Skip to main content
. 2023 Jan 30;13:1666. doi: 10.1038/s41598-023-28770-2

Table 4.

Performance of the XGBoost model in comparison with the LSSVM model.

Models Train Test Overall
RMSE (cP) R2 AARD (%) RMSE (cP) R2 AARD (%) RMSE (cP) R2 AARD (%)
Under saturated XGBoosta 0.040 0.999 0.576 0.048 0.999 1.194 0.042 0.999 0.699
LSSVMb 0.030 0.999 1.500 0.040 0.999 1.400 0.040 0.999 1.400
Saturated XGBoosta 0.029 0.998 2.058 0.083 0.981 5.416 0.040 0.994 2.730
LSSVMb 0.310 0.988 13.500 0.770 0.838 13.200 0.380 0.979 13.480
Dead oil XGBoosta 0.632 0.928 7.018 0.748 0.867 12.542 0.431 0.931 7.982
LSSVMb 1.780 0.959 21.300 1.650 0.914 19.700 1.820 0.955 21.200

aXGBoost model (This Study).

bLSSVM model19.