 1.64 0.10

TMT-B
  WMH 5.10  < .001* 3.27 .001* 5.46  < .001* 4.53  < .001*
  MCI:WMH 5.96  < .001* 6.23  < .001* 6.41  < .001* 6.51  < .001*
  AD:WMH  − 1.26 .20 0.36 .71 0.51 .60 1.00 .31

RAVLT-immediate
  WMH  − 5.78  < .001*  − 3.36  < .001*  − 5.98  < .001*  − 3.90  < .001*
  MCI:WMH  − 3.74  < .001*  − 3.42  < .001*  − 3.78  < .001*  − 4.07  < .001*
  AD:WMH 2.04 .04  − 0.61 .54 1.05 .29 0.25 .79

RAVLT-learning
  WMH  − 4.52  < .001*  − 3.61  < .001*  − 5.81  < .001*  − 4.49  < .001*
  MCI:WMH 0.77 .43 0.85 .39 1.62 .10 0.91 .36
  AD:WMH 2.93 .003* 2.82 .005* 3.35  < .001* 3.53  < .001*

RAVLT-Perc-forgetting
  WMH 5.00  < .001* 3.26 0.001* 5.04  < .001* 4.40  < .001*
  MCI:WMH  − 0.23 0.81  − 0.72 0.47  − 1.12 0.26  − 0.57 0.56
  AD:WMH  − 2.21 0.03*  − 1.75 0.08  − 1.87 0.07  − 1.99 0.05
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For memory, as measured by RAVLT (immediate, 
learning, and percent forgetting), there was a signifi-
cant association with WMH in NC for all regions (t 
belongs to [− 6.43–5.56], p < 0.001) except total PV 
WMHs. For NC, increased WMH load was associ-
ated with poorer memory performance in all memory 

measures. When examining the WMH by diagnosis 
interaction for RAVLT, there was a significant inter-
action for MCI and all WMH regions and PV WMHs 
for RAVLT immediate (t belongs to  [−3.42– − 4.18], 
p < 0.001). For MCI, the slopes of changes in RAVLT 
immediate were associated with changes in WMH 

Fig. 4   Figures showing the interactions between cognition and WMH at all regions of interest for NCs, MCI, and AD. Notes: WMH 
white matter hyperintensity, MCI mild cognitive impairment, AD Alzheimer’s disease, ADAS13 Alzheimer’s Disease Assessment 
Scale-13, RAVLT Ray’s Auditory Verbal Learning test, TMT-B Trail Making Test-B, Perc-forgetting percent forgetting
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that were significantly steeper than NCs in all regions 
(Fig.  4, third row). For RAVLT learning, there was 
a significant interaction between MCI and total deep 
WMHs (t = 2.45, p = 0.01) but not for total PV or 
regional WMHs. For RAVLT percent forgetting, there 
was a significant interaction between MCI and total 
PV WMHs (t = 2.40, p = 0.01) but not for total deep 
or regional WMH. AD interaction with WMH bur-
den was not significant in any region (p > 0.05) for 
RAVLT immediate. AD significantly interacted with 
WMH across all regions except total PV WMH meas-
ures (t belongs to [2.82–3.56], p < 0.005) for RAVLT 
learning, although in the opposite direction, indicat-
ing that while WMH burden significantly impacted 
change in RAVLT learning scores for the NCs, this 
was not the case in the AD group (note the differ-
ences in the slopes in Fig.  4, row 4). For MCI, the 
slopes of changes in RAVLT learning were asso-
ciated only with changes in total deep WMH. AD 

significantly interacted with WMH in the frontal 
region (t =  − 2.21, p = 0.03) and total (t =  − 2.36, 
p = 0.02) for RAVLT percent forgetting, but again in 
the opposite direction, indicating a significantly less 
steep slope in the AD group compared with the NCs. 
The less steep slopes for AD in comparison with the 
NC are likely due to the fact that the AD group has 
reached the ceiling on poor performance, as reflected 
in the much higher intercept values for ADAS13, 
TMT-B, and RAVLT percent forgetting (for which 
a higher score indicates poorer performance), and 
lower values for RAVLT immediate and learning (for 
which a lower score indicates poorer performance).

It should also be noted that all models were 
repeated including risk factors (diabetes, hyper-
tension, and BMI) as additional covariates and we 
obtained similar results in terms of effect size and 
significance. We thus opted to include results from 
the models that do not include the risk factors.

Table 5   Linear mixed model results showing interactions between cognition and WMH across all measures of interest for NCs, 
MCI, and AD

* Results that are significant when uncorrected and bolded values represent those that remained significant after correction for 
multiple comparisons. WMH white matter hyperintensity, MCI mild cognitive impairment, AD Alzheimer’s disease, ADAS13 
Alzheimer’s Disease Assessment Scale-13, RAVLT Ray’s Auditory Verbal Learning test, TMT-B Trail Making Test-B, Perc-
forgetting percent forgetting

Total WMH Total deep WMH Total PV WMH

T stat p T stat p T stat p

ADAS13
  WMH 5.33  < .001* 1.26 .20  − 0.66 .51
  MCI:WMH 12.55  < .001* 2.12 .03* 8.46  < .001*
  AD:WMH 1.44 .15  − 1.04 .29 1.95 .05

TMT-B
  WMH 6.03  < .001* 2.54 .01 0.62 .53
  MCI:WMH 6.30  < .001* 0.90 .36 3.01 .002*
  AD:WMH  − 0.62 .53  − 1.61 .10 0.52 .60

RAVLT-immediate
  WMH  − 6.43  < .001*  − 3.09 .002*  − 0.38 .70
  MCI:WMH  − 3.70  < .001* 0.63 .52  − 4.18  < .001*
  AD:WMH 1.77 .07 2.92 .003*  − 0.70 .48

RAVLT-learning
  WMH -5.64  < .001*  − 3.20 .04  − 0.80 .42
  MCI:WMH 1.55 .12 2.45 .01*  − 0.96 .33
  AD:WMH 3.56  < .001* 2.20 .03 1.09 .27

RAVLT-Perc-forgetting
  WMH 5.56  < .001* 2.89 .004*  − 1.95 .05
  MCI:WMH  − 0.95 .38  − 1.99 .04 2.40 .01*
  AD:WMH  − 2.36 .02*  − 1.94 .05 0.72 .47
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Discussion

The relationship between WMH and future cogni-
tive decline in aging and cognitive impairment is 
well established. However, the association between 
cognitive changes and WMH in specific regions 
is relatively unexplored and inconsistent. Further-
more, whether cognitive changes are influenced dif-
ferently by WMHs in aging vs MCI/AD is relatively 
unknown. The current study was designed to (1) 
investigate the regional accumulation of WMH bur-
den in cognitively  healthy older adults, adults with 
MCI, and adults with AD and (2) examine the rela-
tionship between change in WMH burden and change 
in cognitive functioning in each group. The study also 
investigated the impact of regional WMH on cogni-
tion across groups. The findings from the present 
study show that MCI and AD had significantly more 
WMH burden in all regions compared to NCs. In con-
trast to NCs, smaller changes in WMH burden in all 
regions result in a higher impact on declines in global 
functioning, executive functioning, and RAVLT 
immediate scores in MCI, as reflected by the steeper 
slopes observed in MCI.

Compared with the NCs, MCI and AD had 
increased WMH load in all regions as well as in the 
whole brain analysis. Research has similarly shown 
an increase in WMH burden at each progressive stage 
of cognitive decline [6, 10, 11]. These findings sug-
gest that an increase in widespread WMH pathol-
ogy occurs in MCI and AD. When examining group 
WMH differences regionally, studies have typically 
observed increased WMH in MCI and AD compared 
to NC in all regions [6, 10, 11]. In line with previ-
ous reports, we found a disproportionately greater 
prevalence of normalized WMHs in the parietal lobe 
for the AD group. A larger parietal difference is to be 
expected because parietal WMHs are reflective of AD 
pathology as opposed to frontal WMHs which are 
more reflective of normal aging changes [14, 16, 44].

Several previous studies have observed an associa-
tion between cognitive functioning and WMH burden 
in aging, cognitive decline, MCI, and AD. However, 
the results of these studies have been inconsistent and 
most examine total instead of regional WMH burden 
[12, 17, 19–21, 23, 24]. Our results show that change 
in cognition (global functioning, executive func-
tioning, and memory) for NCs was associated with 
total, frontal, temporal, parietal, and occipital WMH 

burden. People with MCI had an increased change 
in cognition, which was associated with WMHs, that 
was above what was observed in NC for all cognitive 
domains, except two components of memory (i.e., 
RAVLT learning and RAVLT percent forgetting). 
That is, MCI had increased slopes compared to NC, 
for all regions and all domains except RAVLT learn-
ing and percent forgetting. When examining people 
with AD, there were fewer interactions between cog-
nition and WMHs.

The results also showed a greater regional asso-
ciation between cognitive functioning and WMH 
burden. Compared to NCs, AD only had steeper 
slopes (i.e., increased change in cognition asso-
ciated with WMHs) for ADAS-13 in the parietal 
region. For RAVLT percent forgetting and learning, 
AD exhibited a less steep slope than NCs (in only 
total and frontal regions) (Fig.  4). The less steep 
slope observed in AD compared to NCs was not 
unexpected, because the trajectories inevitably flat-
ten out when the performance of all the participants 
in the AD group falls in the saturation range of the 
cognitive scores (see the estimated trajectories for 
RAVLT percent forgetting as an example — last row 
in Fig. 4 — for which the AD group started from an 
average baseline score of 88.96 — Table 1, without 
much further range remaining to detect worsening 
performance). That is, the AD participants perform 
so poorly that the ceiling is reached at baseline; 
therefore, there is less change in scores over time. 
This interpretation could explain why other studies 
have observed minimal associations in AD between 
cognition and WMHs [12, 22, 23]. These findings 
suggest WMHs are associated with increased cog-
nitive decline in early aging and prodromal AD 
(MCI), but only slightly related to changes in AD as 
detectable by the cognitive batteries currently used. 
Another potential interpretation that would explain 
the differences in slopes across the three groups 
pertains to the presence and impact of other pathol-
ogies (i.e., amyloid, tau, and hippocampal neuro-
degeneration) which may be more strongly related 
with cognitive deterioration in participants with AD 
than WMHs. In other words, increased WMH bur-
den contributes to early cognitive decline in aging, 
but the acceleration in cognitive deterioration, asso-
ciated with smaller volumetric increases in WMHs, 
experienced by AD participants, could be driven by 
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other pathological changes in the brains, which are 
superimposed to the WMHs.

To examine the influence of hippocampal atrophy, 
we repeated these analyses adding hippocampal vol-
ume as a covariate. The current results obtained did 
not change to reflect the influence of neurodegenera-
tion; therefore, these results here likely reflect ceil-
ing effects in AD performance. The AD group had a 
smaller sample size than the NC and MCI. To ensure 
that the findings were not impacted by sample size 
differences between the three groups, we repeated the 
analyses, down sampling the two larger groups to the 
same sample size as the smallest group, and obtained 
similar results (in terms of significance of the findings 
as well as model estimates).

Future research should further explore the limita-
tions of this study. Participants in the ADNI dataset 
have relatively high education levels and thus may 
have high cognitive reserve compared to other popula-
tions. Future research should aim to examine the influ-
ence of WMHs in a population with lower education to 
determine whether high education levels are protective 
against cognitive decline caused by WMH burden. The 
AD participants were in the saturation range of the cog-
nitive scores, and therefore, the memory test employed 
here (RAVLT) was not able to capture further worsen-
ing of this groups’ cognition. Future research should 
employ other cognitive batteries that can better capture 
cognitive change in those with AD. Several other cog-
nitive tests and domains should be examined to better 
understand the associations between WMH and cog-
nitive change. For example, the Montreal Cognitive 
Assessment (MoCA) which is sensitive to cognitive 
changes in MCI and AD [45] may provide additional 
insight into the relationship between global cognition 
and WMHs. However, over 50% of our sample was 
missing MoCA scores and thus MoCA could not be 
examined in this study.

In addition to these limitations, there are a few 
strengths of this study that should also be noted. The 
image processing tools used to analyze the data in this 
study were previously designed and validated for use 
in multi-center and multi-scanner studies. These meth-
ods have been extensively used to examine neurode-
generation changes in aging, MCI, and dementia [9, 
46]. The sample size used in this study is very large, 
with an average of 4.7 follow-up timepoints per par-
ticipant. The large sample size and follow-up periods 
improve our statistical power and confidence that the 

results observed here are an accurate representation 
of the association between WMH changes with cogni-
tion. Finally, our study limited the MCI and dementia 
patients to those who had confirmed amyloid positiv-
ity (using either PET or CSF). This approach is impor-
tant to show that the dementia participants had an AD 
diagnosis and that those with MCI were on the AD 
trajectory. This approach of focusing on only those on 
the AD trajectory may also explain why some of our 
results do not match other studies.

Conclusion

The findings from this study show a strong rela-
tionship between WMH burden changes and cog-
nition in aging and MCI, with fewer results in AD. 
WMHs were associated with global cognition, execu-
tive functioning, and memory in aging and MCI. A 
greater prevalence of WMH burden was observed in 
people with AD in the parietal region. Furthermore, 
increased change in global cognition associated with 
WMH burden was also observed for AD (compared 
to NC), but only in the parietal region. These findings 
suggest that regional and total WMHs may be a sensi-
tive measure of progressive changes in global cogni-
tion, executive functioning, and memory in aging and 
prodromal AD but not in late-stage AD. The regional 
association between global cognition in AD suggests 
that the parietal lobe may be a more specific marker 
for progressive WMH change in AD. Future work is 
needed to determine if WMHs can predict cognitive 
decline in healthy older adults and conversion to AD.
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