Table 4.
Performance of the XGBoost model in comparison with the LSSVM model.
Models | Train | Test | Overall | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (cP) | R2 | AARD (%) | RMSE (cP) | R2 | AARD (%) | RMSE (cP) | R2 | AARD (%) | ||
Under saturated | XGBoosta | 0.040 | 0.999 | 0.576 | 0.048 | 0.999 | 1.194 | 0.042 | 0.999 | 0.699 |
LSSVMb | 0.030 | 0.999 | 1.500 | 0.040 | 0.999 | 1.400 | 0.040 | 0.999 | 1.400 | |
Saturated | XGBoosta | 0.029 | 0.998 | 2.058 | 0.083 | 0.981 | 5.416 | 0.040 | 0.994 | 2.730 |
LSSVMb | 0.310 | 0.988 | 13.500 | 0.770 | 0.838 | 13.200 | 0.380 | 0.979 | 13.480 | |
Dead oil | XGBoosta | 0.632 | 0.928 | 7.018 | 0.748 | 0.867 | 12.542 | 0.431 | 0.931 | 7.982 |
LSSVMb | 1.780 | 0.959 | 21.300 | 1.650 | 0.914 | 19.700 | 1.820 | 0.955 | 21.200 |
aXGBoost model (This Study).
bLSSVM model19.