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Abstract

Drug-induced liver injury (DILI) is a crucial factor in determining the qualification of potential 

drugs. However, the DILI property is excessively difficult to obtain due to the complex testing 

process. Consequently, an in silico screening in the early stage of drug discovery would help to 

reduce the total development cost by filtering those drug candidates with high risk to cause DILI. 

To serve the screening goal, we apply several computational techniques to predict DILI property, 

including traditional machine learning methods and graph-based deep learning techniques. While 

deep learning models require large training data to tune huge model parameters, the DILI 

dataset only contains a few hundreds of annotated molecules. To alleviate the data scarcity 

problem, we propose a property augmentation strategy to include massive training data with other 

property information. Extensive experiments demonstrate that our proposed method significantly 

outperforms all existing baselines on DILI dataset by obtaining a 81.4% accuracy using cross-

validation with random splitting, 78.7% using leave-one-out cross-validation, and 76.5% using 

cross-validation with scaffold splitting.
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observed are displayed as missing values.
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Introduction

Drug discovery has been a critical research area for years. The development process of 

new drugs is extremely time consuming and resource costly since it usually requires 

a series of complicated in vitro and in vivo experiments.1–3 One major challenge is to 

identify the safety of the potential drug candidates, e.g. filtering the drugs that may cause 

human toxicity. Drug-induced liver injury (DILI) is one of the most fundamental toxicity 

concerns that are undesirable and unpredictable. Several research indicate that traditional 

hepatotoxicity testings on animal models may have distinct outcomes from humans.4–6 

Since animal or human model testings are usually conducted in the late stage of drug 

development, the withdrawal or termination of such disqualified drug candidates would 

sacrifice lots of previous efforts. Therefore, a precise and accurate model to better predict 

DILI in the early stage would be a promising approach to facilitate the development 

progress.

Human toxicity data is extremely hard to collect, since in vivo and in vitro toxicological 

studies cannot provide adequate assessment when the drug candidates are applied on 

human.4–6 Several labeling schemes7–10 have been developed to annotate DILI label for 

certain drugs to provide predictive models with labeled data. Sakatis et al. is based on 

physician desk reference, while others7–9 are coming from case reports and literature. 

Although labeled DILI datasets are available in public, such datasets only contain one or 

two hundreds of drugs, and what is worse, the labeling standards are inconsistent. To tackle 

this problem, FDA develops an annotation scheme to label DILI risk of 1036 FDA-approved 

drugs, and announces the DILIrank11 dataset in 2016. The previous version of DILIrank 

annotates the drugs with Most-DILI concern, Less-DILI concern, and No-DILI concern, 

based on the regulatory professionals assessment.12 The new scheme establishes a more 

detailed verification process dividing the drugs into four categories: Most-DILI concern, 

Less-DILI concer, No-DILI concern, and Ambiguous DILI concern.11 DILIrank is the most 

widely used dataset to develop predictive models of DILI, and has been used in various 

studies.13–16 Lately, FDA further augments DILIrank to DILIst4 with other four literature 

datasets by applying concordance analysis across these five datsets. Until now, DILIst is the 

largest dataset with DILI classification, which contains 1279 drugs. These efforts4,11 provide 

invaluable resource for predicting DILI risk.

DILI prediction can be considered as the application of molecular property prediction, 

which is one of the oldest cheminformatics tasks. Many in silico methods have been 

applied to solve molecular property prediction problem.17–20 These approaches generally 

convert the molecule into a vector representation via different procedures, and then go 

through different machine learning models to predict the label information. The vector 

representation of a molecule is called fingerprints. Traditionally, fingerprints are either 

manually constructed by experts (hand-crafted biologist-guided fingerprints), or calculated 

by a fixed hash function (hash-based fingerprints). The former one is designed by specialists 

based on biological experiments and chemical knowledge. Specific substructures of the 

compounds are considered as functional groups, and their corresponding local features are 

determined based on their properties revealed during experiments or different states.17,18 

E.g., CC(OH)CC appears to have solubility relevant characteristic; thus it has been isolated 

Ma et al. Page 2

Chem Res Toxicol. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as local features to produce fingerprints on solubility related tasks. Hash-based fingerprints 

such as circular fingerprints employ a fixed hash function to extract each layer’s feature of 

a molecule based on the concatenated features of the neighborhood in the previous layer.19 

This type of the fingerprints is non-invertible, so there is no way to check back and modify 

the quality of the fingerprints if the hash function cannot capture enough information, which 

might lead to poor performance in further predictive tasks. To tackle this problem, Le et al. 

recently proposes a reverse-engineering method to reconstruct the molecular structure from 

hash-based fingerprints such as ECFP.19

With the rapid increase of deep learning techniques, recent studies trend to address 

molecular property prediction with such novel models. One promising research interest 

is considering a molecule as a graph, since the atoms of the molecules can be referred 

as the vertexes, and the bonds between atoms as the edges. Neural fingerprints20 are the 

first attempt to learn molecular vector representation based on its graph structure. The 

difference between neural fingerprints and hash-based fingerprints is the replacement of 

the hash function. Neural fingerprints apply a non-linear activated densely connected layer 

to generate the fingerprints. Many other graph-based deep learning models can also be 

applied to represent a molecule by embedding the graph features to a continuous vector.22,23 

Within them, the Message Passing Neural Networks (MPNN)24,25 have achieved notable 

prediction performance. MPNN models recursively update the atom or bond features by 

aggregating message/information from its adjacent atoms or bonds, then employ a readout 

function to pool all updated features of atoms to deliver the global representation of the 

molecule. However, these methods only focus on one single view of the graph topology, 

either atom-central or bond-central. Taking Figure 1 as an example, the left graph is the 

atom-oriented structure of caffeine, and the right one is its bond-oriented representation. 

It is observed that both atom and bond features should be taken into account when 

embedding a molecule graph, e.g., the double bond within the benzene N = C is distinct 

from bond C = O, atom N and C are notably different. Inspired by this insight, we 

propose a fresh perspective of viewing the graph from two aspects in our recent work 

MV-GNNcross,26 which involves both atom messages and bond messages. MV-GNNcross 

model takes the molecular SMILES as input, and use RDKit27 to extract the graph structure 

and the local features associated with each atom and bond. A graph encoder network then 

learns and converts such information into a vector representation of the input molecular 

SMILES. After that, the vector representation is fed into a prediction network to predict 

the property label. Our method outperforms all previous SOTAs on 11 commonly used 

molecular property prediction tasks. Therefore, we employ our graph-based deep learning 

model on DILIrank dataset to classify the DILI label, and have achieved superior prediction 

performance compared with other models including both graph-based deep learning models 

and traditional fingerprints-based models.

Other than that, available labeled DILI drugs are still quite limited for data-hungry deep 

learning models. In order to get better and more stable prediction performance, several 

research have been done from different aspects. Thakkar et al. develops a new annotation 

scheme to augment the drug list with DILI risk. Minerali et al. employs different machine 

learning models on different human toxicity dataset to investigate the corresponding 

prediction performance. Ancuceanu et al. and Mora et al. propose to obtain better prediction 
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results with ensemble computational models and various molecular descriptors. These 

attempts have earned certain achievement, but may still be restricted by the available labeled 

DILI data. To tackle this bottleneck and reinforce the expressive power of deep learning 

model, we propose a property augmentation strategy to utilize MV-GNNcross models along 

with more data by taking advantage of other property information. In particular, we create 

a larger training dataset by combining more drugs with other toxic properties, such as 

PLD28 which measures the organism-level toxicity of compounds. Since graph neural 

network is able to learn molecular vector representation only based on its graph structure 

and the underlying atom/bond level features, more input data shall help generate more 

accurate molecular representation. Moreover, for those properties with more available data, 

deep learning techniques are more likely to obtain better performance. Thus, the correct 

prediction would help promote the entire training including those properties with only few 

samples, such as DILI. In this fashion, we are able to increase the accuracy of DILI to 81.4% 

using cross-validation with random splitting, 78.7% using leave-one-out cross-validation, 

and 76.5% using cross-validation with scaffold splitting, which is regarded as the remarkable 

boost considering the challenges on DILI risk prediction. Detailed methodologies and 

experimental procedures are described in later sections.

Methodologies

We take our recent work MV-GNNcross model as the backbone to implement proposed 

property augmentation method, since MV-GNNcross outperforms other baseline models on 

DILI dataset in extensive experiments. As shown in Figure 2, MV-GNNcross contains two 

principal parts, the Encoder Network and the Prediction Network. The Encoder Network 

transforms the input molecular SMILES into a vector representation based on its graph 

structure, and the Prediction Network is responsible for classifying the binary label of 

certain properties, such as DILI. Beyond that, we employ deep multi-label learning to 

establish proposed method while involving more properties information along with DILI.

Molecular Graph Preliminaries

A molecule can be naturally represented as a graph based on its chemical structure, in 

particular, by taking the atoms as the nodes, and the bonds between atoms as the edges. 

Thus, the molecular graph is denoted as Gm = A, B , where A is a set of the atoms, 

and B is a set of the bonds. Based on such graph structure, the initial features of atoms 

and bonds are extracted as the learning information, and referred as xa and yb. Figure 3 

takes ethionamide as an example to illustrate how a molecule converts to its corresponding 

computational graph.

The initial features for each atom and bond is selected follow the same protocol of Yang 

et al., as shown in Table 1 and Table 2. All the features are one-hot encodings except the 

atomic mass, and are extracted using RDKit.27

Encoder Network

Molecules can be observed from two perspectives, one is that taking the atoms as the centers 

and bonds as the connections,24 while the other one is to consider bonds as the centers and 
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atoms as connections.25 Inspired by multi-view learning,29 MV-GNNcross takes advantage 

of the two perspectives, and design a multi-view framework to generate more informative 

molecular representation. In specific, the encoder network is constructed by two streams, 

atom-oriented and bond-oriented, where each contains one Graph Neural Network (GNN). 

Next, a self-attentive readout mechanism is employed to convert the learned molecular 

feature matrix to a vector representation.

Atom-oriented GNN and Bond-oriented GNN

The Atom-oriented GNN learns the molecular representation by aggregating neighbor 

atoms recursively for several steps, while Bond-oriented GNN establishes similar 

procedure via a bond-central fashion. The generalized GNN can be defined as:

mod + 1 = ∑
η ∈ N o

Ad ℎη
d, μattached

ℎo
d + 1 = Ud ℎo

d, mod + 1 .
(1)

In (1), Ad and Ud represent the neighbor aggregation function and state update function 

respectively. mod + 1 and ℎo
d + 1 are the aggregated message and states vector for entity o at 

d + 1 step respectively. Entity o can be either atoms or bonds. N o  is the neighborhood 

entity set of entity o. µattached is the attached features of entity o during aggregation. In 

Atom-oriented GNN, entity o represents the atoms, µattached denotes the features for the 

connected bonds. The Bond-oriented GNN is formed with a similar implementation by 

considering the bonds as passing centers, and atom features as attached. Specially, entity o 

represents the bonds, and the corresponding bond messages mod + 1 are constructed by bond 

states vector ℎo
d + 1 and attached atom features µattached.

Self-Attentive Readout

The outputs of the two GNN models are the learned feature matrices by regarding molecular 

graph as atom-oriented and bond-oriented. As demonstrated in Figure 2, in order to obtain 

the fixed length of molecular vector representation, a readout transformation is need to 

eliminate the obstacle of size variance and permutation variance. Other than commonly 

used mean-pooling or maxpooling, a self-attentive readout is employed here to generate 

molecular representation associated with different attention weights.30,31 Formally, take a 

output of Atom-oriented GNN Hn as an example, the self-attention over atoms is defined as:

S = softmax W 2tanh W 1Hn , ξn = Flatten SHn
⊤ , (2)

where n is the number of atoms in the molecule. W1 and W2 are learnable matrices, which 

are shared between the two streams to enable message circulation during the multi-view 

training process. Thus, two molecular vectors are generated in a multi-view manner.
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Prediction Network

In MV-GNNcross, we have generated two vectors from the two sub-modules: atom-oriented 

GNN and bond-oriented GNN. These two vectors are fed into two prediction networks 

to make the predictions. Since the two vectors generated via atom-oriented GNN and 

bond-oriented GNN are coming from the same input SMILES, so the predictions should 

be the same. Thus, we employ MSE loss to restrain the training, called disagreement loss. 

Formally, we formulate this molecular property prediction loss as follows:

Lfinal  = Lpred  + λLdis , (3)

where Lpred is the supervised loss for each prediction and Ldis is the disagreement loss 

between two classifiers.

Property Augmentation Learning

DILI dataset only contains a few hundreds of drugs, which is extremely small for deep 

learning. In order to take advantage of the expressive power of deep graph learning models 

such as MV-GNNcross, we demand more information to boost the training. Since DILI is a 

property of human toxicity, we compare it with other four available human toxicity datasets: 

herg,32,33 PLD,28 ames,34,35 and mmp.36,37 We notice there are overlapping molecules 

between DILI and these four toxicity datasets. We assume that such correlation may help 

the training of DILI. Hence, we propose to utilize these additional toxicity information to 

promote the prediction performance of DILI.

Multi-label Training

As shown in Figure 5, original DILI dataset contains only 479 SMILES. We take it 

with other four toxicity properties (herg, PLD, ames, and mmp) which are provided by 

NIH, to form a larger dataset. Specifically, we combine these five datasets based on the 

SMILES representation of the drugs. Thus, a large matrix contains 15,669 data samples 

is generated, where each row stands for one SMILES, and the five columns are the 

corresponding property labels. Each SMILES could have one or more property labels, and 

those properties which are not observed for each SMILES are marked as missing values, and 

are represented as NaN. The constructed Tox-DILIthen goes through MV-GNNcross model 

to classify the labels. We employ a multi-label training approach to establish the property 

augmentation learning process. During the training process, all property predictions share 

the same encoder network, and make prediction for each property label individually. Then, 

the average of all the prediction loss is used to update the neural network parameters. We 

treat each property equally important, and ignore the prediction for those NaN properties to 

avoid deviation.

Missing Labels Handling

In order to eliminate the effects of the missing labels during the training period, we need 

to identify such labels for each SMILES, and ignore them during the back-propagation. In 

our experiments, a mask scheme is implemented as the filter. The mask is a matrix with 

exact same size of the input, which is applied in the prediction network. While the prediction 
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is made by the prediction network, and the loss is calculated for each data sample, the 

mask is then multiplied with the loss values. The mask matrix is filled by 0s and 1s, as the 

corresponding positions with missing labels are recorded as 0, others as 1. Thus, any weights 

associated with those missing labels would have no influence on the further computation.

Since each SMILES may have multiple binary property labels at the same time, such task 

could be regarded as multiple binary classification problem. Hence, we employ the Binary 

Cross Entropy (BCE) loss as the prediction loss function, and compute the average loss 

across each property. Suppose the dataset contains molecules M = Mi i = 1
K , formally, we 

formulate the final loss processed by the mask as follows:

Lpred  = 1
N ∗ K ∑

n = 1

N
∑

Mi ∈ M
La yi, γa, Mi ∗ mask + Lb yi, γb, Mi ∗ ∗ mask , (4)

where γa, Mi and γb, Mi are the output predictions produced by the two prediction networks, 

La and Lb are the corresponding computed loss. yi is the ground truth label, and N is the 

total number of properties, which is 5 in our experiments here.

Evaluation Criteria

Since our task is to predict the binary label of DILI by considering Most-DILI-Concern as 

the positive label and No-DILI-Concern as the negative label, we thoroughly evaluate the 

performance of each method by calculating the accuracy, sensitivity, specificity, F1-score, 

Matthews correlation coefficient and ROC-AUC. The accuracy score is the total percentage 

of the correct predictions of DILI label. Sensitivity is also called true positive rate, which 

measures the percentage that drugs with positive DILI labels are truly predicted as positive. 

Specificity is the true negative rate, which represents the rate that drugs without DILI risks 

are correctly predicted as negative labels. F1-score is the weighted average of precision 

and recall, where precision is the ratio of the correct positive predictions to all positive 

predictions, and recall is the ratio of the correct positive predictions to all ground truth 

positive labels. Matthews correlation coefficient (MCC) leverage the performance of all 

of the four confusion matrix categories (true positives, false negatives, true negatives, and 

false positives). ROC-AUC measures the separability of the model to correctly predict 

positive labels as positive, and negative labels of negative. In addition, we evaluate statistical 

significance using one-sided Wilcoxon signed-rank test.

Experiments

We have conducted extensive experiments using Circular-fp,19 Neural-fp,20 MPNN,24 

DMPNN,25 and MV-GNNcross 26 on DILI to validate the performance. Beyond that, we 

take MV-GNNcrossas backbone, and employ our proposed property augmentation approach 

to involve more data, in order to further boost the prediction performance of DILI. 

Moreover, we conduct additional experiments using MPNN and DMPNN on augmented 

Tox-DILIdataset to proof the effectiveness of our method.
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Dataset Description

Two datasets are used during the experiments, DILI and Tox-DILI1. DILI is the DILI 

dataset provided by NIH, which contains 479 molecules with DILI label. The original 

DILI dataset is coming from DILIrank11 dataset, which contains 197 molecules with Most-
DILI-Concern, 282 molecules with No-DILI-concern, and 464 molecules with Less-DILI-
Concern. We consider Most-DILI-Concern as label 1, and No-DILI-concern as label 0 to 

solve the classification problem. Thus, 479 molecules in total are selected to constitute DILI 

dataset. The Tox-DILI is formed by DILI and other four datasets with toxicity relevant 

properties: herg,32,33 PLD,28 ames,34,35 and mmp.36,37 The description of each property is 

stated in Table 3, and the label distribution is shown in Table 4.

Comparison Experiments

Circular-fp.—Circular fingerprints (Circular-fp) is one of the traditional ways to generate 

a so-called fingerprints to represent the molecule. It is a vector representation that generated 

by a hand-crafted hash-based algorithm to define the local features. Circular-fp employs 

a fixed hash function to extract each layer’s features of a molecule and concatenate them 

together. The generated vector representations usually go through machine learning models 

to perform further predictions, we apply GradientBoost38 model here in the experiments.

Neural-fp.—Neural fingerprints (Neural-fp) is constructed on a supervised deep graph 

convolutional neural network.20 It applies convolutional neural networks on graphs directly. 

The difference between Neural-fp and Circular-fp is the replacement of the hash function. 

Neural-fp applies a non-linear activated densely connected layer to generate the fingerprints.

MPNN.—Another promising graph-based deep learning techniques is the Message Passing 

Neural Network24 (MPNN). It recursively updates the atom features by aggregating the 

feature information from its neighbors and adjacent bonds, then pools all updated features 

of the atoms to deliver the global representation of each molecule via a readout function. 

The generated representation is then fed into the downstream molecular property prediction 

network.

DMPNN.—Inspired by MPNN,24 DMPNN25 converts the passing process to bond-wise 

instead of atom-wise. Instead of aggregating the neighbor atoms’ messages, DMPNN 

proposes a directed message passing scheme to avoid unnecessary loop. It aggregates the 

information of neighbor bonds with same direction, and takes the starter atom features as 

attached features to implement message passing. The following network is used to predict 

the property label as well.

MV-GNNcross.—MV-GNNcross model extracts the atom messages and bond messages 

simultaneously. It considers atom message passing and bond message passing as two parallel 

streams, and allows the atom/bond messages to communicate during the passing phase. 

A self-attention readout mechanism and a disagreement loss are employed to restrain the 

model training.

1Refer to supporting information.
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MV-GNNcross with property augmentation.—The results of different models on DILI 

dataset empirically demonstrate MV-GNNcross has achieved the highest prediction accuracy. 

Considering the extremely limited availability of DILI data, we propose to involve more 

data in a property augmentation fashion to facilitate training the molecular representation. 

In this regard, we combine DILI with four more datasets with other toxicity labels to form 

Tox-DILIdataset, and apply MV-GNNcross model on it.

Additional experiments with property augmentation.—In order to further proof the 

effectiveness of proposed method, we conduct additional experiments on Tox-DILI dataset 

to compare the performance improvement from using DILI only. Since MPNN and DMPNN 

outperform circular-fp and neural-fp on DILI dataset, and both of them are graph-based 

message passing models, we then utilize them to assess the prediction performance of 

proposed property augmentation strategy.

Experimental Procedure

In order to thoroughly verify the superiority of proposed method and eliminate the 

randomness, we have conducted extensive experiments using three evaluation methods: 

5-fold cross-validation with random splitting, 10-fold leave-one-out cross-validation, and 

5-fold cross-validation with scaffold splitting. To make a fair comparison, we use the 

same dataset splits over DILI and Tox-DILI for all the models, repectively. For each cross-

validation (CV) method, we first run all the models on DILI dataset, then apply property 

augmentation using MV-GNNcross on the Tox-DILI dataset to further boost the performance. 

Moreover, we take MPNN and DMPNN as backbones to implement property augmentation 

to confirm the effectiveness of our method. The pair-wise comparison between experiments 

w/o and w/ property augmentation are visualized with a p-value calculated through the 

Wilcoxon test.

Cross-validation with Random Splitting

We first apply 5-fold cross-validation with random seeds to evaluate the performance of each 

model. In each fold, the input dataset is randomly split into 8:1:1, while 80% is used for 

training, 10% is used for validation, and the last 10% is used for testing. For Tox-DILI, we 

ensure each data split contains balanced data for each property. We calculate the mean and 

standard deviation of the results from all folds as the final results.

Leave-one-out Cross-validation

Considering the randomness of dataset splits in the first evaluation method, we then apply 

the 10-fold leave-one-out cross-validation to evaluate the performance again. The input 

dataset is split into 10 folds equally, each fold has been used as the testing dataset in 

sequence. Within the remaining 9 folds, one fold is used as the validation dataset, and the 

rest are used for training. We take the average of the results from all folds as the final results 

too.
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Cross-validation with Scaffold Splitting

Other than the two commonly used evaluation methods, we also conduct experiments with 

scaffold splitting, which is more practical and challenging than random splitting. Scaffold 

splitting splits the molecules with distinct two-dimensional structural frameworks into 

different subsets,39 which can be considered as a clustering process based on the molecular 

structure prior to the training process. We follow the process introduced in Yang et al..25 

The molecules in the dataset are categorized into bins based on their Murcko scaffold, which 

are calculated by RDKit.27 The bins are then randomly put into train, validation and test 

dataset. We apply a 5 fold cross-validation here with 8:1:1 train/validation/test split too, and 

calculate the mean and standard deviation as the final results.

Results and Discussion

Other than the prediction accuracy, we also analysis the predicted labels with the ground 

truth labels in detail by computing the sensitivity, specificity, F-1 score, Matthews 

correlation coefficient (MCC) and ROC-AUC. All these evaluation criteria are important 

since we expect to find a model that can filter the drugs with potential DILI concern, as well 

as pick out the drugs without DILI risks, thus further experiments can be conducted on these 

approved drug candidates.

Cross-validation with Random Splitting

The prediction performance of cross-validation with random splitting are shown in Table 5, 

and visualized in Figure 6. As observed, graph-based message passing models generally 

perform better than other baselines on DILI dataset. Meanwhile, MV-GNNcross model 

outperforms other message passing methods, as well as equips with smaller various. The 

augmentation strategy that combines more data with other properties precisely improve 

the performance of DILI to 81.4%, which empirically proves that involving more property 

data to co-train the model indeed brings more information. In this fashion, MV-GNNcross 

model gains the accuracy boost by 2.6% compared with the vanilla MV-GNNcross. The 

p-values obtained from the Wilcoxon test may not be sufficiently small for some baselines 

considering the difficulty and challenge for DILI prediction problem, yet we believe our 

proposed method has accomplished remarkable improvement.

As our goal is to identify drugs that might cause DILI, and sort out drugs without DILI, 

a model with high scores of all the evaluation metric, as well as a balanced sensitivity/

specificity would be more helpful. As shown in Table 5, Circular-fp has a very high 

specificity but extremely low sensitivity, so it is more likely to identify drugs without 

DILI as positive. The lowest MCC verifies that it cannot achieve a balanced prediction 

over positive and negative labels. All the criteria values of Neural-fp are not significant. 

MPNN and DMPNN has almost equal sensitivity and specificity scores, but the overall 

accuracy, F1-score and MCC are not notably high. The accuracy, sensitivity, F1-score, and 

MCC of MV-GNNcross are higher than other baselines on DILI dataset. The specificity 

score is slightly lower than Circular-fp, but is still competitive. MV-GNNcross utilizing 

property augmentation strategy has obtained the highest accuracy score which is 81.4%. 

The specificity score is fairly high as 0.849, and a sensitivity score of 0.768 is also the 
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highest compared with other baselines. The comparisons of F1-score and MCC confirm that 

our MV-GNNcross model with property augmentation significantly perform better than other 

models on DILI prediction task.

We also conduct additional experiments with our method utilizing MPNN and DMPNN, 

where the performance is compared in Table 6 in a pair-wise manner (DILI vs. Tox-DILI). 

The accuracy improvement is visualized in Figure 6, and the ROC-AUC is plot in Figure 

10. We can observe that models with proposed property augmentation almost outperform the 

other one over all evaluation criteria.

We can observe the performance comparison between each model based on Figure 10. 

Figure 10 visualizes the ROC-AUC for each model. As we know, the larger area under the 

curve (AUC) represents better model performance. When the inflection point is close to the 

left top corner, the AUC is approximate to 1. Figure 10f illustrates that MV-GNNcross on 

Tox-DILI outperforms other models.

Leave-one-out Cross-validation

To eliminate the randomness of splitting method, we use 10-fold leave-one-out cross-

validation to re-run all the experiments. The performance is shown in Table 7 and Table 8. 

The results follow the similar trend as obtained using cross-validation with random splitting. 

MV-GNNcross with property augmentation learning performs best over all evaluation 

criteria except the specificity, where Circular-fp obtains highest value. However, the other 

performance results such as sensitivity, MCC and F1-score indicate that the prediction 

results of Circular-fp is extremely unbalanced. The accuracy and ROC-AUC visualization 

between w/o and w/ property augmentation on MPNN, DMPNN and MV-GNNcross, which 

are shown in Figure 8 and Figure 11, further proof the superiority of proposed method. 

As shown in Figure 8, the p-value calculated from MV-GNNcross w/o and w/ property 

augmentation is less than 0.01, which can be considered as statistical significant. The 

prediction results with leave-one-out cross-validation confirm that our method is capable for 

improving the prediction performance of DILI.

Cross-validation with Scaffold Splitting

Last, we challenge the most difficult but practical scenario by conducting experiments 

using scaffold splitting. The results are recorded in Table 9 and Table 10, while the 

accuracy and ROC-AUC are visualized in Figure 9 and Figure 12. The accuracy scores 

have dropped compared with random splitting, which is reasonable considering the strict 

splitting. However, other criteria such as F1-score and MCC do not vary much, and the 

general trending is still similar with the performance obtained from the other two evaluation 

methods. MV-GNNcross with property augmentation learning outperforms all other methods, 

including MPNN and DMPNN with property augmentation, which effectively illustrates the 

superiority of proposed method.

In addition to extensive experiments, several studies have investigated different methods to 

tackle DILI prediction problem in years. Recent two work, Ancuceanu et al. and Minerali et 

al. also seek for appropriate approaches to enhance the prediction performance of DILIrank. 

Minerali et al. utilizes Bayesian model to obtain an ROC-AUC of 0.814, a sensitivity of 
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0.741, a specificity of 0.755, and an accuracy of 0.746. The sensitivity/specificity is nearly 

perfectly balanced which denotes the model holds stabilized expressive power, but the ROC-

AUC and accuracy are not remarkable compared with deep graph-based models. Ancuceanu 

et al. explores different features selection and various machine learning algorithms to build 

meta-models. Some models have achieved up to 95% sensitivity but low specificity around 

50%, some models have reletively balanced sensitivity/specificity (e.g., 76%/73.2%), yet the 

accuracy is less than 0.75%. Ergo, it is empirically demonstrated the superior of our deep 

graph-based model along with property augmentation strategy.

Conclusions

Enhancing the prediction performance of DILI is crucial for drug development. Current 

studies generally focus on either bringing in more features, or stacking multiple models, or 

enlarging the dataset. These attempts have attained impressive achievements. In spite of that, 

we notice that certain properties of the drugs might contain hidden correlation between each 

other. Hence, we propose to establish a property augmentation approach to include more 

information to boost the training. Extensive experiments on Tox-DILIconfirm the superior 

of our method by improving the accuracy to 81.4% using cross-validation with random 

splitting, 78.7% using leave-one-out cross-validation, and 76.5% with cross-validation with 

scaffold splitting. Proposed method not only brings in more input data for the encoder 

network to learn better molecular vector representation, but also utilizes the correlations 

between different property labels during the prediction network. We believe it to be a 

promising perspective to improve the prediction performance of DILI, as well as other 

properties with limited available data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Atom-oriented graph v.s. Bond-oriented graph.
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Figure 2: 
Overview of MV-GNNcross models.
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Figure 3: 
Graph definition of ethionamide. Gm represents the entire graph structure, xa and yb refer to 

the atom and bond features that associates with each atom and bond, respectively.

Ma et al. Page 17

Chem Res Toxicol. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Message passing aggregation phase. Taking atom 4 as an example, atom 3 and atom 5 are its 

neighbors. In the passing process, the message of atom 3 and atom 5 from previous passing 

step will be aggregated to atom 4. For the message construction, we take atom 3 as an 

example. The message m3
d of atom 3 is concatenated by the initial atom features ℎ3

d of atom 

3, as well as the initial bond features µ34 of the connected bond 34.
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Figure 5: 
Property augmentation procedure. Original DILI dataset is augmented to Tox-DILI dataset. 

Tox-DILI is then fed into MV-GNNcross model for prediction. During the training period of 

the prediction network, a mask scheme is applied to handle the back-propagate of missing 

labels, and an average loss across all properties is used to restrain the entire training.
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Figure 6: 
Performance comparison on accuracy of different methods using cross-validation with 

random splitting (higher is better). Light green color indicates our proposed method. P 

indicates the p-value calculated from the Wilcoxon test between our proposed method and 

other baselines.
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Figure 7: 
Cross-validation with random splitting. Visualization from Table 6. DILI indicates baseline, 

and Tox-DILI demonstrates the performance of utilizing property augmentation. P-value is 

calculated between the two prediction results for each model.
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Figure 8: 
Leave-one-out cross-validation. Visualization from Table 8. DILI indicates baseline, and 

Tox-DILI demonstrates the performance of utilizing property augmentation. P-value is 

calculated between the two prediction results for each model.
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Figure 9: 
Cross-validation with scaffold splitting. Visualization from Table 10. DILI indicates 

baseline, and Tox-DILI demonstrates the performance of utilizing property augmentation. 

P-value is calculated between the two prediction results for each model.
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Figure 10: 
Cross-validation with random splitting. ROC Curve comparison (larger AUC is better) 

between w/o Property Augmentation (DILI) and w/ Property Augmentation (Tox-DILI). The 

lighter lines demonstrate the performance of each fold, and the blue line represents the mean 

AUC for each method.
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Figure 11: 
Leave-one-out cross-validation. ROC Curve comparison (larger AUC is better) between w/o 

Property Augmentation (DILI) and w/ Property Augmentation (Tox-DILI). The lighter lines 

demonstrate the performance of each fold, and the blue line represents the mean AUC for 

each method.
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Figure 12: 
Cross-validation with scaffold splitting. ROC Curve comparison (larger AUC is better) 

between w/o Property Augmentation (DILI) and w/ Property Augmentation (Tox-DILI). The 

lighter lines demonstrate the performance of each fold, and the blue line represents the mean 

AUC for each method.
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Table 1:

Atom features selection.25

Features Size Descriptions

atom type 100 type of atom (e.g., C, N, O), in the order of atomic number

formal charge 5 integer electronic charge assigned to atom

number of bonds 6 number of bonds the atom is connected

chirality 4 Unspecified, tetrahedral CW/CCW, or other

number of Hs 5 number of bonded hydrogen atoms

atomic mass 1 mass of the atom, divided by 100

aromaticity 1 whether this atom is part of an aromatic system

hybridization 5 sp, sp2, sp3, sp3d, or sp3d2
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Table 2:

Bond features selection.25

Features Size Descriptions

bond type 4 single, double, triple, or aromatic

stereo 6 E/Z, cis/trans, any, or none

in ring 1 whether the bond is part of a ring

conjugated 1 whether the bond is conjugated
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Table 3:

Description of four toxicity properties used for augmentation.

Category Property Description

Toxicity

herg32,33 measures cardiotoxic effects of compounds.

PLD28 stands for phospholipidosis, which measures organism-level toxicity of compounds.

ames34,35 measures mutagenicity, one of the most important end points of toxicity.

mmp36,37 The mitochondrial membrane potential (MMP) is a key parameter for evaluating mitochondrial function.
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Table 4:

Datasets statstics.

Dataset Dataset Size Property # Molecules # Label 0 # Label 1

DILI 479 DILI 479 282 197

Tox-DILI 15,669

herg 3,024 2,541 483

PLD 4,159 3,777 382

ames 7,940 4,534 3,406

mmp 5,970 5,070 900

DILI 479 282 197
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Table 5:

The performance of DILI models using cross-validation with random splitting (higher is better). Best score is 

marked as bold.

Circular-fp Neural-fp MPNN DMPNN MV-GNNcross Property Augmentation with Tox-DILI

Accuracy 0.688±0.051 0.704±0.091 0.738±0.094 0.750±0.098 0.788±0.077 0.814±0.047

Sensitivity 0.364±0.125 0.647±0.091 0.727±0.133 0.728±0.135 0.762±0.105 0.768±0.100

Specificity 0.879±0.086 0.740±0.087 0.752±0.129 0.764±0.172 0.809±0.092 0.849±0.097

F1-score 0.485±0.091 0.615±0.106 0.666±0.124 0.681±0.095 0.721±0.105 0.753±0.063

MCC 0.289±0.130 0.381±0.191 0.473±0.202 0.499±0.179 0.562±0.178 0.621±0.114

ROC-AUC 0.738±0.056 0.753±0.093 0.833±0.075 0.832±0.068 0.866±0.055 0.882±0.031
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Table 6:

The performance comparison between w/o Property Augmentation (DILI) and w/ Property Augmentation 

(Tox-DILI) using cross-validation with random splitting. Higher score within each pair-wise comparison is 

marked as bold.

MPNN (DILI) MPNN (Tox-
DILI) DMPNN (DILI) DMPNN (Tox-

DILI) MV-GNNcross(DILI) MV-GNNcross(Tox-
DILI)

Accuracy 0.738±0.094 0.788±0.044 0.750±0.098 0.785±0.024 0.788±0.077 0.814±0.047

Sensitivity 0.727±0.133 0.761±0.072 0.728±0.135 0.748±0.091 0.762±0.105 0.768±0.100

Specificity 0.752±0.129 0.807±0.070 0.764±0.172 0.812±0.045 0.809±0.092 0.849±0.097

F1-score 0.666±0.124 0.728±0.045 0.764±0.172 0.718±0.045 0.721±0.105 0.753±0.063

MCC 0.473±0.202 0.562±0.082 0.499±0.179 0.553±0.060 0.562±0.178 0.621±0.114
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Table 7:

The performance of DILI models (higher is better) using leave-one-out cross-validation. Best score is marked 

as bold.

Circular-fp Neural-fp MPNN DMPNN MV-GNNcross Property Augmentation with Tox-DILI

Accuracy 0.668±0.085 0.683±0.063 0.706±0.057 0.715±0.059 0.728±0.047 0.787±0.070

Sensitivity 0.351±0.171 0.595±0.089 0.590±0.141 0.617±0.140 0.651±0.121 0.721±0.106

Specificity 0.899±0.063 0.757±0.081 0.798±0.115 0.803±0.107 0.791±0.087 0.837±0.062

F1-score 0.447±0.175 0.604±0.064 0.614±0.078 0.631±0.086 0.655±0.076 0.731±0.076

MCC 0.294±0.120 0.353±0.118 0.406±0.114 0.432±0.113 0.448±0.099 0.558±0.131

ROC-AUC 0.775±0.069 0.734±0.035 0.789±0.072 0.792±0.051 0.797±0.039 0.840±0.064
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Table 8:

The performance comparison between w/o Property Augmentation (DILI) and w/ Property Augmentation 

(Tox-DILI) using leave-one-out cross-validation. Higher score within each pair-wise comparison is marked as 

bold.

MPNN (DILI) MPNN (Tox-
DILI) DMPNN (DILI) DMPNN (Tox-

DILI) MV-GNNcross(DILI) MV-GNNcross(Tox-
DILI)

Accuracy 0.706±0.057 0.736±0.074 0.715±0.059 0.748±0.064 0.728±0.047 0.787±0.070

Sensitivity 0.590±0.141 0.625±0.104 0.617±0.140 0.632±0.099 0.651±0.121 0.721±0.106

Specificity 0.798±0.115 0.820±0.117 0.803±0.107 0.817±0.079 0.791±0.087 0.837±0.062

F1-score 0.614±0.078 0.655±0.090 0.631±0.086 0.657±0.095 0.655±0.076 0.731±0.076

MCC 0.406±0.114 0.456±0.148 0.432±0.113 0.454±0.135 0.448±0.099 0.558±0.131

ROC-AUC 0.789±0.072 0.813±0.070 0.792±0.051 0.806±0.067 0.797±0.039 0.840±0.064
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Table 9:

The performance of DILI models (higher is better) using cross-validation with scaffold splitting. Best score is 

marked as bold.

Circular-fp Neural-fp MPNN DMPNN MV-GNNcross Property Augmentation with Tox-DILI

Accuracy 0.657±0.037 0.665±0.048 0.706±0.010 0.714±0.043 0.735±0.045 0.765±0.047

Sensitivity 0.485±0.074 0.642±0.066 0.695±0.098 0.693±0.082 0.684±0.094 0.765±0.090

Specificity 0.784±0.073 0.688±0.082 0.708±0.066 0.724±0.062 0.765±0.099 0.774±0.046

F1-score 0.533±0.049 0.609±0.062 0.653±0.052 0.660±0.070 0.674±0.060 0.740±0.036

MCC 0.284±0.086 0.328±0.103 0.402±0.027 0.415±0.090 0.458±0.087 0.534±0.089

ROC-AUC 0.719±0.028 0.744±0.051 0.758±0.025 0.782±0.040 0.774±0.042 0.834±0.022
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Table 10:

The performance comparison between w/o Property Augmentation (DILI) and w/ Property Augmentation 

(Tox-DILI) using cross-validation with scaffold splitting. Higher score within each pair-wise comparison is 

marked as bold.

MPNN (DILI) MPNN (Tox-
DILI) DMPNN (DILI) DMPNN (Tox-

DILI) MV-GNNcross(DILI) MV-GNNcross(Tox-
DILI)

Accuracy 0.706±0.010 0.727±0.030 0.714±0.043 0.741±0.040 0.735±0.045 0.765±0.047

Sensitivity 0.695±0.098 0.727±0.102 0.693±0.082 0.801±0.073 0.684±0.094 0.765±0.090

Specificity 0.708±0.066 0.716±0.108 0.724±0.062 0.669±0.110 0.765±0.099 0.774±0.046

F1-score 0.653±0.052 0.717±0.049 0.660±0.070 0.748±0.052 0.674±0.060 0.740±0.036

MCC 0.402±0.027 0.452±0.064 0.415±0.090 0.482±0.082 0.458±0.087 0.534±0.089

ROC-AUC 0.758±0.025 0.796±0.052 0.782±0.040 0.814±0.072 0.774±0.042 0.834±0.022
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