
Genome analysis

JBrowse Jupyter: a Python interface to JBrowse 2

Teresa De Jesus Martinez 1, Elliot A. Hershberg 1, Emma Guo1,

Garrett J Stevens 1, Colin Diesh 1, Peter Xie1, Caroline Bridge2, Scott Cain2,

Robin Haw2, Robert M. Buels1, Lincoln D. Stein2 and Ian H. Holmes1,*

1Department of Bioengineering, Stanley Hall, University of California, Berkeley, CA 94720, USA and 2Adaptive Oncology, Ontario

Institute for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada

*To whom correspondence should be addressed.

Associate Editor: Tobias Marschall

Received on May 17, 2022; revised on December 10, 2022; editorial decision on January 5, 2023; accepted on January 16, 2023

Abstract

Motivation: JBrowse Jupyter is a package that aims to close the gap between Python programming and genomic
visualization. Web-based genome browsers are routinely used for publishing and inspecting genome annotations.
Historically they have been deployed at the end of bioinformatics pipelines, typically decoupled from the analysis
itself. However, emerging technologies such as Jupyter notebooks enable a more rapid iterative cycle of develop-
ment, analysis and visualization.

Results: We have developed a package that provides a Python interface to JBrowse 2’s suite of embeddable compo-
nents, including the primary Linear Genome View. The package enables users to quickly set up, launch and custom-
ize JBrowse views from Jupyter notebooks. In addition, users can share their data via Google’s Colab notebooks,
providing reproducible interactive views.

Availability and implementation: JBrowse Jupyter is released under the Apache License and is available for down-
load on PyPI. Source code and demos are available on GitHub at https://github.com/GMOD/jbrowse-jupyter.

Contact: ihh@berkeley.edu

1 Introduction

Genome browsers are popular tools for displaying genome annota-
tions (Kent et al., 2002). Web-based browsers, particularly
JavaScript tools such as IGV.js (Robinson et al., 2023) and JBrowse
2 (Diesh et al., 2022), allow for a more responsive user experience
by performing computation on the client, reducing server and net-
work load. These genome browsers are versatile and widely adopted
(Wang et al., 2013).

Although JBrowse is straightforward to deploy, the need to ad-
minister a web server could present a barrier to entry for some users,
particularly those more comfortable working within Python or R.
Motivated by this, we recently released JBrowseR, a version of
JBrowse designed to run in an R environment or a Shiny app
(Hershberg et al., 2021). This was enabled by the React-based archi-
tecture of JBrowse 2, which allows JBrowse components to be
re-used programmatically.

Python, similarly to R, is one of the most widely used program-
ming languages in computational biology. The Jupyter notebook, a
web-based interactive environment for Python (and other languages),
is one of the leading open-source platforms for data analysis (Cock
et al., 2009; Shen, 2014). Several tools exist for interacting with gen-
ome browsers in Python. D3GB and IGV.js’s integration with Dash
provide interactive linear displays of the genome whereas pygbrowse
(https://github.com/phageghost/python-genome-browser) provides

static snapshots (Barrios and Prieto, 2017; Robinson et al., 2023).
Mango, Gosling’s Python library Gos and wrappers to IGV.js includ-
ing ipyigv (https://github.com/QuantStack/ipyigv) and igv-notebook
(https://github.com/igvteam/igv-notebook) also exist and provide inte-
gration to Jupyter notebooks (L’Yi et al., 2022; Manz et al., 2022;
Morrow et al., 2018). However, some of these tools either have lim-
ited extensibility and or customization capabilities including limited
color theming, text indexing for text searching and support of add-
itional views such as the Circular Genome View.

To broaden the options for users of genome browsers in Python
environments, we created JBrowse Jupyter, a Python package for
configuring, creating and launching JBrowse views from Jupyter
notebooks and other Python applications. JBrowse Jupyter uses the
Dash framework, a bridge from React components to Python code
(Hossain, 2019). The JBrowse Jupyter package currently allows
users to embed two of the most popular JBrowse 2 views: the Linear
Genome View and the Circular Genome View. The package aims to
make it easier for users to configure genome browsers in Jupyter
notebooks and to enable interactive exploration and visualization of
genomic data from within Python.

2 Materials and methods

JBrowse Jupyter makes use of Dash JBrowse, a collection of Dash
components for JBrowse 2 views, to render React components inside

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btad032

https://doi.org/10.1093/bioinformatics/btad032

Advance Access Publication Date: 17 January 2023

Applications Note

https://orcid.org/0000-0002-1947-9539
https://orcid.org/0000-0003-2068-3366
https://orcid.org/0000-0002-9781-5323
https://orcid.org/0000-0003-2629-7570
https://github.com/GMOD/jbrowse-jupyter
https://github.com/phageghost/python-genome-browser
https://github.com/QuantStack/ipyigv
https://github.com/igvteam/igv-notebook
https://academic.oup.com/


Jupyter notebooks. Dash wraps JBrowse’s React embeddable com-
ponents (such as the Linear Genome View) for use in any Python
Dash environment. JBrowse Jupyter’s integration with Dash and
Dash callbacks makes it possible to control the state of the JBrowse
views from the controlling Python application. Python code can con-
trol a JBrowse instance by using the JBrowseConfig API. Examples
of supported operations include updating an assembly for viewing,
adding tracks, deleting tracks, enabling text searching and changing
default view settings. JBrowse Jupyter supports loading track data
from files or from Pandas DataFrames. Most genomic data file for-
mats are supported including FASTA, BAM, BigWig, CRAM,
GFF3, VCF and more.

Users can take advantage of the existing tools available for
Jupyter notebooks. Visual Studio Code provides a Jupyter extension
that allows users to create and run cells with the embedded genome
browser in their development environments. With Binder and
Colab, the community is able to share reproducible notebooks with
configured JBrowse views (Bisong, 2019; Project Jupyter et al.,
2018).

The package is distributed by the Python Package Index and is
compatible with Python 3.6 and higher. The project follows con-
tinuous integration and continuous delivery practices that enable
automated deployments. Flake8 and Pytest support automatic test-
ing and linting to ensure code quality, and Sphinx automatically
generates documentation.

3 Discussion

JBrowse Jupyter is a flexible tool that reduces the effort required to
embed an interactive genome browser in a Jupyter notebook: a user
can launch a JBrowse View with fewer than 10 lines of code (Fig. 1).

We provide several Python Dash applications and Jupyter note-
books along with source code to show the versatility of JBrowse
Jupyter. The browser.ipynb notebook demonstrates how to add a
track from a Pandas DataFrame, add tracks in bulk from distinct
data files and specify initial location in the configuration of the
Linear Genome View. The local_support.ipynb notebook demon-
strates how to utilize local data to configure JBrowse views by lever-
aging the development http server provided by JBrowse Jupyter.

To illustrate application to real data, we provide the skbr3.ipynb
Jupyter notebook that visualizes genome sequencing and annotation
data from the SK-BR-3 cell line (Nattestad et al., 2017). This demo

shows how to create an application that allows users to navigate
around genomic locations involved in gene fusions.

Funding

This work was supported by the National Institutes of Health (NIH)

[HG004483 and GM080203].

Conflict of Interest: none declared.

Data availability

The package is available for download on PyPI. Source code and
demos can be found at https://github.com/GMOD/jbrowse-jupyter.

References

Barrios,D. and Prieto,C. (2017) D3GB: an interactive genome browser for R,

Python, and WordPress. J. Comput. Biol., 24, 447–449.

Bisong,E. (2019) Google colaboratory. In: Building Machine Learning and

Deep Learning Models on Google Cloud Platform. Apress, Berkeley, CA.

pp. 59–64. https://doi.org/10.1007/978-1-4842-4470-8_7.

Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for compu-

tational molecular biology and bioinformatics. Bioinformatics, 25,

1422–1423.

Diesh,C. et al. (2022) JBrowse 2: a modular genome browser with views of

synteny and structural variation. BioRxiv, Cold Spring Harbor Laboratory,

https://doi.org/10.1101/2022.07.28.501447.

Hershberg,E.A. et al. (2021) JBrowseR: an R interface to the JBrowse 2 gen-

ome browser. Bioinformatics, 37, 3914–3915.

Hossain,S. (2019) Visualization of bioinformatics data with dash bio. In:

Proceedings of the 18th Python in Science Conference. SciPy. https://doi.

org/10.25080/Majora-7ddc1dd1-012.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res.,

12, 996–1006.

L’Yi,S. et al. (2022) Gosling: a grammar-based toolkit for scalable and inter-

active genomics data visualization. IEEE Trans. Vis. Comput. Graph, 28,

140–150.

Manz,T. et al. (2022) GOS: a declarative library for interactive genomics visu-

alization in Python. OSF Preprints. https://doi.org/10.31219/osf.io/yn3ce.

Morrow,A.K. et al. (2018) Mango: distributed visualization for genomic ana-

lysis. BioRxiv, Cold Spring Harbor Laboratory, https://doi.org/10.1101/

360842.

Nattestad,M. et al. (2018) Complex rearrangements and oncogene amplifica-

tions revealed by long-read DNA and RNA sequencing of a breast cancer

cell line. Genome Res., 28, 1126–1135.

Project Jupyter et al. (2018) Binder 2.0 - reproducible, interactive, sharable

environments for science at scale. In: Proceedings of the 17th Python

in Science Conference, pp. 113–120. https://doi.org/10.25080/Majora-

4af1f417-011.

Robinson,J.T. et al. (2023) igv.js: an embeddable JavaScript implementation

of the integrative genomics viewer (IGV). Bioinformatics, 39(1), btac830.

Shen,H. (2014) Interactive notebooks: sharing the code. Nature, 515,

151–152.

Wang,J. et al. (2013) A brief introduction to web-based genome browsers.

Brief. Bioinform., 14, 131–143.

Fig. 1. A close-up of the human genome is displayed by JBrowse 2 in a Colab

notebook

2 T.De Jesus Martinez et al.

https://github.com/GMOD/jbrowse-jupyter
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1101/2022.07.28.501447
https://doi.org/10.25080/Majora-7ddc1dd1-012
https://doi.org/10.25080/Majora-7ddc1dd1-012
https://doi.org/10.31219/osf.io/yn3ce
https://doi.org/10.1101/360842
https://doi.org/10.1101/360842
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011

