Table 2.
Control parameters used for the development and application of soft computing techniques.
Parameters | Value | |
---|---|---|
GradientBoosting | n-estimators | 45 |
Max depth | 7 | |
Learning rate | 0.10 | |
Subsample | 1 | |
Alpha | 0.90 | |
Min samples split | 2 | |
XGBoost | n-estimators | 99 |
Max depth | 9 | |
Learning rate | 0.07 | |
Subsample | 0.75 | |
Gamma | 0 | |
Col sample by tree | 1 | |
CatBoost | Depth | 8 |
Learning rate | 0.07 | |
Iterations | 700 | |
Best model min trees | 1 | |
Bootstrap type | MVS | |
Leaf estimation method | Newton |