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ABSTRACT
Background  High myopia (HM) is a leading cause 
of blindness that has a strong genetic predisposition. 
However, its genetic and pathogenic mechanisms remain 
largely unknown. Thus, this study aims to determine the 
genetic profile of individuals from two large Chinese 
families with HM and 200 patients with familial/sporadic 
HM. We also explored the pathogenic mechanism of HM 
using HEK293 cells and a mouse model.
Methods  The participants underwent genome-
wide linkage analysis and exome sequencing. Visual 
acuity, electroretinogram response, refractive error, 
optical parameters and retinal rod cell genesis were 
measured in knockout mice. Immunofluorescent 
staining, biotin-labelled membrane protein isolation and 
electrophysiological characterisation were conducted in 
cells transfected with overexpression plasmids.
Results  A novel HM locus on Xp22.2-p11.4 was 
identified. Variant c.539C>T (p.Pro180Leu) in GLRA2 
gene was co-segregated with HM in the two families. 
Another variant, c.458G>A (p.Arg153Gln), was identified 
in a sporadic sample. The Glra2 knockout mice showed 
myopia-related phenotypes, decreased electroretinogram 
responses and impaired retinal rod cell genesis. Variants 
c.458G>A and c.539C>T altered the localisation of 
GlyRα2 on the cell membrane and decreased agonist 
sensitivity.
Conclusion  GLRA2 was identified as a novel HM-
causing gene. Its variants would cause HM through 
altered visual experience by impairing photoperception 
and visual transmission.

INTRODUCTION
Refractive error (RE) is the leading cause of 
moderate and severe visual impairment and the 
seventh most prevalent clinical condition glob-
ally.1–3 Four common types of RE are hyperopia, 
myopia, astigmatism and presbyopia, but myopia 
is the dominant RE form.2 3 Currently, there is no 
internationally agreed quantitative threshold for 
HM. WHO indicates the threshold for HM of 
RE  ≤−5.00 diopters (D),4 and the International 
Myopia Institute (IMI) define the HM as RE below 
−6.00 D when ocular accommodation is relaxed.5 
HM is a progressive disorder that begins in early 
childhood and worsens overtime, even after adult-
hood.6 HM can be accompanied by elongated axial 
length, lacquer cracks, retinal atrophy, macular 
holes and neovascularisation, etc, and it is one of 
the leading causes of blindness.7 Myopia and HM 
rates are predicted to reach 49.8% and 9.8%, 

respectively, worldwide by 2050.8 According to 
the twin study, the hereditary of myopia varies 
from 50% to 90%.9 10 To date, next-generation 
sequencing and genome-wide linkage analysis have 
identified 25 HM loci, and 16 causal genes.11 12 
Moreover, genome-wide association studies and 
other association studies have uncovered approxi-
mately 200 myopia-associated loci. However, these 
genetic factors can explain only a minority of HM 
cases, despite its high prevalence in humans.13

The eye is an elastic organ that is enveloped 
by an extracellular matrix (ECM)-rich structure 
called sclera and looks like a ball in the presence 
of intraocular pressure (IOP).14 Abnormal devel-
opment of the eye and ECM are the two widely 
accepted factors causing HM.15–18 On the one 
hand, the genetic or environmental effectors cause 
uncontrolled eye enlargement during early develop-
ment, ultimately leading to HM after birth.17–19 On 
the other hand, the intrinsic and extrinsic factors 
that cause abnormal ECM synthesis and catalysis 
increase the elasticity and decrease the tension of 
the sclera.16 Under these conditions, IOP enlarges 
the eye resulting in HM.11 16 18 However, these 
mechanisms cannot explain the large number of 
patients with HM. Recently, increasing evidence 
has emerged to support the idea that HM can be 
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a visually driven abnormality.20 21 Genetics studies have shown 
that many HM-related genes, such as OPN1LW,22 RDH512 and 
NYX,23 are associated with photopic perception, retinal circuit 
and visual transmission. These findings indicate that impaired 
visual experience, mainly composed of photoperception and 
visual information transmission, may play a vital role in HM 
onset and development.12 15 20 Emmetropisation is a vision-
dependent process that controls the development of RE and eye 
growth.24 Gene mutations that cause impaired visual experience 
may result in overemmetropisation and uncontrolled eyeball 
growth, thereby leading to HM.12 25

Thus, we aimed to explore the genetic mechanisms of HM by 
studying 38 individuals (composed of 18 patients and 20 normal 
subjects) from two unrelated Chinese families with HM and 200 
patients with familial/sporadic HM. Using genome-wide linkage 
analysis combined with exome sequencing (ES) and Sanger 
sequencing screening, we identified two HM-related variants 
in GLRA2 gene (GenBank: NM_002063.4, NP_002054.1): 
c.458G>A (p.Arg153Gln) and c.539C>T (p.Pro180Leu). 
Moreover, we constructed knockout mice using the CRISPR/
Cas9 system and analysed their myopic phenotypes, retinal 
morphology and rod cell differentiation to elucidate the mecha-
nism of HM pathogenesis.

METHODS
Subjects and clinical examination
This study recruited individuals from two unrelated families with 
HM (HM1 and HM2) and 200 patients with familial/sporadic 
HM from the Chinese population. HM1 and HM2 fami-
lies included 8 and 10 patients with HM, respectively, and 10 
asymptomatic subjects each family. Among the 200 patients with 
familial/sporadic HM recruited, the gender ratio was 79:121 
(male:female). In adult subjects, HM was defined using the 
WHO recommended threshold as RE ≤−5.00 D in either eye.5 
Subjects younger than 15 years with moderate myopia (−3.00 
D≤RE˂−5.00 D) were also considered as patients with HM.
All ophthalmological examinations were performed at the 

Second Xiangya Hospital, Central South University. Visual acuity 
and refraction were measured using a LogMAR chart and autore-
fractor (Huvitz HRK-1 Autorefractor, Coburn Technologies, 
Singapore), respectively. The lens and vitreous were measured 
using a slit lamp (Huvitz Slit Lamp HS-5000, Coburn Technol-
ogies, Singapore), retina using an ophthalmoscope (NTZ-OPH-
BXa-RC Neitz Ophthalmoscope, Neitz Instruments, Japan) and 
axial length using an A-scan ultrasound device (ABSolu A/B/S/
UBM Ultrasound Platform, Quantel Medical, France).

Genome-wide linkage analysis and haplotyping
Eighteen samples from the HM1 family were genotyped using 
Illumina iScan system (Illumina, USA) and Illumina HumanCy-
toSNP-12 V.2.1 BeadChip kit. Genotypes were called and quality 
controlled using Illumina GenomeStudio 2011. Genome-wide 
linkage disequilibrium of HM1 family was tested by merlin 
V.1.1.226 under multiple-parameter analysis with ‘High_myopia 
0.001 0.001,0.9,0.99 rare_dominant’ settings. The ‘merlin’ or 
‘minx’ prompt was used to analyse the autosomal or X linked 
linkage disequilibrium separately. Merlin V.1.1.2 drew the haplo-
type of HM1 and HM2 families with the ‘best’ option.

Exome sequencing
The gDNA of HM1-I:2, HM1-II:4, HM1-III:10, HM2-III:4, 
HM2-IV:5 and HM2-IV:6 were analysed through ES as previ-
ously described.27 Briefly, the library was captured using Agilent 

SureSelectXT Human All Exon V4+UTRs probe and sequenced 
on Illumina HiSeq 2000 sequencing system (Illumina) with 
PE100. The reads were then aligned to the human genome 
assembly GRCh37/hg19 using bwa 0.7.10.28 Variants were 
called with GATK 3.2.229 and annotated using ANNOVAR.30

After screening out variants with allele frequency >0.01 
in the gnomAD (https://gnomad.broadinstitute.org/) and 
1000 Genomes Project (https://www.internationalgenome.​
org/) databases, all patients shared non-synonymous variants 
(including single nucleotide variants (SNVs) and insertion-
deletion polymorphisms (indels)) in the consensus coding 
sequence (CCDS), and the canonical splicing sites were 
reserved. Variants within the linkage region were selected for 
co-segregation analysis.

Primer design and co-segregation analysis of the candidate 
variants
All primers were designed using the online software Primer3 
(https://primer3.ut.ee/) based on the human GRCh37/hg19 or 
mouse GRCm38/mm10 assemblies (online supplemental table 
1). PCR and Sanger sequencing were performed to confirm the 
co-segregation status of the candidate variants in the samples of 
HM families and to screen for gene variants in the samples of 
patients with familial/sporadic HM.

Visual acuity and refractive error evaluation of Glra2 
knockout mice
Glra2 knockout mice were developed by zygote injection of 
CRISPR/Cas9 mRNA and a pair of gRNAs flanking the second 
exon of Glra2 gene (GenBank: NM_183427.5), which was 
shared by all isoforms. It was predicted that the deletion of 
this exon would cause a frameshift during Glra2 mRNA trans-
lation. Knockout efficiency was validated using RT-PCR and 
Sanger sequencing of the mRNA extracted from the retina of 
adult knockout mice. All the animals evaluated were male. Visual 
acuity was assessed under 100 lux light intensity following the 
protocol by Prusky et al.31 RE was measured using an eccentric 
infrared photorefractor (custom built) according to the method 
by Schaeffel et al.32

Ocular biometry measuring and electroretinography 
recording
The ocular biometry of Glra2 knockout mice, including corneal 
radius, corneal thickness, chamber depth, lens thickness, vitreous 
depth, retinal thickness and axial length, was measured using 
optical coherence tomography (OCT) following the protocol 
by Zhou (custom built).33 Electroretinography (ERG) recording 
was performed using a six-step workflow following the modi-
fied instructions of the International Society for Clinical Electro-
physiology of Vision. Briefly, mice were dark-adapted for at least 
4 hours and anaesthetised by the intraperitoneal administration 
of ketamine and xylazine mixture. The pupils were then dilated 
with compound tropicamide eye drops and the electrodes were 
placed at their corresponding positions. Dark-adapted scotopic 
0.01, scotopic 3.0, scotopic 10.0 and oscillatory potentials 
(OPs) were recorded sequentially using a RETI-port/scan 21 
system (Q450SCX, Roland Consult, Germany). After 2 min of 
light adaptation, photopic 3.0 and photopic 3.0 flicker 30 Hz 
responses were recorded.

Immunohistofluorescence and H&E staining of mouse retina
Paraffin-embedded mice eyeballs were sagittally sectioned into 
4 µm slices using paraffin microtome (RM2235, Leica Biosystems, 
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Germany). Paraffin sections were dewaxed and rehydrated and 
permeated with 0.1% Triton-X in 1× phosphate-buffered saline 
(PBS) at room temperature. The sections were then blocked 
with 5% bovine serum albumin (BSA) in 1× PBS containing 
0.3M glycine and incubated overnight with a primary antibody 
diluted with 5% BSA in 1× PBS at 4°C. After incubation with a 
fluorescent-conjugated second antibody and the nuclear staining 
with 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI), 
the sections were mounted and captured using a confocal micro-
scope (Leica TCS SP5, Leica Biosystems). The primary antibody 
used was anti-rhodopsin (Cat: ab98887, Abcam, USA).

OCT-embedded eyeballs were sagittally sectioned into 
14 µm slices using a cryostat microtome (CM1850, Leica 
Biosystems). OCT-embedded sections were postfixed with 4% 

paraformaldehyde (PFA) and stained using an H&E staining kit 
according to the manufacturer’s instructions (Cat: ab245880, 
Abcam).

Cell culture and immunofluorescent staining
HEK293 cell line (American Type Culture Collection) was 
cultured in high-glucose Dulbecco’s Modified Eagle Medium 
containing 10% fetal bovine serum (FBS) and transfected with 
wild-type (WT), GLRA2R153Q, GLRA2P180L and GLRA2V341I 
overexpression plasmids using Lipofectamine 2000 reagent 
(Cat: 11668030, Thermo Scientific, USA).
The retina of P5.5 age mice were dissected and dissociated 

using papain and DNase I. The resuspended cells were cultured in 

Figure 1  Genetic studies of high myopia (HM) families and sporadic patients. (A) Pedigree of two HM families and Sanger sequencing of c.458G>A 
(p.Arg153Gln) and c.539C>T (p.Pro180Leu) variants in GLRA2 gene. (B) Genome-wide multipoint linkage analysis of HM1 family. (C) Schematic structure of 
GlyRα2 and three missense variant’s locations. (D) Amino acid conservation alignment of Arg153, Pro180 and Val341. The arrow in the pedigree indicates 
the proband. ‘□’ and ‘○’ symbols present asymptomatic male and female subjects, respectively; ‘■’ and ‘●’ characters stand for male and female patients, 
respectively. Samples selected for exome sequencing (ES) were marked with ‘*’. ‘+’ stands for wild-type allele and ‘-’ refers to c.539C>T allele.
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a Lab-Tek Chamber with minimum essential medium containing 
10% FBS.
The HEK293 and retina cells were washed with 1× PBS, fixed 

with 4% PFA, and then permeated with 0.1% Triton-X in 1× 
PBS or non-permeated with 1× PBS at room temperature. The 
cells were stained with the same procedures used for immuno-
histofluorescence (IHF) staining. The primary antibodies used 
were anti-GlyRα2 (Cat: ab97628, Abcam) and anti-rhodopsin 
(Cat: ab98887, Abcam).

Detection of biotin-labelled membrane proteins of 
transfected HEK293 cells
Membrane proteins were biotinylated following the manual 
instructions of the EZ-Link Sulfo-NHS-LC-Biotinylation kit 
(Cat: 21435, Thermo Scientific). For western blot analysis 
detection, the samples were separated on a 12% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and transferred to a 
polyvinylidene fluoride membrane. The membranes were incu-
bated with a primary antibody overnight at 4°C. The primary 
antibodies used were anti-GlyRα2 (Cat: ab97628, Abcam), 
anti-E-cadherin (Cat: ab15148, Abcam) and anti-GAPDH (Cat: 
ab9484, Abcam). Next, the horseradish peroxidase-conjugated 
secondary antibody was incubated for 1 hour at room tempera-
ture, and the bands were visualised using the ECL substrate.

Electrophysiology experiment
After HEK293 cells were transfected with overexpression plas-
mids, the whole-cell currents were recorded using the HEKA 
EPC9 system (Harvard Bioscience, USA) under voltage-clamp 
mode at −60 mV at 25°C±1°C. The patch-pipette resistance 
was approximately 1–3 MΩ when filled with intracellular buffer, 
and the glycine solutions (0.01 mM to 1 M) were applied by 
the ‘U’ tube incubation system. Extracellular buffer: NaCl 
140.0 mM, KCl 5.0 mM, CaCl2 2.0 mM, MgCl2 1.0 mM, N-2-
hydroxyethylpiperazine-N-ethane-sulphonicacid (HEPES) 10.0 

mM, D-glucose 10.0 mM; pH adjusted to 7.4 with NaOH. Intra-
cellular buffer: CsCl 145.0 mM, MgATP 2.0 mM, CaCl2 2.0 
mM, MgCl2 2.0 mM, ethylene glycol tetraacetic acid 10.0 mM, 
HEPES 10.0 mM; pH adjusted to 7.4 with caesium hydroxide. 
Normalised concentration-response curves were fitted using the 
following equation:

	﻿‍ I/Imax = 1/(1 + (EC50/[glycine])H)‍�
where I/Imax is the normalised current amplitude, EC50 is the 

glycine concentration that evokes half of the maximal response 
and H is the Hill coefficient.

Statistics analysis
The statistical significance of the differences in the OPs, photopic 
a and b wave, photopic 3.0 flicker 30Hz amplitude, normalised 
ocular parameters, retinal layer thickness, visual acuity, and RE 
between Glra2 knockout and WT mice was determined using 
paired t-test with a two-tailed p-value. A two-way analysis of 
variance was used to assess the difference in dark-adapted ERG 
a-wave and b-wave amplitude between Glra2 knockout and WT 
mice. The dose-normalised response was non-linearly regressed 
using a variable slope. Statistical significance was set at p≤0.05.

RESULTS
Clinical characteristics
In HM1 family, patients with HM (figure  1A and table  1) 
presented eye RE ranging from −15.00 to −5.50 D. Fundus 
photography revealed that patients II:2, II:4, III:5 and IV:4 
with bilateral tigroid fundus; patients I:2, II:4 and IV:4 with 
retinal atrophy (figure 2). Moreover, patient III:11 presented a 
decreased dark-adapted ERG response to the scotopic 0.01 b, 
scotopic 3.0 a and b and OP waves (figure 2A,B). In HM2 family, 
patients with HM (figure  1A and table  2) presented eye RE 
ranging from −11.00 to −3.25 D. Among the 200 patients with 

Table 1  Clinical characteristics in HM1 family

ID Sex Age (years) Status

Refraction (D) Axial length (mm)

Fundus Genotype
Ocular Dexter 
(OD)

Oculus 
Sinister 
(OS) OD OS

I:2 F 80–85 Patient −14.00 −14.00 29.12 28.09 Retinal atrophy c.539C>T, Het

II:2 F 60–65 Patient −15.00 −10.00 29.34 27.61 Bilateral tigroid fundus c.539C>T, Het

II:4 F 55–60 Patient −15.00 −15.00 29.94 29.73 Bilateral tigroid fundus, retinal atrophy c.539C>T, Het

II:6 F 55–60 Normal Plano Plano NA NA NA WT

III:2 F 35–40 Normal −2.50 −2.50 NA NA NA WT

III:5 F 30–35 Patient −12.00* −12.00 27.38 28.08 Bilateral tigroid fundus c.539C>T, Het

III:7 F 35–40 Patient −6.00* −6.00 NA NA NA c.539C>T, Het

III:8 M 35–40 Normal −1.00 −1.00 NA NA NA WT

III:9 F 30–35 Normal −0.50 0.00 23.59 23.46 Normal c.539C>T, Het

III:10 F 30–35 Patient −5.75 −5.50 24.75 24.77 NA c.539C>T, Het

III:11 M 25–30 Patient −8.00 −8.00 26.46 26.19 Normal c.539C>T, Hemi

III:12 F 25–30 Normal −2.00 −2.00 NA NA NA WT

III:13 M 15–20 Normal Plano Plano NA NA NA WT

III:14 M 10–15 Normal −1.50 +2.00 26.02 24.16 Normal WT

III:15 F 15–20 Normal Plano Plano NA NA NA WT

IV:2 M 5–10 Normal Plano Plano NA NA NA WT

IV:3 F 5–10 Normal Plano Plano NA NA NA WT

IV:4 M 5–10 Patient −9.00 −9.00 27.48 27.26 Bilateral tigroid fundus, retinal atrophy c.539C>T, Hemi

*LASIK eye surgery 10 years before.
F, female; Hemi, hemizygote; Het, heterozygote; M, male; NA, not applicable; WT, wild-type.
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familial/sporadic HM recruited, eye RE ranged from −33.00 to 
−5.50 D.

c.539C>T (p.Pro180Leu) variant in GLRA2 gene co-segregated 
with high myopia
In HM1 family, all subjects participated in linkage analysis. As 
IV:4 was highly myopic, we proposed his mother III:9 should 
be an obligate carrier. Parametric multipoint linkage analysis 
of HM1 family showed no known HM locus throughout the 
genome. On auto-chromosome, two regions, 5q33.3-q34 and 
8q21.12-q24.13, with a maximum logarithm of odds (LOD) 
score of only 1.008 and 1.39, respectively were identified. In 
addition, we identified a novel highly linked locus of approxi-
mately 24.7 Mb on Xp22.2-p11.4, with a maximum LOD score 
of 2.88, surrounding the marker rs4825340 (figure  1B and 

online supplemental table 2). No known HM causal genes were 
found in this linkage region.
Through ES of patients I:2, II:4 and III:10 from HM1 family, 

we harvested 12.6, 11.4 and 11.3 Gb raw data with mean 
depth of 128, 118 and 121, respectively. We identified 35 483 
combined variants (including SNVs and indels) with a frequency 
below 0.5 in the 1000 Genomes Project by annotation. Finally, 
we got 1192 shared non-synonymous variants within the CCDS 
and canonical splicing sites with a frequency lower than 0.01 in 
the gnomAD_Genome_asn, gnomAD_ExAc_asn and maf1000g_
asn databases. No mutations were identified in the known 
HM-causing genes.
Genome-wide linkage analysis, ES and Sanger sequencing 

revealed that only the rare non-synonymous variant in the linkage 
loci, GLRA2: c.539C>T (p.Pro180Leu), was co-segregated with 

Figure 2  Clinical features of patients in HM1 family. (A) Dark-adapted electroretinography results of asymptomatic subject III:14 and patient III:11. 
(B) Fundus of asymptomatic subject III:9, female patient II:4 and male patient IV:4. HM, high myopia; OP, oscillatory potential.

https://dx.doi.org/10.1136/jmedgenet-2022-108425
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the HM phenotype in HM1 family, and that III:9 was hetero-
zygote (figure 1A). ES and Sanger sequencing data indicate that 
the c.539C>T variant was also co-segregated with HM pheno-
type in HM2 family (figure 1A and table 2). Moreover, II:2 was 
a heterozygote and had normal vision. The haplotypes of the 
ES samples with the c.539C>T variant were then included to 
determine whether the variant was located on the same haplo-
type in both families. We found that HM1 and HM2 families 
had different haplotypes from rs3764879 through c.539C>T to 
rs2229137, suggesting no founder effect (online supplemental 
figure 1A).

Two additional rare variants were identified by screening 
GLRA2 gene in the 200 unrelated patients with familial/sporadic 
HM: c.458G>A (p.Arg153Gln) in sporadic sample M21227 
and c.1021G>A (p.Val341Ile) in IV:1 from HM3 family. Sanger 
sequencing results showed that c.1021G>A variant descended 
from II:3 and III:2 which were emmetropic. Variant c.1021G>A 
did not co-segregated with HM phenotype in HM3 family (online 
supplemental figure 1B). Therefore, variant c.1021G>A may be 
a polymorphism.

Glra2 knockout mice had myopic phenotypes
To further confirm the relationship between GLRA2 gene and 
HM, a Glra2 knockout mouse model was used. Detailed inspec-
tion revealed that Glra2 knockout mice had regular overall 
postnatal developments and that each individual was born 
at a Mendelian ratio without morphological abnormalities. 
Glra2 knockout mice also behaved normally, so did their WT 
littermates.

We evaluated the visual acuity of Glra2 knockout mice 
with a modified Y-maze according to the methods by Prusky 
et al.31 After two training days, all mice passed the test crite-
rion with >80% correction rates in 20–40 sequential trials. 
This result demonstrated that Glra2 knockout mice had regular 

learning and motor abilities. Nevertheless, the visual acuity 
of Glra2 knockout mice was worse than that of their WT 
littermates (knockout: 0.55 cycles per degree (cpd) vs WT: 
0.60 cpd, p<0.05, n=11 pairs) (figure 3A). We measured the 
mice RE according to the protocol by Schaeffel et al.32 Under 
dark adaptation, Glra2 knockout mice had regular pupil size 
(knockout: 2.52±0.04 mm, WT: 2.47±0.06 mm, p>0.05, n=8 
pairs); however, they were more myopic than WT littermates 
(knockout: −3.92±1.34 D, WT: −0.50±0.72 D, p<0.05, n=8 
pairs) (figure 3B).

Glra2 knockout mice had reduced corneal thickness and dark-
adapted electroretinography response
OCT experiments were performed to assess the ocular param-
eters of Glra2 knockout mice and to determine the origin of 
RE and visual acuity reduction. OCT results showed that Glra2 
knockout mice had thinner corneas than their WT littermates 
(knockout: 0.1167±0.0037 mm, WT: 0.1259±0.0037 mm, 
p<0.05, n=8 pairs) (figure 3C). Conversely, other parameters 
such as corneal radius, chamber depth, lens thickness, vitreous 
depth, retinal thickness and axial length were not altered in 
Glra2 knockout mice (online supplemental figure 2A and online 
supplemental table 3). In addition, the thickness and stratifica-
tion of the retina was similar in adult knockout and WT mice 
(online supplemental figure 2B,C).

We evaluated the retinal activity using ERG because GLRA2 
is expressed in the retina and may play a role in the transmis-
sion of visual stimuli. After a dark adaption, Glra2 knockout 
mice presented decreased scotopic a and b waves and OPs wave 
amplitude (figure 3D–E). The photopic results revealed a reduced 
response to flash stimuli at both a and b and flicker wave ampli-
tudes in knockout mice. However, the differences were not statis-
tically significant (online supplemental figure 2D,E and online 

Table 2  Clinical characteristics in HM2 family and sporadic HM patient M21227

ID Sex Age Status

Refraction (D) Axial length (mm)

GenotypeOD OS OD OS

HM2-I:1 M 85–90 Normal Plano Plano NA NA WT

HM2-II:1 M 60–65 Normal Plano Plano NA NA WT

HM2-II:2 F 60–65 Normal Plano Plano NA NA c.539C>T, Het

HM2-II:7 F 55–60 Patient −10.00 −10.00 NA NA c.539C>T, Het

HM2-III:2 F 35–40 Normal Plano Plano NA NA WT

HM2-III:4 F 35–40 Patient −9.00 −9.00 26.2 26.07 c.539C>T, Het

HM2-III:5 M 35–40 Patient −7.50 −6.50 23.71 23.76 c.539C>T, Hemi

HM2-III:6 F 35–40 Normal Plano Plano NA NA WT

HM2-III:7 M 35–40 Patient −6.00 −6.00 NA NA c.539C>T, Hemi

HM2-III:12 F 10–15 Patient −4.00* −4.00 NA NA c.539C>T, Het

HM2-IV:1 M 5–10 Normal Plano Plano NA NA WT

HM2-IV:2 M 15–20 Normal Plano Plano NA NA WT

HM2-IV:3 F 10–15 Normal Plano Plano NA NA WT

HM2-IV:4 M 5–10 Patient −3.25* −3.75 23.62 23.74 c.539C>T, Hemi

HM2-IV:5 F 5–10 Patient −8.00 −11.00 25.27 26.19 c.539C>T, Het

HM2-IV:6 F 1–5 Patient −9.50 −10.00 26.11 26.28 c.539C>T, Het

HM2-IV:7 F 10–15 Patient −9.50 −6.75 26.23 25.00 c.539C>T, Het

HM2-IV:8 F 5–10 Patient −7.75 −9.00 26.32 26.72 c.539C>T, Het

HM2-IV:9 M 5–10 Normal Plano Plano NA NA WT

HM2-IV:10 F 1–5 Normal NA NA NA NA WT

M21227 M 10–15 Patient −13.00 −13.50 28.3 28.17 c.458G>A, Hemi

*Moderate phenotype due to young age.
F, female; Hemi, hemizygote; Het, heterozygote; M, male; NA, not applicable; WT, wild-type.
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supplemental table 4). These results revealed a malfunction in rod 
pathway transduction exclusively in Glra2 knockout mice.

Glra2 defects hampered the retina rod cell genesis in vivo
We performed IHF assays on the retinas of P5.5 mice to assess 
rod genesis by staining the rod cell marker, rhodopsin. Glra2 
defects dramatically decreased the rhodopsin-positive staining in 
the P5.5 mouse retina (figure  4A). To accurately evaluate the 
changes in cell differentiation, we calculated the proportion of 
rhodopsin-positive cells in primarily cultured retinal cells derived 
from P5.5 age mice after immunofluorescent staining with anti-
rhodopsin. Rod cell genesis in Glra2 knockout mice decreased 
by approximately one-quarter (knockout: 19.32%, 95% CI 
18.32% to 20.34%; p<0.001) compared with WT littermates 
(WT: 25.73%, 95% CI 24.68% to 26.79%) (figure 4B,C).

c.458G>A (p.Arg153Gln) and c.539G>T (p.Pro180Leu) variants 
disrupted GlyRα2 membrane location and agonist binding 
affinity
To evaluate the effects of the variants, we transfected HEK293 
cells with WT, GLRA2R153Q, GLRA2P180L and GLRA2V341I 
plasmids. Immunofluorescent results showed that WT and 
GLRA2V341I proteins were expressed and located on the cell 
membranes with a scattered distribution. However, GLRA2R153Q 
and GLRA2P180L proteins were undetectable in the cell membrane 

(online supplemental figure 3A). Isolation of biotin-labelled 
membrane proteins also demonstrated that the membrane local-
isation of GLRA2R153Q and GLRA2P180L proteins was disrupted 
(online supplemental figure 3B).

As GlyRα2 is a membrane protein of the glycine-gated 
chloride channel family, we evaluated whether GLRA2R153Q 
and GLRA2P180L proteins could alter electrophysiological 
features through whole-cell patch experiments using HEK293 
cells. As expected, the dose-response curves of GLRA2R153Q 
and GLRA2P180L shifted rightward compared with those 
of WT. Moreover, the EC50 value of glycine was signifi-
cantly higher in GLRA2R153Q and GLRA2P180L than in WT 
(GLRA2R153Q: 11.550±0.666 mM, p<0.001; GLRA2P180L: 
124.000±11.260 mM, p<0.001; WT: 0.083±0.010 mM). 
Meanwhile, GLRA2V341I only had a slightly elevated EC50 
value (0.211±0.017 mM, p<0.001) compared with WT (online 
supplemental figure 3C). GLRA2R153Q and GLRA2P180L dramat-
ically reduced GlyRα2 sensitivity to glycine and were unlikely 
to be activated in response to the physiological concentration 
of glycine.

DISCUSSION
In this study, we identified the pathogenic variant c.539C>T 
(p.Pro180Leu) in GLRA2 gene, which co-segregated with HM in 
two unrelated Chinese families. The haplotype analysis showed 
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Figure 3  Myopia-related phenotypes of Glra2 knockout (KO) mice. (A) Visual acuity of Glra2 knockout and wild-type (WT) mice. (B) Pupil size and 
refractive error of Glra2 KO and WT mice. (C) Normalised central corneal thickness of Glra2 KO and WT mice. (D) Dark-adapted electroretinography results of 
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no founder effects. These results indicated that c.539C>T was 
mutated separately in HM1 and HM2 families. We also found 
the pathogenic variant c.458G>A (p.Arg153Gln) in a patient 
with sporadic HM. In knockout mice, Glra2 deficiency caused 
myopia. This is the first evidence showing that GLRA2 gene can 
cause HM in humans and mice.

To date, no eye diseases caused by GLRA2 mutations have 
been reported.34 35 GLRA2 is highly expressed in the CNS and 
retina36 37; it encodes the α2 subunit of the glycine receptor 
GlyRα2, which is a ligand-gated chloride channel. In the 
adult mouse retina, GlyRα2 can enhance the excitatory centre 
response through crossover inhibition between the ON and OFF 
pathways,38 which is essential for the contrast encoding of visual 
stimuli.39 Besides myopia, we recorded the decrease of both 
dark-adapted ERG responses and corneal thickness in Glra2 
knockout mice. Moreover, we observed hampered rod genesis 
in the Glra2 knockout mouse retina, in accordance with findings 
in vitro by Young and Cepko.40 GlyRα2 deficiency might cause 
insufficient photoperception and impaired visual transmission 
and processing, resulting in an altered visual experience. And the 
altered visual experience could ultimately lead to HM in both 
humans and mice.13 20 41

Variants c.458G>A (p.Arg153Gln) and c.539C>T 
(p.Pro180Leu) were absent in the gnomAD database and were 
highly conserved among many vertebrate animals (figure 1D). 
Arg153 is located in the first topological domain of GlyRα2 
protein, while Pro180 is enveloped in the first cysteine loop 
domain of GlyRα2 protein (figure  1C). These domains are 
believed to play a crucial role in the agonist and antagonist 
binding and electrophysiological response.42 43 We found that 
both variants can disrupt the membrane location of GlyRα2. 

GLRA2R153Q and GLRA2P180L dramatically reduced GlyRα2 
sensitivity to glycine, so that it would not be activated by the 
physiological concentration of glycine. These results indicated 
that c.458G>A and c.539C>T are pathogenic variants related 
to HM.

Notably, HM1-III:9 and HM2-II:2 subjects were both hetero-
zygotes, which do not manifest HM. Therefore, the pene-
trance of the pathogenic variant c.539C>T in GLRA2 gene is 
incomplete (2/20), as observed in HM families. As GLRA2 is 
located on the X chromosome, we speculated that the incom-
plete penetrance of variant c.539C>T may be caused by skewed 
X-inactivation. However, we failed to detect any differences in 
the inactive proportion of X chromosomes between III:9 and 
other female patients in HM1 family using genomic DNA from 
peripheral blood lymphocyte (online supplemental figure 4). 
Thus, the causes of incomplete penetrance remain to be investi-
gated in more dedicated studies. Moreover, a larger sample size 
is needed to depict the penetrance of c.539C>T in hemizygotes 
and the severity between hemizygotes and age-matched female 
heterozygotes.
Variant c.1021G>A (p.Val341Ile) is located in the topological 

domain between transmembrane domain 3 (TM3) and TM4 of 
GlyRα2 (figure 1C). This rare variant was found in the gnomAD 
database (1.09082e-05). This variant did not co-segregate with 
HM in HM3 family and did not affect GlyRα2’s membrane 
location, but had a slightly increased EC50 value. Considering 
that the glycine concentration at the synapses is estimated to be 
in the millimolar range,44 GLRA2V341I may normally respond to 
the physiological concentration. Therefore, c.1021G>A is not a 
pathogenic variant related to HM.

Figure 4  Immunohistofluorescence staining of mouse retina and immunofluorescent staining of primarily cultured retina cells. (A) Retina rod cell genesis 
in P5.5 age mice of each genotype. Immunohistofluorescence staining of paraffin sections from P5.5 age mouse retina; rod cells stained with anti-Rho are 
shown in red colour, and the nucleus is presented in blue. (B, C) Immunofluorescent staining and statistical results of the primarily cultured cells from P5.5 
age mouse retina. Rho: Rhodopsin, a marker of the rod cell. The errors bar presents a 95% CI. ***P<0.001.
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Variants in GLRA2 gene have been associated with autism 
disorders. Pinto reported an autistic patient with a 151 kb dele-
tion in GLRA2 gene inherited from his mother. Notably, the 
patient, his mother, and his maternal grandfather had HM.35 45 
Variant c.458G>A was also identified in an autistic boy (de novo 
mutation); however, the genotype of his autistic elder sister on 
this allele was WT.35 Additionally, three GLRA2 variants were 
reported in 2650 patients with autism; two were de novo 
and one was maternally inherited (online supplemental table 
5).34 35 46 47 In the current study, sporadic and familial patients 
with GLRA2 variants exhibited normal social, behavioural and 
communication skills with personal contact. The phenotype 
caused by GLRA2 mutations was non-syndromic HM.

Our study had the following limitations: (1) the number of 
sporadic patients recruited was not large enough to evaluate 
the contribution of GLRA2 mutations to HM; (2) the causes 
of incomplete penetrance of c.539C>T (p.P180L) in female 
carriers and whether this phenomenon is common in male hemi-
zygotes are unclear; (3) even though knockout mice showed 
myopia-related phenotypes, we failed to detect significant differ-
ences in axial elongation between Glra2 knockout and WT mice. 
According to Schmucker and Schaeffel,48 the −3.4 D RE change 
observed in our knockout mice would indicate a 19–23 µm axial 
elongation. The axial length of the WT mouse eye is approxi-
mately 3 mm, and it is difficult to obtain statistically significant 
results based on such a large baseline for such a small absolute 
alternation. Alternatively, the myopic RE in knockout mice 
may be attributed to corneal thinning other than elongated 
axial length49 50; (4) although it is evident that Glra2 knockout 
decreased rod cell genesis in the mouse retina, the mechanism 
underlying this phenomenon is unknown. Reduced cell prolif-
eration, increased cell apoptosis and the downstream cascade 
caused by Glra2 knockout should be explored.

In summary, this study demonstrated that GLRA2 is a novel 
HM-causing gene and revealed the importance of extracellular 
glycine-gated chloride channels during HM onset and progres-
sion. In addition, this study added new evidence to previous 
suggestions that abnormal visual experience is a driver for HM 
and that ion channels are involved in this process.13 20 41 None-
theless, more efforts should be made to elucidate the detailed 
HM pathogenic mechanism caused by GLRA2 mutations.
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