Skip to main content
. 2023 Jan 30;13:1666. doi: 10.1038/s41598-023-28770-2

Table 2.

Control parameters used for the development and application of soft computing techniques.

Parameters Value
GradientBoosting n-estimators 45
Max depth 7
Learning rate 0.10
Subsample 1
Alpha 0.90
Min samples split 2
XGBoost n-estimators 99
Max depth 9
Learning rate 0.07
Subsample 0.75
Gamma 0
Col sample by tree 1
CatBoost Depth 8
Learning rate 0.07
Iterations 700
Best model min trees 1
Bootstrap type MVS
Leaf estimation method Newton