Table 5.
Performance of the XGBoost model in comparison with the DTs model.
Models | Train | Test | Overall | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (Pa.s.) | R2 | AARD (%) | RMSE (Pa.s.) | R2 | AARD (%) | RMSE (Pa.s.) | R2 | AARD (%) | ||
Under saturated | XGBoosta | 4.038E−5 | 0.999 | 0.576 | 4.830E−5 | 0.999 | 1.194 | 4.198E−5 | 0.999 | 0.699 |
DTs | NR | NR | NR | NR | NR | NR | 1.000E−4 | 0.999 | 2.255 | |
Saturated | XGBoosta | 2.956E−5 | 0.998 | 2.058 | 8.305E−5 | 0.981 | 5.416 | 4.026E−50 | 0.994 | 2.730 |
DTsb | NR | NR | NR | NR | NR | NR | 1.000E−4 | 0.996 | 4.485 | |
Dead oil | XGBoosta | 6.320E−4 | 0.928 | 7.018 | 7.481E−4 | 0.867 | 12.542 | 4.315E−4 | 0.931 | 7.982 |
DTsb | NR | NR | NR | NR | NR | NR | 4.000E−5 | 0.992 | 6.524 | |
All data | XGBoosta | 2.525E−5 | 0.998 | 1.212 | 5.437E−5 | 0.992 | 2.728 | 3.107E−5 | 0.997 | 1.515 |
DTsb | 1.000E−4 | 0.997 | 2.688 | 1.000E−4 | 0.994 | 6.148 | 1.000E−4 | 0.997 | 3.379 |