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Abstract 

Background Elucidating the unique immunoregulatory mechanisms in breast cancer microenvironment may help 
develop new therapeutic strategies. Some studies have suggested that hormone receptors also have immune regula-
tory functions, but their mechanisms are not fully understood. In this study, we have comprehensively analyzed the 
relationship between the expressions of estrogen (ER), progesterone (PgR), and androgen receptors (AR), and the 
immunological profile in breast cancer.

Methods Using publicly available gene expression profile datasets, METABRIC and SCAN-B, the associations between 
the expressions of hormone receptors and the immune cell compositions in breast cancer tissue, estimated by 
CIBERSORTx algorithm, were analyzed. We histologically evaluated tumor-infiltrating lymphocytes (hTIL), PD-L1 (hPD-
L1) expression, and the infiltration of 11 types of immune cells by flow cytometry (FCM) for 45 breast cancer tissue 
samples. The relationships between them and the expressions of ER, PgR, and AR of tumor tissues, evaluated immu-
nohistochemically, were analyzed.

Results Expressions of ESR1, PGR, and AR were negatively correlated with overall immune composition. Expressions 
of ER and AR, but not that of PgR, were inversely associated with hTIL and hPD-L1 expression. FCM analysis showed 
that the expressions of ER and AR, but not that of PgR, were associated with decreased total leukocyte infiltration. 
Both CIBERSORTx and FCM analysis showed that ER expression was associated with reduced infiltration of mac-
rophages and CD4+ T cells and that of AR with reduced macrophage infiltration.

Conclusion Hormone receptor expression correlates with specific immunological profiles in the breast cancer micro-
environment both at the gene and protein expression levels.

Keywords Breast cancer, Estrogen receptor, Progesterone receptor, Androgen receptor, Tumor immunity, 
Microenvironment, Immune cell composition
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Background
Breast cancer is the most commonly occurring can-
cer in women. Despite recent advances in multimodal 
treatment, advanced and recurrent cases are challeng-
ing to cure [1], and the urgent need to develop innova-
tive treatment strategies has to be addressed. Owing to 
the development of immune checkpoint inhibitors (ICIs) 
that reinvigorate the adaptive immune response in the 
tumor microenvironment and the successful application 
of these ICIs in various neoplasms, tumor immunology 
has recently gained renewed interest across multiple can-
cers [2, 3]. ICIs have also been applied for breast cancer 
treatment, but their effectiveness is limited, likely due to 
the immunosuppressive tumor microenvironment [4–9]. 
Elucidating the unique immunomodulatory mechanisms 
of the breast cancer microenvironment will provide sig-
nificant insights into the development of new therapeutic 
strategies.

Hormone dependency is one of the prominent bio-
logical features of breast cancer. Approximately 70% of 
breast cancer cells express the estrogen receptor (ER), 
resulting in ER-dependent growth of breast cancer [1]. 
Therefore, treatment strategies that inhibit ER function 
are frequently used as postoperative adjuvant therapy 
for patients with early-stage breast cancer and as sys-
temic therapy for metastatic cases [1]. The progesterone 
receptor (PgR) is clinically considered a complementary 
marker of hormone dependency in breast cancer [1, 10] 
because it is driven partly, but not exclusively, by ER-
mediated transcriptional events [11, 12]. PgR is a binding 
partner and major modifier of ER-mediated processes, 
suggesting its additional role in breast cancer other than 
its identification as an ER activity marker [13, 14]. The 
androgen receptor (AR) is a nuclear transcription factor 
with a diverse range of biological actions, mainly in the 
development and maintenance of the male reproductive 
system [15]. It is widely expressed in all breast cancer 
subtypes to varying extents, with approximately 60–80% 
of the cases being AR-positive [16–18]. Furthermore, 
according to The Human Protein Atlas, AR expression, at 
both gene and protein levels, is second-highest in breast 
cancer, after prostate cancer, among various malignan-
cies [19]. Although the function of AR in breast cancer 
depends on the tumor subtype, treatment, and other 
factors, it is suggested to have a tumor-promoting role 
[20–22], thereby attracting attention as a new therapeutic 
target for breast cancer treatment [23, 24].

Some recent studies have suggested that sex steroid 
hormones and their receptor signaling have immune 
regulatory functions. In  vitro studies have shown that 
estrogen can expand the regulatory T-cell fraction and 
reduce the function of antigen-presenting cells [25, 26]. 
In addition, estrogen can promote immune tolerance by 

interfering with human leukocyte antigen-II expression 
in ER-positive breast cancer cell lines [27]. These findings 
suggest that estrogen signaling in the tumor microenvi-
ronment regulates anti-tumor immunity [2]. In agree-
ment with this, hormone receptor-positive breast cancer 
is characterized by low infiltration of tumor-infiltrating 
lymphocytes (TILs) and minimal response to ICIs [5, 
9, 28–32]. To the best of our knowledge, the immuno-
logical function of PgR in breast cancer has not yet been 
reported. However, limited studies have shown a rela-
tionship between PgR expression and tumor immunity 
in breast cancer; PgR expression is inversely associated 
with programmed death-ligand 1 (PD-L1) expression in 
epithelial cells or the stroma and the infiltration of CD8+ 
T and CD20+ B cells [9, 33, 34]. Further, immune regula-
tory functions of AR signals have been demonstrated via 
in vivo models of various autoimmune diseases and some 
malignancies [35]. Moreover, in breast cancer, AR expres-
sion is inversely correlated with immune cell infiltration 
and cytotoxic immune activity, suggesting an immuno-
suppressive effect of AR signals [36–38].

Despite fragmentary evidence on sex steroid hormone 
signals and tumor immunity, the interactions between 
hormone receptors and immune cells are not well under-
stood because of the complexity of the immune milieu in 
the breast cancer microenvironment and limited reports 
on systematic evaluation of immune cell composition in 
breast cancer tissue [39]. In this study, we systematically 
analyzed the relationship between the expression of sex 
steroid hormone receptors such as ER, PgR, and AR and 
the immunological profiles of breast cancer tissues. Our 
results demonstrated that hormone receptor expression, 
at both gene and protein levels, correlates with specific 
immunological profiles of the breast cancer microen-
vironment, strongly suggesting their direct or indirect 
immunomodulatory role.

Materials and methods
Gene expression profile datasets
Two publicly available gene expression profile datasets 
of patients with breast cancer used in this study were 
the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) [40, 41] cohort (n = 1904) 
and the Sweden Cancerome Analysis Network-Breast 
(SCAN-B) [42, 43] cohort (n = 3273). Gene expression 
data of METABRIC and SCAN-B, generated by micro-
array and RNA-sequencing, were downloaded from the 
cBioPortal: https:// www. cbiop ortal. org/ (accessed on 
20/2/2019) and Gene Expression Omnibus: https:// www. 
ncbi. nlm. nih. gov/ geo/ (accessed on 16/6/2019), respec-
tively. The inclusion criteria and clinicopathological 
information for each cohort have been provided in the 
original papers. The METABRIC cohort included patients 

https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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with primary invasive breast cancer, including < 1% meta-
static breast cancer. However, information on the use 
of preoperative chemotherapy was not provided. On 
the contrary, the SCAN-B cohort consisted of patients 
with non-metastatic primary invasive breast cancer and 
included the cases of preoperative chemotherapy. Both 
cohorts included all breast cancer subtypes, and all sam-
ples were obtained from primary lesions.

CIBERSORTx
Immune cell composition in breast cancer tissue was 
determined from gene expression profiles using a bioin-
formatics algorithm, CIBERSORTx: https:// ciber sortx. 
stanf ord. edu/ (accessed on 25/2/2022) [44]. Briefly, 
“LM22” representing the profiling of 22 functionally 
defined human immune cell types [45] was applied as 
a signature matrix file. The non-log-transformed gene 
expression data from METABRIC and SCAN-B were 
applied to the mixture file. The program was run in the 
absolute mode with 100 permutations. A B-mode batch 
correction was applied, and quantile normalization was 
set as disabled. Absolute scores representing the over-
all immune content and absolute abundance of each 
immune cell fraction in the mixture were produced by 
the algorithm. Cases with a CIBERSORTx p-value < 0.05 
were filtered and selected for subsequent analysis. Abso-
lute scores and absolute abundance of each cell type 
in a mixture were used for correlation analysis with 
the expression values of the indicated genes that were 
log2-transformed.

Gene set enrichment analysis (GSEA)
The gene expression values in the METABRIC dataset 
were log2-transformed before performing GSEA [46, 47]. 
Hallmark gene set collections (50 gene sets) representing 
specific well-defined biological states or processes were 
obtained from MsigDB v7.1: https:// www. gsea- msigdb. 
org/ gsea/ msigdb/ (accessed on 13/5/2020) and applied 
to GSEA using GSEA software v4.0: https:// www. gsea- 
msigdb. org/ gsea/ msigdb/ (accessed on 21/11/2019). 
While performing GSEA, the permutations were set at 
1000 with phenotype as the permutation type. Expression 
values of the indicated genes were used as phenotype 
labels, and Pearson’s correlation was set as the metric for 
ranking genes. Thresholds for nominal p-value and false 
discovery rate (FDR) q-value were set at < 0.05 and < 0.25, 
respectively. According to user guidelines, the SCAN-B 
dataset was not applied to GSEA because of the incom-
patible normalization method used for this analysis.

Patients
In a previous study, immune cell composition of breast 
cancer tissue was evaluated using flow cytometry (FCM) 

and an association between histologically assessed 
expression of TIL and PD-L1 and the immunological 
profile of the tumor microenvironment was reported 
[39]. The inclusion criteria and patient characteristics 
have also been described previously [39], and this data-
set was used for further analyses. Briefly, 47 breast cancer 
samples were obtained, regardless of clinicopathologi-
cal factors or treatment histories, except for patients 
with distant metastases or complete clinical responses 
to neoadjuvant chemotherapy. None of the patients had 
received irradiation or endocrine therapy before surgery. 
Clinicopathological data were collected by reviewing the 
case records. Two cases were excluded from the analysis, 
and the reasons are mentioned in section "TIL prepara-
tion/ FCM analysis".

Histological evaluation of hormone receptors and tumor 
immunity‑related biomarkers
Rabbit monoclonal antibodies for ER (SP1) and PgR 
(1E2) were purchased from Ventana Medical Systems 
Japan Inc. (Tokyo, Japan) and for AR (AR27) from Leica 
Biosystems Inc. (Wetzlar, Germany). The immunohis-
tochemistry (IHC) staining was performed using the 
VENTANA BenchMark ULTRA automated IHC device 
(Roche Diagnostics, Basel, Switzerland) for ER and PgR 
and BOND-III automated IHC device (Leica Biosystems 
Inc.; Wetzlar, Germany) for AR. The antigen–antibody 
complex was visualized using diaminobenzidine and 
counterstained with hematoxylin. The nuclear staining 
of ER, PgR, and AR in carcinoma cells was counted, and 
the percentage of immunoreactive cells was determined. 
ER and PgR were determined as positive when nuclear 
staining-positive cells were ≥ 10%. [48]. However, the 
accepted cutoff value for AR expression is not known; 
since the median value of nuclear staining-positive cells 
for AR was 60% in the present study, AR was considered 
positive at ≥ 60%. We diverted the data from histologi-
cal analysis of the expression of TIL and PD-L1 from our 
previous study, referred to as hTIL and hPD-L1, respec-
tively [39]. According to the International TILs Working 
Group guidelines [49], the percentages of TILs in stro-
mal tissue sections stained with hematoxylin and eosin 
(H&E) were evaluated and categorized into three grades: 
low (0–10%), intermediate (10–40%), and high (40–90%). 
PD-L1 expression was assessed by IHC using an anti-PD-
L1 antibody (SP142; Spring Bioscience, Pleasanton, CA, 
USA). Tumors with ≥ 1% immune cells showing cyto-
plasmic and/or membrane PD-L1 staining were deter-
mined to be PD-L1 positive [50]. A previous study report 
accounted that in a case, hTIL and hPD-L1 could not be 
evaluated because the tumor tissue was insufficient for 
analysis.

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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TIL preparation/ FCM analysis
FCM data from breast cancer tissue samples were 
obtained from a previously reported study, which con-
tains the detailed method [39]. To perform the analysis, 
fresh breast cancer tissues were mechanically dissociated 
and filtered using a 70-micron cell strainer. From the fil-
tered cell suspension, mononuclear cell components were 
separated by density-gradient centrifugation and sub-
jected to FCM analysis. Samples stained with an antibody 
cocktail were detected using LSR II Fortessa with the flu-
orescence-activated cell sorting Diva software (BD Bio-
sciences). All analyses were performed using the FlowJo 
software v10.6.1 (BD Biosciences). The list of antibodies 
used, gating strategy, and definitions of immune cell frac-
tions have been described in the previous report [39]. 
According to the staining profile of the surface antigen, 
evaluated by FCM, the cells were classified as follows: 
leukocytes, total T cells (total T), CD4+ T cells (CD4+ 
T), CD8+ T cells (CD8+ T), B cells (B), monocytes/mac-
rophages (Mo/Mφ), non-classical monocytes (CD16+ 
Mo), myeloid-derived suppressor cells (MDSCs), den-
dritic cells (DCs), myeloid dendritic cells (mDCs), natu-
ral killer (NK) cells, minor NK cells, and natural killer 
T cells (NKT). As mentioned in section  "Patients", two 
cases were excluded because they had a low number of 
living cells (count < 1000) in the FCM analysis of tumor 
tissue. Leukocyte density was defined as the count of 
total CD45+ cells per weight of tumor tissue (count/g), 
as described in a previous paper [51]. Similarly, we deter-
mined the count of each immune cell fraction per weight 
of the tissue fragment (count/g).

Statistical analyses
GraphPad Prism ver. 9.1.0 software was used for statisti-
cal analyses and graph preparation. The gene expression 
and FCM data were tested using the D’Agostino–Pearson 
normality test, which showed non-normal distribution 
in almost all the datasets. Correlation analyses between 
groups were performed using Spearman’s rank correla-
tion coefficient. |r-value|> 0.3 and a significant p-value 
was defined as a positive or negative correlation [52, 
53]. The Mann–Whitney U test and Fisher’s exact test 
were used to compare continuous and categorical vari-
ables between the two unpaired groups, respectively. The 
p-value < 0.05 was defined as statistically significant. In 
the previous study [39], the FCM data contained outli-
ers. Here, although all analyses were performed without 
omitting outliers, we identified the outliers using the 
robust regression and outlier removal method, excluded 
them, and performed all statistical analyses to ensure the 
reliability of our analyses. Statistics with omitted outliers 
are shown in each figure along with the original data.

Results
Gene expression levels of hormone receptors in breast 
cancer tissue
Gene expression of estrogen receptor 1 (ESR1), PGR, 
and AR negatively correlated with the absolute score in 
the METABRIC cohort (r > − 0.3, p < 0.05); however, the 
negative correlation was weak for PGR in the SCAN-B 
cohort (r = − 0.284, p < 0.05) (Fig. 1a–f). ESR1 expression 
levels inversely correlated with Mφ M1 and M0, CD4 + T 
(memory activated), CD8+ T, and CD4+ T (memory 
resting) in at least one dataset (r < − 3, p < 0.05) (Fig. 1g). 
Likewise, PGR expression levels inversely correlated with 
Mφ M1 and M0 and CD4+ T (memory activated) in at 
least one dataset (r < − 3, p < 0.05) (Fig. 1h). Similarly, AR 
expression levels inversely correlated with Mφ M0 and 
M1 in at least one dataset (r < − 3, p < 0.05) (Fig. 1i). These 
results suggest that the expression of hormone receptors 
ESR1, PGR, and AR is inversely associated with the total 
immune content and the infiltration of specific immune 
cell fractions in the tumor tissue.

Correlation of histologically assessed TIL and expression 
of PD‑L1 with protein expression of ER and AR
The status of ER, PgR, AR, PD-L1 (hPD-L1), and TIL 
(hTIL) in breast cancer tissue was histologically evaluated 
by IHC and H&E staining using the samples obtained at 
our facility from 45 patients with breast cancer. A sum-
mary of clinicopathological findings according to hor-
mone receptor status is shown in Additional file 1: Tables 
S1–S3. The correlation between hormone receptor 
expression and immune-related biomarkers was further 
analyzed at the protein level. Expression of both hTIL 
and hPD-L1 showed a negative correlation with the pro-
tein expression of ER and AR, but not with that of PgR, 
probably due to the small number of PgR-positive cases 
(Fig. 2a–f).

Association of hormone receptor status with leukocyte 
density and tumor‑infiltrating immune cells in breast 
cancer tissue
The relationship between each hormone receptor status, 
density of leukocytes, and each immune cell fraction in 
breast cancer tissue was analyzed. ER positivity was asso-
ciated with decreased leukocyte density and reduced 
infiltration of total T, CD4+ T, Mo/Mφ, MDSC, DC, and 
mDC in breast cancer tissue (Fig. 3a–m). PgR positivity 
was associated with decreased infiltration of DC but not 
with leukocyte density or other immune cell fractions 
(Fig. 4a–m). AR positivity was associated with decreased 
leukocyte density and infiltration of CD4+ T, Mo/Mφ, 
CD16+ Mo, MDSC, DC, mDC, and minor NK cells 
(Fig. 5a–m). These results suggest a strong association of 
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Fig. 1 Association between gene expression levels of hormone receptors and immunological profile of the breast cancer tissue. a–f Scatterplots 
showing a correlation between the gene expression levels of estrogen receptor 1 (ESR1), progesterone receptor (PGR), and androgen receptor (AR), 
and absolute score estimated by CIBERSORTx. g–i Graphs showing the correlation coefficient (r-value) between indicated gene expression and the 
absolute amount of various immune cell fractions estimated by CIBERSORTx. Immune cell fraction data showing consistently significant p-values in 
the METABRIC and SCAN-B datasets have been displayed in ascending order of r-value
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the expression of ER and AR with decreased infiltration 
of leukocytes and specific immune cell fractions such as 
CD4+ T and Mo/Mφ into breast cancer tissue.

Discussion
This study systematically analyzed the relationship 
between hormone receptor expression (at both gene 
and protein levels) and the immunological profile of 
breast cancer tissues, including multiple immune cell 
fractions. Expression of ER and AR in breast cancer 
tissues was associated with a decreased infiltration 
of immune cells into the tumor microenvironment. 
More specifically, ER expression was associated with 
decreased infiltration of macrophages and CD4+ T 

cells, while AR expression with reduced macrophage 
infiltration. These results were consistent at the gene 
and protein expression levels.

The present analysis showed that gene expression of 
hormone receptors was inversely correlated to total 
immune cell infiltration into the tumor microenviron-
ment (Fig. 1a–f ). This was further verified by perform-
ing GSEA on the METABRIC dataset, which analyzed 
the relationship between the expression levels of hor-
mone receptors and hallmark gene set collection (50 
gene sets) representing specific well-defined biological 
states or processes. Expression levels of ESR1, PGR, and 
AR showed a significant positive correlation with gene 
sets representing estrogen response, such as estrogen 

Fig. 2 Histological assessment of the expression of tumor-infiltrating lymphocytes (TILs) and programmed death-ligand 1(PD-L1) based on protein 
expression status of estrogen receptor (ER) and androgen receptor (AR). a–f Graphs showing the number of patients with positive or negative 
immune-related markers according to hormone receptor status. Fisher’s exact test was used to compare categorical variables between two groups; 
actual p-values are shown in the figure
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response early and estrogen response late (Additional 
file 1: Figure S1a–c). On the other hand, ESR1 and AR 
expression levels showed a significant negative cor-
relation with multiple gene sets representing immu-
nological processes such as inflammatory response, 
allograft rejection, complement, and interferon-gamma 
response (Additional file  1: Figure S1d, f ). Likewise, a 
significant negative correlation was observed between 
PgR expression level and gene sets of inflammatory 
response, allograft rejection, and interferon-gamma 
response (Additional file  1: Figure S1e). These find-
ings suggest that the gene expression levels of hormone 

receptors, such as ESR1, PGR, and AR, correlate with 
immunosuppressive phenotypes of breast cancer.

Several preclinical studies have suggested that ER 
signaling may suppress the immune response of breast 
cancer [2, 25–27], and ER-positive breast cancers have 
shown reduced TIL infiltration and minimal response 
to ICI [5, 9, 28–32]. This is consistent with the present 
findings, suggesting an immunomodulatory function of 
ER. Although numerous studies have analyzed the rela-
tionship between a single immune cell lineage and hor-
mone receptor expression [32, 54–57], few reports have 
systematically investigated the multiple immune cell 

Fig. 3 Association between estrogen receptor (ER) status and subsets of tumor-infiltrating immune cells. a Total leukocyte density (count/g) in 
breast cancer tissue according to ER status. b–m Count of each immune cell fraction per unit weight of the tissue (count/g) according to ER status. 
A tabulated summary of the statistics values and recalculated statistics values excluding outliers is shown on the upper and lower left sides of the 
figure, respectively. ns p > 0.05 (not significant); *p < 0.05; **p < 0.01; ***p < 0.001
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composition of breast cancer tissues [51, 58–60]. The 
present study reports the first systematic analysis dem-
onstrating that ER expression is preferentially associated 
with reduced infiltration of macrophages and CD4+ T 
cells (Fig.  1g, 3c, 3f ). This result is consistent with ear-
lier reports that show a negative correlation between ER 
expression and intratumoral infiltration of macrophages 
and CD4+ T cell [54–57]. Further, an inverse correla-
tion between ER expression and CD8+ T cells has been 
reported previously [32, 54]; however, in our analysis, this 
correlation was weaker than that for CD4+ T cells, both 
at the gene and protein levels (Figs. 1g and 3). In addition, 
PGR expression showed a weaker correlation with total 

immune content than ESR1 and AR, as estimated by CIB-
ERSORTx. Moreover, the correlation between PgR status 
and hTIL and hPD-L1 was insignificant at the protein 
level, probably due to the small number of PgR-positive 
samples. To validate these findings, a greater number of 
samples are required to be analyzed.

AR signaling is suggested to have immunomodula-
tory functions in some malignancies, including breast 
cancer [35–38]; however, its immunological role in 
breast cancer has not been fully validated. To the best 
of our knowledge, a single study has investigated the 
relationship between immune cell composition and 
AR expression in breast cancer using the CIBERSORT 

Fig. 4 Association between progesterone receptor (PgR) status and subsets of tumor-infiltrating immune cells. a Total leukocyte density (count/g) 
in breast cancer tissue according to PgR status. b–m Count of each immune cell fraction per unit weight of the tissue (count/g) according to PgR 
status. A tabulated summary of the statistics values and recalculated statistics values excluding outliers is shown on the upper and lower left sides 
of the figure, respectively. ns p > 0.05 (not significant); *p < 0.05; **p < 0.01; ***p < 0.001
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algorithm [38]. Tumors with high AR expression were 
reported to be associated with pro-cancer regulatory 
T cells, and those with low AR expression were associ-
ated with anti-cancer immune cells, such as CD4, CD8, 
gamma delta T cells, and memory B cells in ER-positive 
breast cancer. In our study, CIBERSORTx was run in 
absolute mode and included all subtypes in the analysis; 
therefore, a simple comparison was not possible. High 
AR-expressing tumors showed reduced macrophage 
infiltration into the tumor microenvironment; this find-
ing was consistent with CIBERSORTx and FCM analy-
sis results.

In the present study, expressions of ER and AR were 
inversely correlated with hPD-L1 expression (Fig. 2b, f ). 

We analyzed the PD-L1 expression in each immune cell 
fraction by FCM analysis, similar to our previous study 
[39]. According to hormone receptor status, we found 
that ER positivity was associated with decreased PD-L1 
expression in Mo/Mφ and mDC (Additional file 1: Figure 
S2d, h), PgR positivity with decreased PD-L1 expression 
in MDSCs and NK cells (Additional file 1: Figure S3f, j), 
and AR positivity with decreased PD-L1 expression in 
CD8+ T and Mo/Mφ cells (Additional file 1: Figure S4b, 
d). PD-L1 expression reflects ongoing (or active) immune 
responses in addition to immunosuppression via the 
PD-1/PD-L1 pathway [60–62]. Thus, ER positivity and 
AR positivity may reflect decreased immune response in 
the breast cancer microenvironment.

Fig. 5 Association between androgen receptor (AR) status and subsets of tumor-infiltrating immune cells. a Total leukocyte density (count/g) in 
breast cancer tissue according to AR status. b–m Count of each immune cell fraction per unit weight of the tissue (count/g) according to AR status. 
A tabulated summary of the statistics values and recalculated statistics values excluding outliers is shown on the upper and lower left sides of the 
figure, respectively. ns p > 0.05 (not significant); *p < 0.05; **p < 0.01; ***p < 0.001
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Findings of this study suggest that the hormone recep-
tor signals may primarily affect specific immune cell line-
ages. In particular, the expression of ER and AR showed a 
negative correlation not only with total immune content 
in the tumor microenvironment but also with certain 
immune cell subsets such as macrophages and CD4+ T 
cells. This indicates that specific immune cell lineages 
may be primary targets of the immunoregulatory func-
tion of the hormone receptor signals. Our next goal is to 
verify this hypothesis using an in vitro or in vivo analysis 
model.

In our previous study [39], a relatively small number 
of samples were used for FCM analysis, and compared 
to those of the general breast cancer cohort, the clinico-
pathological characteristics of tumors were biased with 
larger invasive tumor sizes, more ER-negative cases, and 
higher Ki67 cases. Similarly, in this study, the small sam-
ple size prevented us from performing subgroup analyses 
based on the tumor subtype. Therefore, the inclusion of 
a greater number of samples and more detailed analyses 
are required in future studies. In this exploratory analy-
sis, the cut-off value for ER and PgR positivity was set 
at ≥ 10% according to our previous study [39]. However, 
in a recent clinical guideline update [63], 1% is recom-
mended as a cutoff value for ER- and PgR-positive cells 
because of limited but present data on endocrine therapy 
benefit for cancers with 1% to 10% of cells staining ER 
positive. Therefore, the analysis of Figs.  2, 3, and 4 was 
repeated using the cutoff points 1% for ER and PgR, as 
shown in Additional file 1: Figure S5a–h. When the cut-
off value is set to 1%, for Fig. 2, the expression of hPD-L1 
showed a negative correlation with the protein expres-
sion of PgR (Fig S5d). Similarly, for Fig. 3, the significant 
association between ER positivity and some immune cell 
compositions were lost (i.e., leukocyte density, infiltration 
of total T, CD4+ T, Mo/Mφ) (Fig S5e). For Fig.  4, PgR 
positivity gained significant association with decreased 
leukocyte density and reduced infiltration of total T, 
CD4+ T, MDSC, DC (Fig S5f ). No meaningful changes 
were observed in other results. Only 2 cases each had 
changes in ER and PgR status due to changes in the cutoff 
values. Therefore, we speculate that the discrepancies in 
the analysis results are a consequence of the small sample 
size.

Conclusions
In the present study, the gene expression levels of 
hormone receptors correlated with immunosuppres-
sive phenotypes of breast cancer. The expression level 
of ER and AR proteins was associated with decreased 
tumor-infiltrating immune cells and decreased PD-L1 
expression. These data suggest that hormone recep-
tor signaling may suppress tumor immunity through a 

specific mechanism. Additionally, our data showed that 
certain immune cell lineages might get more strongly 
affected by hormonal signals than others, providing 
useful suggestions for further analysis of the effects of 
hormonal signals on tumor immunity.
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