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Abstract 

Pre-clinical research and development relies heavily upon translationally valid models of disease. A major difficulty in 
understanding the biology of, and developing treatments for, rare disease is the lack of animal models. It is important 
that these models not only recapitulate the presentation of the disease in humans, but also that they share function-
ally equivalent underlying genetic causes. Nonhuman primates share physiological, anatomical, and behavioral simi-
larities with humans resulting from close evolutionary relationships and high genetic homology. As the post-genomic 
era develops and next generation sequencing allows for the resequencing and screening of large populations of 
research animals, naturally occurring genetic variation in nonhuman primates with clinically relevant phenotypes is 
regularly emerging. Here we review nonhuman primate models of multiple rare genetic diseases with a focus on the 
similarities and differences in manifestation and etiologies across species. We discuss how these models are being 
developed and how they can offer new tools and opportunities for researchers interested in exploring novel thera-
peutics for these and other genetic diseases. Modeling human genetic diseases in translationally relevant nonhu-
man primates presents new prospects for development of therapeutics and a better understanding of rare diseases. 
The post-genomic era offers the opportunity for the discovery and further development of more models like those 
discussed here.

Introduction
Understanding the causes of rare genetic disease and 
developing appropriate evidenced-based treatment strat-
egies are ongoing challenges for scientists and clinicians. 

Rare diseases occur, by definition, infrequently, but with 
an estimated 10,000 unique rare diseases their overall 
impact is substantial [1]. The challenges and long-lasting 
impacts that they present for the patients, family mem-
bers, and communities can be overwhelming. Uncover-
ing the genetic basis and molecular mechanisms of these 
diseases are not only important for developing effective 
disease treatments, but also provide opportunities to 
better understand human biology and fundamental pro-
cesses underlying human health and development.

Animal models are important tools for the study of 
human genetic disease for many reasons, not the least 
of which is the ability to study disease progression with 
great control in the laboratory. This is a necessary and 
important precondition for understanding analogous 
aspects of human biology and the prevention, etiologic 
description, or treatment of disease. The first recogni-
tion of the processes of inheritance and developmental 
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pattern formation occurred from research with labora-
tory animals [2, 3]. The models are only useful and valid, 
however, with a comparative (across species) understand-
ing of genotypes, phenotypes, and crucially, the relation 
between them. Translational studies require nonhuman 
models for a variety of reasons: for elucidating genetic 
causation or contribution to disease or normative pheno-
type, for understanding interactions between genetic or 
epigenetic factors and disease progression, for describing 
genotypic contributors to pharmaceutical effectiveness 
or the efficacy of other treatments, and for gene editing 
and therapy.

Among the most important considerations is the 
model species chosen for study. As our closest living rela-
tives, nonhuman primates (NHPs) are especially critical 
research surrogates, and this review highlights new find-
ings and directions in NHP modeling, specifically in the 
genetics of disease. Phylogenetic affinities, however, are 
only rarely the final arbiter regarding species chosen for 
research. Although humans are primates, there are other 
important, and far more widely-used, nonhuman animal 
models outside this order. Indeed, it has been estimated 
that only 0.28% of animals used in research are nonhu-
man primates [4]. Primates are much more expensive 
animal models to develop and maintain compared to 
other laboratory species due to their unique husbandry 
requirements, limited numbers, long generation time, 
and ethical concerns.

Non‑Primate models of disease
Although examples of animal models of disease have his-
torically included numerous and diverse mammalian and 
non-mammalian taxa, the use of rodents has increased 
for many decades and for obvious reasons. Common 
laboratory rodents (mice, rats, etc.) are small, with short 
generation times, and are easily maintained and bred in 
the laboratory. Certain manipulations, including the pro-
duction, maintenance, and use of specific genetic strains 
and the productions of particular variations, are often 
straightforward, allowing exquisite control of variables. 
This includes the development of “humanized” rodents 
with genes, cells, or tissue grafted from its namesake [5]. 
Also, their phylogenetic relationship to primates is not 
especially distant relative to other well-studied laboratory 
organisms such as zebrafish and Drosophila [6].

A detailed look at rodent genetic models is beyond 
the scope of this review. In short, much is known about 
rodents, and their contribution to genetically-focused 
biomedical advances are considerable [reviewed in 7, 8], 
particularly in their utility for genetic manipulation and 
rapid breeding. In some cases, however, the very char-
acteristics that help make common laboratory rodents 
ubiquitous in experimental settings are the ones that 

most clearly delineate limitations as models for human 
beings. Their small size can present difficulties regard-
ing the procedures that can be performed and/or transla-
tional interpretation; for example, low blood volumes and 
diminutive organs in rodents limit gene therapeutic and 
surgical approaches to pathologies such as hemophilia 
and retinal degeneration [9]. Small size is also coupled 
with a litany of differences in physiology and metabo-
lism [10, 11]. Excepting outbred and wild strains, genetic 
disease investigations often require a priori hypotheses 
and manufactured variation, and are highly targeted, not 
encompassing the normal, associated variation that char-
acterizes human population [12]. This tight control over 
variation offers power in experimental design, but lacks 
the context of inter-individual variation seen in human 
clinical cases.

A number of larger, non-primate mammalian models 
have been developed including sheep, pig, cat, and dog, 
often during the process of line breeding and other selec-
tive husbandry practices. While more difficult and costly 
to house and breed when compared to rodents, their 
advantages include larger organ sizes, tissues that are 
more easily accessible, larger blood volumes, and in some 
cases otherwise more humanlike anatomy or physiology. 
In addition, they can easily be examined as individu-
als with varied genotypes, phenotypes, clinical histories, 
prognoses, and treatment options, and examined over 
long durations, as are human patients [9]. In the case of 
domestic animals, a large number are potentially avail-
able for screening of genetic variations associated with 
human pathology. For example, sheep models exist for 
a wide range of inherited medical conditions, including 
visual disorders such as heritable cataracts and achro-
matopsia, blood and connective tissue disorders, nervous 
system disorders such as Batten disease, and many others 
[13]. The discovery and investigation of various clinical 
conditions in dogs is facilitated by the fact that millions 
of companion animals are closely monitored by their 
owners and regularly seen by veterinarians, providing 
opportunity to identify various disorders [14].

Nonhuman primate models of disease
Non-primates are, at the end of the day, non-primates. 
Members of the Order Primates share a last common 
ancestor varyingly estimated to have lived between 
approximately 65 and 80 million years ago [15–20] with 
New World monkeys diverging 40–50 million years 
ago, Old World monkeys 30–35 million years ago, the 
ape radiation 20–25 million years ago, and the separa-
tion of the African ape/human lineage from Asian apes, 
15–20 million years ago. While work has been con-
ducted with species throughout the order, the most 
common NHP translational genetic model is presently 
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the rhesus macaque (Macaca mulatta), a medium-sized 
(adults ~ 6–12  kg) Old World monkey whose genome 
was first reported in 2007 [21] and updated most recently 
in 2020 [22]. Well characterized breeding colonies 
of specific pathogen free rhesus macaques are main-
tained in the US. Work with this species is supported 
by a publically-available, searchable, annotated database 
(The Macaque Genotype and Phenotype Resource, or 
mGAP) on genetic variants and known disease associa-
tion [23]. Additional Old World monkeys important in 
translational genomics research include, but are not 
limited to, other species of macaques, e.g. cynomolgus 
macaques (M. fascicularis) and Japanese macaques (M. 
fuscata) [24], baboons (Papio sp.) [25], and vervet (Afri-
can green) monkeys (Chlorocebus aethiops sabaeus) [26]. 
Among New World monkeys there is growing interest 
in common marmosets (Callithrix jacchus), small sim-
ians (adults ~ 300 g) which have a published whole draft 
genome [27] and newer annotated reference assemblies. 
Marmosets are notable for litters of 2–4 offspring that 
are hematopoietic chimeras, as outgroups for catarrhine 
evolutionary studies, and for their potential in genetic 
engineering studies [28, 29]. Regarding prosimians an 
ongoing initiative is investigating the translational poten-
tial of mouse lemurs (Microcebus spp.), which—with 
their small size (30–60 g) and rapid maturation (sexually 
mature at 6–8  months)—present some logistical advan-
tages similar to rodents, but with some added advantages 
of primate physiology [30]. Each model has its strengths 
and limitations, and the further development of new or 
underutilized model species will undoubtedly prove 
valuable.

While all of the primate genetic models subsequently 
discussed in this review occur in macaques, it is impor-
tant to recognize that large-scale sequencing of vervet 
monkeys, baboons, and marmosets would also be 
expected to identify functionally significant mutations 
and lead to new genetic models in those species. Each 
primate species carries its own unique array of func-
tionally significant mutations. The current emphasis on 
macaques, and in particular rhesus macaques, results 
largely from the significant support by the NIH for 
expansion of breeding programs over the past several 
decades, especially in response to the need for macaques 
for HIV/AIDS studies.

NHPs, collectively, share more genotypic and pheno-
typic identity with humans than any other model organ-
isms, as primates have a number of derived features, 
relevant to disease modeling, that differ either qualita-
tively or quantitatively from other mammals. Quite strik-
ing are synapomorphies related to vision and the tactile 
sense [31]. Eyes are large and located anteriorly, on the 
front of the face, providing extensive overlap of visual 

fields. A bony strut (postorbital bar, rare in other mam-
mals) lateral to the eye and, in haplorrhines, an additional 
bony cup behind it (postorbital plate, unique to these 
primates) protect these vital organs. Primate optic nerve 
fibers cross from one eye almost equally to both the left 
and right brain hemispheres for processing, in contrast 
to other mammals, where inputs are almost wholly to 
the opposing side. Collectively, these features contrib-
ute to excellent depth perception, or stereoscopic vision. 
Trichromatic color vision, among mammals, is likewise 
limited to Old World monkeys, apes, and humans with 
phenotypic convergence in some New World monkeys as 
well [32]. Platyrrhine and catarrhine primates share a pri-
mate specific retinal feature called the macula [33]. This 
is a region of the central retina that is especially rich in 
cone photoreceptors, making these species valuable as 
models of many human visual system disorders [34, 35]. 
Anthropoids are particularly important for studies of 
macular disorders that primarily affect cone photorecep-
tors, or age-related macular degeneration, where rodents, 
dogs and other mammals cannot provide models that 
mimic human macular function and dysfunction as effec-
tively as macaques or other nonhuman primates.

Primates have excellent pedal and/or manual grasping 
abilities; this is exemplified by an opposable thumb in 
most catarrhines, flat nails rather than claws on at least 
some digits, and ridged tactile pads and Meissner’s cor-
puscles on toes and fingers, which combine for an exqui-
site sense of touch [31]. These adaptations speak to the 
importance of NHPs for investigating genetic disorders 
that influence vision or sensorimotor function; in an evo-
lutionary sense, they may reflect, at least in small part, 
the largely arboreal, branch-grasping history of members 
of this order [36–38].

Primate brains, when controlled for body size, are com-
paratively large and differ from other mammals in some 
key areas of neuroanatomy. These include differences in 
the organization of phylogenetically ancient brain struc-
tures, unique alterations in neural connections, and novel 
structural units [39]. The granular prefrontal (PF) cortex, 
other PF areas, and certain parietal and temporal areas 
appear to be uniquely primate, and have been suggested 
to facilitate rapid goal formation, remarkable utiliza-
tion of relational metrics—including quantity, duration, 
and distance—and flexible, sometimes immediate, solv-
ing of unique and complex problems [40–43]. Com-
pared to other mammals, primates are strongly attuned 
to novelty [e.g., 44, 45] and show marked within-species, 
inter-individual differences in both novelty response 
and temperament [e.g., these exhibit heritable variation 
in baboons, 46] as well as between-species differences. 
In addition, NHPs, of all nonhuman animals, show the 
most extensive abilities in executive function tasks such 
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as prospective memory, self-control, metacognition, and 
episodic memory [47], functions mediated by prefrontal 
cortical networks that are greatly expanded and differen-
tiated in primates and have unique molecular regulation 
compared to rodents [48–51]. This is especially relevant 
in that executive function deficits are oftentimes the first 
to be detectable in genetic disorders involving the central 
nervous system, or that may presage other pathologies 
[52–54]. NHPs are modally very social, exhibit protracted 
life histories including a prolonged juvenile period, and 
have great ecological and behavioral plasticity [55–57]. In 
short, NHPs are the nonhuman animals that most closely 
experience the world in the manner that humans do, with 
myriad repercussions on the detection, description, and 
treatment of diseases influencing sensation, perception, 
behavior, and cognition.

Many other features of morphology likewise render 
NHPs a uniquely valuable resource for genetic modeling 
[58, 59]. These include numerous physiological simi-
larities to humans that are rare or absent in other mam-
mals. Regarding reproduction, for example, this includes 
humanlike estradiol-luteinizing hormone feedback loops 
in both males and females, similar anatomical origins 
for sex steroids, menstruation, and a similar pattern of 
reproductive senescence, in at least some species [4]. 
NHPs such as baboons and macaques are thus preferred 
models for reproductive disorders [60].

Leveraging contemporary nonhuman primate 
genetics for disease model development
The similarities seen between human and NHPs reflect 
their close genetic affinity. Recent technical advances 
such as next-generation sequencing have, as noted, made 
feasible the construction of largely complete and well-
annotated primate reference genomes, and more spe-
cifically have aided the identification of species-specific 
genetic variation that is directly relevant to disease risk, 
causation, or prognosis [61]. What follows will, we hope, 
give strong indication of the translational advances that 
have stemmed, and will stem, from further detailed pri-
mate genomics research.

Recently, the reduced cost of whole genome sequencing 
for research colonies of rhesus macaques has facilitated 
an important change in the approach to and discovery 
of macaque models of human inherited diseases. It is 
now possible to perform whole genome or whole exome 
sequencing on nonhuman primates from research colo-
nies that are identified with spontaneous pathologies that 
may be relevant to human diseases of various kinds [12, 
62]. In addition, the amount of genetic variation present 
in rhesus macaques and other laboratory primates cre-
ates significant opportunities for novel analyses of natu-
rally occurring genetic variation [22, 63]. As a result, we 

now can more readily identify new nonhuman primate 
models of human genetic diseases through careful moni-
toring for relevant pathologies combined with genomic 
analysis. Two complementary approaches have proven 
successful: a) sequencing large numbers of research pri-
mates in order to identify potentially damaging muta-
tions in genes known or suspected to be involved in 
human diseases, or b) sequencing particular animals that 
are identified as having pathology indicative of disease, in 
order to identify the causative mutation(s).

A primate model of a human genetic disease need not 
specifically recapitulate the mutations found in human 
patients. A human genetic disease caused by damaging 
mutations in a specific gene can often be modeled by 
other mutations in the same gene that disrupt protein 
function to an equivalent degree. The disease is the result 
of disrupting a genetic pathway that consists of many 
genes working in concert, so that a human disease can be 
mimicked by any mutations that produce similar disrup-
tion to that pathway. Identifying dysregulation in these 
gene networks beyond specific pathogenic mutations 
can further elucidate the larger biology of the disease and 
provide alternative methods to approach treatment.

In addition, it is now possible to generate novel genetic 
models of disease in nonhuman primates using CRISPR/
Cas9 methods to make specific changes in genomic DNA 
sequences [64]. This approach has been used to produce 
macaque models related to autism [65] and Parkinso-
nian neurodegeneration [66]. This approach opens new 
opportunities to generate particular mutations in specific 
nonhuman primate genes, and thus can quite remarkably 
model human genetic disorders. However, this approach 
entails significant cost, requires large numbers of ani-
mals to be performed successfully and can generate off-
target mutations that may in some cases compromise the 
translational value of the model. Moreover, it requires 
knowledge of the disease-causing mutation in humans a 
priori, precluding identification of novel disease-causing 
factors. Thus, while genetic manipulations of primates 
using CRISPR-Cas9 or analogous methods will likely play 
a role in the future of biomedical research, the opportu-
nity to exploit naturally occurring variation should not be 
neglected.

Specific nonhuman primate genetic models 
of disease
In addition to experimentally induced models of dis-
ease, nonhuman primates have long been used as 
genetic models of diseases having significant heritable 
components, including when specific genetic origins 
are unclear in either humans or animals. This includes 
complex behavioral phenotypes such as anxiety [67–
70], heart disease and other cardiovascular phenotypes 
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[71–75], obesity and type 2 diabetes [25, 76], and herit-
able cancers [77, 78]. For some of these diseases, non-
human primate models have led to further elucidation 
of specific contributing genetic factors or targets for 
treatments. There is a significant historical body of 
literature on the genetics of alcohol use disorder, par-
ticularly the OPRM1 gene [79–82], and a more recent 
breakthrough in understanding the role of NPSR1 in 
endometriosis [83].

Increasingly, naturally occurring nonhuman primate 
models of rare human disease are being discovered and 
developed (Table  1). Animals born with phenotypes 
similar to those seen in human disease are character-
ized genetically and are often found to carry mutations 
in genes that are homologous to putative pathogenic 
variation in humans. The identification of disease-
causing mutations present in the population can then 
be exploited to develop genetically-defined animal 
models of disease for use in preclinical studies or, alter-
natively, to inform breeding decisions to avoid unin-
tentionally producing affected individuals. In the past 
several years, the number of NHP rare disease studies 
has grown significantly. The examples below illustrate 
the breadth and depth of models that have emerged, 
the pathways that have led to their development, and 
opportunities for future research directions. For each 
of these, animals or close relatives confirmed to harbor 
or potentially harboring disease-causing mutations are 
present in extant colonies. This list is not exhaustive 
and the details presented about disease pathologies in 
both humans and their NHP counterparts are brief, but 
it does represent a small window into the range of NHP 
genetic models that have been described and a guide-
post for the future (Fig. 1).

Neuronal ceroid lipofuscinosis (CLN7)
Neuronal ceroid lipofuscinoses (NCLs) are a collection of 
rare, recessive neurodegenerative diseases that typically 
emerge in early to middle childhood. Commonly referred 
to as Batten Disease, symptoms include the progressive 
loss of vision, speech, motor control, and cognitive skills, 
ultimately leading to premature death. The neuropa-
thology of affected individuals revealed the hallmarks of 
lysosomal dysfunction, including the abundant accumu-
lation of intracytoplasmic, autofluorescent lipopigment 
throughout the central nervous system (CNS), with asso-
ciated neural inflammation and degeneration [84–87]. 
NCLs are autosomal recessive disorders linked to four-
teen different genes (CLN1-14), each encoding a lysoso-
mal protein, endoplasmic reticulum membrane protein 
or a protein associated with vesicular membranes [88]. 
CLN7 disease specifically is associated with nonsense, 
missense and splice-junction mutations in the CLN7/
MFSD8 gene, which encodes a transmembrane transport 
protein located in the lysosomal membrane [89].

A spontaneous model of CLN7 disease was identified 
in a Japanese macaque (M. fuscata) breeding colony at 
the Oregon National Primate Research Center (ONPRC). 
Affected animals displayed progressive neurological 
deficits, including visual impairment, tremor, ataxia 
and imbalance. Imaging and functional studies revealed 
that CLN7 macaques have measurably reduced retinal 
thickness and retinal function within the first year, with 
profound cerebral and cerebellar atrophy progressing 
over five to six-years. Histological analyses detected an 
accumulation of highly autofluorescent storage material 
in cerebral, cerebellar and cardiac tissue, as well as sig-
nificant degeneration of neurons. Post-mortem brain 
weights were 28% below average of age-matched, healthy 

Table 1  Select rare diseases in humans with nonhuman primate models identified

Disease Gene Prevalence Inheritance Onset

Late infantile neuronal ceroid lipofuscinosis CLN7 unknown (1/200,000–1,000,000) Autosomal recessive Childhood

Krabbe disease GALC 1–9/100,000 Autosomal recessive Neonatal, 
Infancy, Child-
hood, Adoles-
cent, Adult

Leukodystrophy CLCN2  < 1/1,000,000 Autosomal recessive All ages

Pelizaiaeus-Merzbacher disease PLP1 1/400,000 X-linked recessive Neonatal, Infancy

Achromatopsia PDE6C 1–9/100,000 Autosomal recessive Neonatal, Infancy

Bardet-Beidl syndrome BBS7 1/100,000 Oligogenic/Autosomal recessive Neonatal, Ante-
natal, Infancy, 
Childhood

Thyroid dyshormonogenesis TG 1–9/100,000 Autosomal recessive Neonatal, Infancy

Type-3 von Willebrand’s disease VWF 1/200,000–500,000 Autosomal recessive Neonatal, Infancy

Lynch syndrome MLH1 unknown (1/2,000) Autosomal dominant Adult

Epidermolysis bullosa simplex KRT5  < 1/1,000,000 Autosomal dominant/recessive Neonatal
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individuals. A homozygous, single base pair deletion 
within CLN7 exon 8 (c.769delA; p.Ile257LeufsTer36), 
was identified in five affected individuals, confirming the 
diagnosis [24]. To date, nine CLN7 model animals have 
been identified in the ~ 300 member M. fuscata colony.

Krabbe disease (GALC)
Krabbe disease, also known as globoid cell leukodystro-
phy (GLD), is an autosomal recessive lysosomal storage 
disease associated with demyelination in the central and 
peripheral nervous systems. Patients with ‘classic’ or 
‘infantile’ disease typically present with notable spastic-
ity and developmental delay within the first 6 months of 
life, and patients typically succumb to death by 2 years of 
age [90]. Later onset disease, classified as ‘late infantile’ 
presenting at 6 months-3 years, and ‘juvenile’ presenting 
at 3–8 years of age, have slower disease progression and 
exhibit a range of symptoms that can include vision loss, 
cognitive decline, seizures, hypotonia, ataxia or spas-
tic paraplegia. Disease severity is variable even within 
families [91]. Imaging and post-mortem studies of clas-
sic cases identify cerebral and cerebellar demyelination, 
as well as multinuclear (globoid) macrophages in the 
white matter [92]. In 1971, an association was reported 
between beta galactocerebrosidase deficiency and the 
morphologic characteristics of Krabbe disease [93]. This 

association was supported by the subsequent discovery 
of a homozygous nonsense mutation in the beta-galac-
tocerebrosidase (GALC) gene in a patient with ‘classic’ 
Krabbe disease [94], which was followed by numerous 
reports of missense, insertion, and deletion variants in 
the GALC gene of Krabbe disease patients [90].

A naturally occurring rhesus macaque model of Krabbe 
disease was discovered at the Tulane National Primate 
Research Center (TNPRC) more than two decades ago 
[95] (Fig. 2). The model was identified following the death 
of infant at 2 weeks of age, which had a neuropathology 
similar to human Krabbe disease [96]. Low GALC activity 
was measured in the infant’s mother, and cDNA sequenc-
ing revealed a homozygous, two base pair deletion in 
GALC exon 4 of the affected individual (c.387delAC; 
p.Leu130HisfsTer15) [95]. Subsequent breeding of the 
Krabbe disease carriers enabled additional characteriza-
tion of the model. Longitudinal studies identified clinical 
signs of muscle tremors of head and limbs, hypertonia, 
progressive difficulty ambulating, ataxia, hypermetria, 
proprioceptive deficits, and respiratory abnormalities. 
At necropsy, microscopic analysis revealed a striking lack 
of myelin in the peripheral and central nervous system, 
and the cerebral, cerebellar, and spinal cord white mat-
ter was infiltrated with multinucleated globoid cells [97, 
98]. The utility of this macaque model was demonstrated 

Fig. 1  A graphical representation of select rare diseases for which genetic models in nonhuman primates have been developed. Figure created 
with BioRender.com
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by a study exploring the therapeutic potential of intrac-
ranially administered mesenchymal stem cells (MSCs) to 
treat early onset Krabbe disease. The treatment elicited 
transient improvements in coordination, ambulation, 
cognition, and large motor skills, providing preliminary 
support for further study of MSCs for the treatment of 
lysosomal storage diseases [99].

CLCN2‑related leukodystrophy (CLCN2)
CLCN2-related leukoencephalopathy (CC2L) is a rare 
autosomal recessive, neurological disease, previously 
called Leukoencephalopathy with Ataxia (LKPAT). 
The discovery of loss of function mutations in the chlo-
ride-gated voltage channel 2 (CLCN2) gene among six 
unrelated patients clarified the molecular basis of the 
neurological features [100]. The spectrum of symptoms 
range from childhood onset with mild ataxia, learning 
disabilities, and headaches to adult onset with mild ataxia 
and decreased vision. Infertility has been reported in two 
adult males [100, 101]. MRI analysis identifies white mat-
ter abnormalities in CC2L cases. Affected individuals 
have decreased apparent diffusion coefficient values in 

the posterior limbs of the internal capsules, middle cer-
ebral peduncles, pyramidal tracts in the pons, and middle 
cerebellar peduncles. The findings indicate myelin micro-
vacuolation within certain brain regions [100].

A novel leukodystrophy case was identified in a juvenile 
rhesus macaque born at the ONPRC. Close observation 
identified three short seizure type periods and repeated 
episodes of hand and arm tremors. A “star gazing” behav-
ior, typical of macaques with impaired vision, was also 
noted. At necropsy, primary findings included laminar 
cerebral neuronal necrosis, and diffuse marked vacuola-
tion of the central nervous system white matter. Pedigree 
analysis identified the case to be the product of a consan-
guineous mating, suggesting a possible genetic link to the 
neurological symptoms. Subsequent genomic sequencing 
of the proband revealed a homozygous CLCN2 missense 
mutation (c.1412G > A; p.Arg471His) that is identical to 
human ClinVar allele 214,433 (p.Arg471His) and asso-
ciated with CC2L [102]. The same macaque allele has 
been detected in both the Wisconsin National Primate 
Research Center (WNPRC) and ONPRC breeding colo-
nies, and has an overall a minor allele frequency of 0.0098 

Fig. 2  The development of a nonhuman primate model of Krabbe disease. A Among other pathogenic mutations, a deletion in humans eliminates 
the 3’ region of GALC, in rhesus macaques a 2 base pair deletion in exon 4 creates a frameshift and truncated protein in much the same manner. 
Wild-type initiation and termination positions are shown to the left of the exon model while causative mutations resulting in truncated transcripts 
are shown to the right. B A pedigree focused on the initial affected individuals (solid gray) identified carriers (half-gray) of the causative genetic 
mutation. Figure created with BioRender.com
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in the mGAP database. Taken together, the clinical, his-
tological and genetic findings suggest this to be the first 
identified case of nonhuman primate CC2L.

Pelizaeus–Merzbacher disease (PLP1)
Pelizaeus–Merzbacher disease (PMD) is the most com-
mon leukodystrophy associated with hypomyelination, 
affecting approximately 1 in 400,000 individuals [103]. 
PMD symptoms range in severity, with mild cases devel-
oping spastic paraplegia over time, and severe cases pre-
senting with hypotonia, nystagmus, respiratory distress, 
and stridor shortly after birth [104]. PMD is caused by 
mutations in the proteolipid apoprotein (PLP1) gene, an 
X-linked gene that encodes a lipid binding protein that is 
reported to stabilize myelin [105, 106]. While PLP1 gene 
duplications, deletions and point mutations have been 
linked to PMD, the most severe cases have frequently 
been associated with missense mutations in exons 2 and 
4 [107].

A rhesus macaque model of PMD was recently iden-
tified at the ONPRC, following the clinical and genetic 
analysis of three male neonates exhibiting neurologi-
cal deficits [108]. The infants displayed profound inten-
tion tremors, head bobbing, nystagmus and reduced 
respiratory capacity. Histopathological analyses of brain 
tissue obtained following necropsy revealed a CNS dys-
myelinating disorder, as initially assessed by Luxol fast 
blue staining. Immunohistochemical analysis identified, 
a complete lack of the myelin protein PLP throughout 
the corpus callosum, a marked reduction in the expres-
sion of myelin binding protein (MBP), and a lack of clear 
myelinated structures. Pedigree analysis identified all 
three males to be related, and genomic sequencing iden-
tified a missense mutation within the PLP1 gene (PLP1: 
n.682 T > C; p.Cys228Arg) [108]. To date, the PLP1 mis-
sense mutation has only been detected at the ONPRC 
and has a minor allele frequency of 0.0004 among the 
2,054 rhesus macaques reported in the macaque Gen-
toype and Phenotype database (mGAP) [23].

Achromatopsia (PDE6C)
Achromatopsia, or rod monochromacy, is characterized 
by the loss of macular function critical for high acuity 
vision, as well as color perception. A progressive disor-
der, initial vision problems manifest in childhood with a 
gradual decline until adulthood by which time cone pho-
toreceptors are lost completely. People with achromatop-
sia are also photophobic due to their dependence on rod 
photoreceptors. This disease is genetically heterogenous 
in humans with mutations inherited in an autosomal 
recessive manner.

Colony staff at California National Primate Research 
Center (CNPRC) identified two juvenile rhesus macaques 

that displayed evidence of visual impairment. Whole 
genome sequencing of these animals revealed that both 
are homozygous for a missense mutation in the gene 
PDE6C that inactivates the catalytic domain of this 
enzyme [35]. Ophthalmic examinations showed that 
the affected macaques have essentially normal func-
tion of their rod photoreceptors, but little or no cone 
photoreceptor function. This is logical because PDE6C 
is expressed in cone but not rod photoreceptors; loss of 
cone function will impair high acuity vision and color 
perception but preserves peripheral vision. PDE6C is one 
of six genes associated with achromatopsia in humans 
[109]. Macaques with PDE6C mutations also show evi-
dence of difficulty in bright light. Subsequent genotyp-
ing of additional CNPRC rhesus macaques has identified 
a number of heterozygous carriers, and a breeding pro-
gram has been established to produce additional 
homozygotes.

Bardet‑Beidl syndrome (BBS7)
Bardet-Biedl Syndrome (BBS) is a complex disorder 
exhibiting variable phenotypic expression, but generally 
including retinal degeneration, obesity, and kidney dys-
function along with various other symptoms. Although 
syndromic with broad systemic effects, the most com-
mon indication of the disease is severe vision loss during 
childhood. BBS is a ciliopathy affecting cell structures 
involved in cell–cell communication and development. 
Approximately 1 in 250,000 individuals have BBS and 
there is currently no cure for the disease. More than 20 
different genes have been implicated in BBS and muta-
tions are commonly recessive and often oligogenic [110].

Several rhesus macaques from the ONPRC were rec-
ognized as having both spontaneous retinal degenera-
tion and kidney disease [111]. Initially, a female rhesus 
macaque presented with significant visual impairment 
and multiple structural and histological problems affect-
ing the kidneys. Genetic analyses found that this ani-
mal was homozygous for a single base deletion in exon 
3 of the gene BBS7. Analyses of other rhesus macaques 
heterozygous and homozygous for the exon 3 dele-
tion confirmed the genetic association and diagnosis as 
Bardet-Biedl Syndrome. The additional genetically vali-
dated and affected animals similarly displayed the range 
of deficits described in human BBS7 disease. Moreover, 
the retinal pathology involved loss of function of photo-
receptors and closely parallels the disease progression 
described in human Bardet-Biedl Syndrome [111, 112].

Thyroid dyshormonogenesis (TG)
Thyroid dyshormogenesis occurs when the path-
way leading to the synthesis of the hormonally active 
iodothyronines, T4 and T3, is defective. This leads to 
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hypothyroidism and goiter. The downstream effects 
of congenital hypothyroidism are numerous including 
poor growth and delayed development particularly when 
untreated.

Genetic mutations leading to defects in thyroid hor-
mone synthesis account for 15–20% of all cases of 
congenital hypothyroidism in humans, representing 
approximately 1:25,000 neonates [113]. The genes most 
commonly affected are DUOX2, SLC5A5, TG, and TPO. 
Mutations, almost always inherited in a recessive manner, 
result in abnormally low thyroid hormone levels [114].

Dyshormonogenetic goiter due to a defect in TG has 
been recognized in rhesus macaques at ONPRC. The 
initially identified animal was euthanized due to mus-
culoskeletal abnormalities. The thyroid gland was mark-
edly enlarged, pink, and fleshy. Microscopically, the 
follicular epithelium was hypertrophic and hyperplastic 
with diffuse colloid atrophy. The long bones exhibited 
epiphyseal immaturity and dysplasia, typical of congeni-
tal hypothyroidism. This animal was homozygous for a 
frame-shift deletion in the TG gene (c.5513_5514delAA, 
p.Lys1838fs). Two additional stillborn animals were iden-
tified with similar gross and microscopic appearance of 
the thyroid gland; one was confirmed as homozygote 
and the other was the offspring of a heterozygote dam. 
Of note, phenotypically similar cases of hypothyroid-
ism associated with congenital goiters were previously 
described in this colony [115]. The three affected animals 
were offspring of the same parents. Two of the affected 
animals lived to adulthood; the other was stillborn fol-
lowing prolonged gestation. The adult animals exhib-
ited abnormal facial features suggestive of delayed bone 
growth. The underlying genetic defect was not identified.

Type 3 von Willebrand’s disease (VWF)
Von Willebrand’s disease (VWD) represents the most 
commonly inherited disorder of human coagulation and 
afflicts up to 1% of the population [116]. It occurs in mul-
tiple primary types, with type 1 representing reduced 
quantity of Von Willebrand’s factor (VWF), type 2 repre-
senting reduced function of VWF, and type 3 represent-
ing an absence of VWF [116]. Each of these types can 
lead to bleeding due to VWF’s role in platelet adhesion 
and aggregation. There are over 1000 described muta-
tions that result in VWD and those are most commonly 
associated with type 2 or 3 disease. Type 3 VWD is inher-
ited in either a recessive or co-dominant fashion with 
absence of VWF owing to mutations in the VWF gene 
that render the individual to have no circulating VWF 
[116].

Type 3 VWD has been described in a family of rhesus 
macaques where one young monkey had no measur-
able VWF activity [117]. This disease was identified at 

the New England Primate Research Center in an indi-
vidual that was found to be persistently bleeding despite 
only minor injuries at a young age [117]. The disease was 
found to be familial on screening of nuclear family mem-
bers where reduced VWF levels were identified in other 
adults macaques [117]. These findings are typical in type 
3 VWD in humans where heterozygous individuals may 
have reduced VWF but do not spontaneously bleed [116, 
117]. This rhesus model of type 3 VWD was proposed to 
be autosomal recessive in its pattern of inheritance, how-
ever no genetic study of mutations underlying this disor-
der in this pedigree was performed [117].

Lynch syndrome (MLH1)
Lynch Syndrome is the most common form of hereditary 
colorectal cancer. The disease is caused by inheritance 
of damaging mutations in one of four DNA mismatch 
repair genes that code for proteins essential to the DNA 
repair mechanisms in human cells. People who inherit 
a dysfunctional copy of one of these four genes (MLH1, 
MSH2, MSH6 or PMS2) are at dramatically increased risk 
for colorectal cancer as well as tumors of the ovary, endo-
metrium, stomach and other organs. More than one mil-
lion people in the United States carry a Lynch Syndrome 
mutation that raises their cancer risk [118] with mean age 
of onset in their 40’s. In addition to mutations leading to 
tumorigenesis, Lynch Syndrome patients also experience 
insertion/deletion mutations in microsatellite repeats 
within protein coding genes. These indel mutations gen-
erate novel peptide sequences (neoantigens) that can be 
used to stimulate the native immune system and thus to 
attack tumor cells.

More than 60 cases of spontaneous colorectal cancer 
have been identified in rhesus macaques at the Keeling 
Center for Comparative Medicine and Research, part 
of the University of Texas MD Anderson Cancer Center 
[78]. The tumors observed in these animals are gener-
ally located in the ileocecal junction, proximal colon or 
cecum, highly reminiscent of human Lynch Syndrome 
tumors. In addition, significant histological similari-
ties were identified, and immunohistochemistry showed 
that the tumors generally lacked expression of MLH1 
and PMS2 proteins [78]. Subsequent DNA sequencing 
showed that macaques suffering these tumors had sig-
nificantly elevated frequencies of a stop codon in MLH1 
(c.1029C < G, p.Tyr343Ter). Furthermore, carriers of this 
mutation showed substantial instability in microsatellite 
sequences across the macaque genome, a widely used 
indicator of Lynch Syndrome pathology in humans. Fol-
lowing these initial genomic analyses, gene expression 
analyses have shown that the macaque tumors exhibit 
transcription profiles very similar to those in human 
Lynch Syndrome tumors [119].
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Epidermolysis Bullosa simplex (KRT5)
Epidermolysis bullosa simplex (EBS) is one of the most 
common genetic bullous skin diseases. It is characterized 
by the separation of the skin at the basal keratinocytes 
region after trauma and blister formation. The preva-
lence is estimated to be 1 per 25,000–50,000 births, and 
depending on the mutation, can follow either recessive or 
dominant inheritance [120]. EBS is a heterogenous group 
of diseases, which range from localized to severe effects. 
Mutations in keratin 5 (KRT5) and keratin 14 (KRT14) 
genes account for the majority of EBS cases [121]. Phe-
notype–genotype analysis of patients has shown that 
mutations that disrupt the central alpha-helical rod of the 
keratin protein are associated with a more severe disease 
phenotype [122].

A natural rhesus macaque model of EBS was recently 
reported at the ONPRC. Two stillborn macaques were 
initially recognized as being likely EBS cases based on the 
appearance of widespread sloughing of skin at delivery. 
Microscopic findings in both animals included multifocal 
to coalescing, variably sized intraepidermal clefts, with 
prominent basal cell vacuolation and fragmentation. Ret-
rospective DNA sequence analysis determined that the 
two cases were both homozygous for a 34  bp insertion 
within KRT5 exon 5 (p.Lys363fs), predicted to disrupt the 
4th coil of the alpha-helical rod. At the time of discovery, 
the mGAP database included 278 genomes and the KRT5 
mutation occurred at 0.0054 frequency, with no other 
homozygotes detected. Six asymptomatic individuals 
with heterozygous KRT5 insertion mutations were subse-
quently identified, based on pedigree relationship to the 
focal cases [123].

Implications for future work
Genetic diseases in humans are also present in non-
human primates. While this simple fact has been long 
recognized, it has been difficult to take advantage for 
developing research models. The spontaneous and 
irregular emergence of animals with disease phenotypes 
often could not be duplicated, particularly for diseases 
that caused premature death or diminished reproductive 
capacity. Advances in our fundamental understanding 
of primate genomes, the reduced cost of whole genome 
sequencing, and the subsequent large-scale identifica-
tion of nonhuman primate genetic variation have not 
only allowed for a better understanding of the molecu-
lar underpinnings of disease in nonhuman primates, but 
they also allow for greater control over the production of 
these models.

The identification of disease-causing mutations 
in nonhuman primates is an important advance for 

biomedical research; it allows for the purposeful 
breeding of animal models to study human disease. 
These models often faithfully and accurately recapitu-
late human disease in both presentation and etiology, 
allowing for the discovery of relevant biomarkers and 
the pre-symptomatic or longitudinal study of disease 
pathology. The full range of state-of-the-art biomedical 
techniques, including advanced imaging, electrophysi-
ology, auditory, optical, and cognitive measures can be 
monitored. Post-mortem gross and microscopy histol-
ogy can be used to study disease-associated molecular 
and cellular changes with minimal confounding factors. 
Importantly, the relevance of the findings are directly 
translational to the human condition.

One of the most exciting aspects of the genetically 
parallel, NHP disease models are the associated oppor-
tunities to develop and test promising approaches to 
the treatment or cure of these human diseases. Devel-
opment of treatments in utero or otherwise prior to 
symptom emergence is now feasible in ways that were 
previously inaccessible. Genomic medicine approaches, 
including protein replacement, gene silencing or edit-
ing, and stem cell therapies can be evaluated in these 
translational models to insure efficient delivery, distri-
bution, and longevity. Pre-clinical testing in an anatom-
ically and physiologically relevant, large animal model 
will also be key for optimizing the efficacy, safety, and 
specificity of such treatments. The recent advances 
in NHP rare disease model development are both 
timely and critical as these emerging genomic-based 
approaches are likely to be the best, if not only, way to 
effectively treat many of these debilitating or fatal rare 
diseases.

Conclusions
Nonhuman primates represent an important model 
organism for biomedical research. Importantly, they 
can also serve a valuable role as genetic models of dis-
ease, including rare disease. Taking advantage of the 
genetic similarities between humans and NHPs and the 
recent advances in next generation sequencing technol-
ogy that have allowed for increasingly comprehensive 
catalogs of NHP variation, new models of human rare 
disease are emerging. These offer the possibility for new 
therapeutic development and understandings of disease 
that have been previously elusive.
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