Skip to main content
. 2023 Jan 30;13:1666. doi: 10.1038/s41598-023-28770-2

Table 5.

Performance of the XGBoost model in comparison with the DTs model.

Models Train Test Overall
RMSE (Pa.s.) R2 AARD (%) RMSE (Pa.s.) R2 AARD (%) RMSE (Pa.s.) R2 AARD (%)
Under saturated XGBoosta 4.038E−5 0.999 0.576 4.830E−5 0.999 1.194 4.198E−5 0.999 0.699
DTs NR NR NR NR NR NR 1.000E−4 0.999 2.255
Saturated XGBoosta 2.956E−5 0.998 2.058 8.305E−5 0.981 5.416 4.026E−50 0.994 2.730
DTsb NR NR NR NR NR NR 1.000E−4 0.996 4.485
Dead oil XGBoosta 6.320E−4 0.928 7.018 7.481E−4 0.867 12.542 4.315E−4 0.931 7.982
DTsb NR NR NR NR NR NR 4.000E−5 0.992 6.524
All data XGBoosta 2.525E−5 0.998 1.212 5.437E−5 0.992 2.728 3.107E−5 0.997 1.515
DTsb 1.000E−4 0.997 2.688 1.000E−4 0.994 6.148 1.000E−4 0.997 3.379

aXGBoost model (This Study).

bDTs model20.

NR Not Reported.