Skip to main content
. 2023 Jan 30;13(1):e063896. doi: 10.1136/bmjopen-2022-063896

Table 2.

Detective characteristics of the two biomarkers for AKI

Logistic regression models AUC-ROC* (95% CI) Cut-off† Sensitivity Specificity (+) LR (−) LR PPV NPV
sCysC 0.766 (0.741 to 0.789) 1.02 mg/L 0.66 0.80 3.28 0.43 0.47 0.90
NT-proBNP 0.821 (0.799 to 0.842) ‡ 204.00 pg/mL 0.78 0.75 3.12 0.29 0.45 0.93
NT-proBNP+sCysC 0.832 (0.809 to 0.852) § 0.15¶ 0.84 0.69 2.69 0.23 0.42 0.94

*Values are presented as AUC-ROC (95% CI).

†Ideal cut-off value according to Youden’s index.

‡P<0.05 vs sCysC (p=0.0011).

§P<0.05 vs NT-proBNP (p=0.0145), sCysC(p<0.0001).

¶Cut-off points of the biomarker panels were the predicted probabilities generated from the multiple logistic regression model.

AKI, acute kidney injury; AUC-ROC, area under the receiver operating characteristic curve; (+) LR, positive likelihood ratio; (-) LR, negative likelihood ratio; NPV, negative predictive value; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PPV, positive predictive value; sCysC, serum cystatin C.