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Abstract

Single-cell RNA sequencing (SCRNA-seq) identifies cell subpopulations within tissue but does
not capture their spatial distribution nor reveal local networks of intercellular communication
acting in situ. A suite of recently developed techniques that localize RNA within tissue, including
multiplexed in situ hybridization and in situ sequencing (here defined as high-plex RNA imaging)
and spatial barcoding, can help address this issue. However, no method currently provides as
complete a scope of the transcriptome as does sScRNA-seq, underscoring the need for approaches
to integrate single-cell and spatial data. Here, we review efforts to integrate SCRNA-seq with
spatial transcriptomics, including emerging integrative computational methods, and propose ways
to effectively combine current methodologies.

Organ systems are composed of distinct cellular subpopulations whose spatial locations
within a given tissue are deeply intertwined with their functions®. Si ngl e- cel | RNA
sequenci ng (SCRNA-seq) characterizes the transcriptome of individual cells and can reveal
cell subpopulations within a given organ. However, the isolation of single cells during

the necessary tissue dissociation step of sScRNA-seq destroys information on their spatial
localization within native tissue and their proximities to each other. Given that juxtacrine
and paracrine signals operate from 0 to 200 pm, such spatial information is vital to
understand the i nt ercel | ul ar communi cat i on underlying normal and diseased tissues.
Interrogating intact tissue with spati al transcri pt oni cs? addresses this challenge

by physically localizing gene sets expressed in specific cell subsets identified by sSCRNA-
seq (FIG. 1). Current spatial transcriptomics approaches themselves cannot yet provide
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deep transcriptomic information on precisely localized single cells in tissue; however,

they can shed light on the niches enriched for distinct gene sets. This localizes cell
subpopulations to the tissue ‘neighbourhoods’ where they reside, and designates the ligands
and receptors that they express to effect local intercellular communication. When used

in combination, sScRNA-seq and spatial transcriptomics can thus localize transcriptionally
characterized single cells within their native tissue context. Integrating SCRNA-seq and
spatial transcriptomics data may therefore increase our understanding of the roles of specific
cell subpopulations and their interactions in development, homeostasis and disease (FIG. 1).

scRNA-seq has improved on bul k RNA- seq?, which alone is unable to capture cellular
heterogeneity. Moreover, since its emergence in 2009 (REF.3), analytical pipelines for
scRNA-seq have matured, and its limitations are increasingly understood*. For example,

a key drawback of cell isolation through tissue dissociation is the potential to induce ectopic
gene expression, which can lead to mischaracterization of certain cell subpopulations®.
Spatial transcriptomics techniques avoid this technical artefact by assaying cells in their
native tissue context. Compared with SCRNA-seq, spatial transcriptomics workflows and
efforts to integrate spatial transcriptomics and scRNA-seq data have emerged fairly recently
and are an area of rapid evolution (TABLE 1). Building on single-molecule in situ
hybridization (ISH)E, spatial methods that interrogate larger gene sets than single-molecule
ISH have become more accessible’. For example, early ISH techniques®® have now
advanced to methods that localize hundreds of genes in intact tissue through hi gh- pl ex
RNA i magi ng (HPRI) (FIG. 2A; TABLE 1), which encompasses techniques such as in situ
sequencing?, multiplexed error-robust fluorescence in situ hybridization (MERFISH)!! and
sequential fluorescence in situ hybridization (seqFISH)12-14, spati al bar codi ngl5-18
(FIG. 2B; TABLE 1) was recently developed to ‘capture’ the spatial coordinates of

mMRNA transcripts in an unbiased manner, which yields greater cover age. Capt ure spot
resol uti on continues to improve, reaching a resolution smaller than the diameter of

a typical single cell (according to two preprint publications!®:29), thereby improving the
likelihood that only a single cell or subtype is contributing to the RNA mixture. However,
dept h continues to be a limiting factor for spatial barcoding techniques. Conversely,

HPRI improves on depth, but lacks transcriptome-wide coverage. Therefore, current spatial
methods are still unable to create single-cell resolution spatial transcriptomics maps in
which the transcriptome of each cell is captured at a depth akin to sScRNA-seq (FIG.

2Ab, Bb). This limitation underscores the need to integrate current spatial transcriptomics
platforms with sScRNA-seq to maximize resolution in tissue.

This Review provides an overview of the types of biological insights gained from integrating
spatial transcriptomics and SCRNA-seq data, and describes approaches to help optimize
spatial analyses to deeply characterize single cells in tissue. This includes how spatial
barcoding capture spots can be deconvolved to establish cell-type proportions and how
scRNA-seq cell-type data can be mapped onto HPRI data. Additionally, the enhancement

of ligand-receptor intercellular communication analysis with spatial resolution will be
addressed. Finally, we discuss newly emerging experimental modalities and algorithms for
interrogating the spatial transcriptome.
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Biological insight from integrated data

Spatial transcriptomics has accelerated the capacity to elucidate the inner workings of
discrete cell subpopulations within various contexts and organ systems (FIG. 1a). These
approaches have been applied to assess the homeostasis and development of healthy tissue
in the liver21-24 intestine2%26, hone marrow?”, mouse embryo?8, brain13:29, reproductive
system30 and heart31:32, The widest application of spatial transcriptomics to studying disease
has been the tumour microenvironment of cancers33-3%, Spatial transcriptomics has also
been applied to other diseased and injured microenvironments, such as the brain36:37 and
spine38 in neurodegenerative diseases, the heart after myocardial infarction3® or other
injury® and the lungs during respiratory infection*!. Recent work has begun to integrate
spatial transcriptomics data with additional modalities, namely sScRNA-seq, to provide new
insights into tissue composition and function (TABLE 2).

Normal tissue homeostasis and development.

A major goal of spatial transcriptomics is to provide an increased understanding of the

roles of distinct cell types in steady-state tissue homeostasis. For example, each liver

lobule unit along a radial axis surrounding a blood vessel contains a distinct gradient of
oxygen, nutrients and hormones*2. As the liver is classically divided into two periportal

and pericentral hepatocyte zones, one study used a probabilistic inference model to assign
each cell from scRNA-seqg-based single-molecule fluorescence in situ hybridization into nine
discrete zones?!, and thereby revealed the roles for a novel class of intermediate lobule cells.
Other studies used f | uor escence- activated cel | sorting (FACS) with zonated
liver cell surface markers?2 and laser-capture mi cr odi ssect i on (LCM)23 to elucidate the
spatial dynamics of signalling pathways regulating metabolic zonation and regeneration.
Although it was known that intestinal epithelial cells migrate up from crypts along the villus
axis, a recent analysis defined three functionally distinct regions along the villus axis in

the absence of any pre-existing knowledge of landmark genes unique to each section?®,
providing new insight into cell subpopulations that mediate tissue homeostasis.

In cases in which homeostatic cellular division of labour is less understood, physical
partitioning-based spatial transcriptomics may provide meaningful insight. One such
approach mapped bone marrow-resident cell types to previously unrecognized, spatially
distinct niches and defined cellular origins of pro-haematopoietic factors?’. The work

first used scRNA-seq to establish the transcriptomes of discrete cellular subtypes found

in bone marrow. Then, on separate samples, classic immunostaining guided LCM of

bone marrow cross-sections, followed by bulk RNA-seq for each LCM niche. mRNA
mixtures from LCM niches were deconvolved to localize scRNA-seq-based bone marrow
subtypes. Immunofluorescence based on gene markers specific to the cell types validated
deconvol uti on findings, thereby providing insight into resident cell subpopulations active
in normal bone marrow. LCM on single mid-gastrulation mouse embryos followed by
RNA-seq was performed to render a 3D understanding of the regionalization of cell fates in
the embryo?8,

In the absence of such physical manipulation, spatial transcriptomics can help interrogate
tissues without having an idea of where cell types localize. For example, an analysis of the
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functional organization of neurons in the preoptic hypothalamus combined scRNA-seq and
HPRI to discover novel cell subtypes, their spatial localization and their activation during
certain behaviours2. A preliminary study investigated the dynamics of spermatogenesis
using spatial barcoding to discover two spatially segregated populations, each comprising
stem cells at unique transcriptional states30. Moreover, a map of development stages was
constructed through pseudo-ti e anal ysi s*3 deconvolved from the gene signature at
each capture spot.

Excitingly, spatial transcriptomics is also amenable to discovering the dynamics of tissue
development across multiple key time points during development. One effort used SCRNA-
seq to define the transcriptomes of cardiomyocyte subtypes, and then applied spatial
barcoding to study subtype spatial localization during human embryonic heart development
at three key development time points3L. Transcriptomic data from both spatial barcoding
and scRNA-seq were then synthesized to select probes for HPRI to ultimately produce a 3D
map of the developing heart at single-cell resolution. To discover the spatial coordination

of intestine development, another group integrated spatial barcoding with sSCRNA-seq across
three critical developmental time points2®. Notably, the authors analysed how morphogen
gradients direct the dynamic development of cell types linked to developmental intestinal
disorders, which are challenging to study in utero. Algorithms for aligning spatial barcoding
data across spatio-temporal development are still in their nascency44°.

The tumour microenvironment.

Although spatial transcriptomics analyses of several disease microenvironments exist,
tumour microenvironments are presently the most extensively studied*6. Tumour
microenvironments are particularly heterogeneous and have complex, spatially restricted
interactions with the immune system?#7:48, Until recently, the ability to interrogate the

inner workings and heterogeneity of the tumour microenvironment has relied largely

on bulk RNA-seq?®. scRNA-seq has advanced our understanding by identifying cancer
subpopulations that can drive drug resistance, predict metastatic risk and provide prognostic
value®051,

A recent study combined spatial barcoding and scRNA-seq to localize an
immunosuppressive tumour-specific keratinocyte subpopulation to a fibrovascular niche
at the tumour borders (as defined by aligning haematoxylin and eosin images) in

human squamous cell carcinoma33. This population expressed genes associated with
immunotherapy resistance and numerous ligands inferred to modulate cancer-associated
fibroblasts, suggesting ways tumour subpopulations may promote local immunosuppression.
In pancreatic ductal adenocarcinoma, another study intersected sScRNA-seq and spatial
barcoding with annotated haematoxylin and eosin images to reveal that inflammatory
fibroblasts play a significant role in cancer stress responses34. In addition to providing
insights into tumour resistance and stress responses, such integrated data may offer
insight into clinical prognosis. For example, one study observed that greater heterogeneity
of a transition area within cross-sections of melanoma metastases was associated with
poorer patient survival3®. Furthermore, spatial data enabled the identification of the most
abundantly expressed genes in the transition area and could guide microdissection of
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this area to provide more a detailed characterization in the future. Ultimately, spatial
data enabled a more detailed analysis of clinically relevant characteristics of the tumour
microenvironment, thereby yielding greater prognostic power and potential therapeutic
targets.

Other diseased and injured microenvironments.

Integrating spatial data with scRNA-seq can elucidate the molecular pathogenesis of
localized gene expression programmes proximal to disease biomarkers, such as amyloid
plagues in Alzheimer disease®2:53, One study discovered an Alzheimer disease-associated
subpopulation of microglia in mouse brains using single-molecule fluorescent ISH (in which
probes were selected based on the most highly expressed genes in the disease-associated
subpopulations of their sScRNA-seq data); annotating the spatial cross-sections from diseased
brain tissues revealed that this disease-associated population localized to amyloid plaques3.
Similarly, alignment of spatial barcoding data with immunostained adult mouse brain cross-
sections identified gene networks common to cells in areas with higher densities of amyloid
plaques3”. HPRI was then used to develop a single-cell resolution map of these gene
networks and to capture their spatial dynamics at different disease stages. Elucidating gene
networks that are upregulated adjacent to amyloid plaques provided candidate therapeutic
targets of greater interest compared with those from gene networks obtained from scRNA-
seq alone in which proximity to the plaque biological feature was lost3’.

Spatial analysis around disease-relevant biological features has also been performed

outside the neurological context. A spatial multiomics analysis integrating single-nucleus
RNA-seq (snRNA-seq), spatial barcoding and, uniquely, single-cell sequencing assay for
transposase-accessible chromatin using sequencing (SCATAC-seq) spatially mapped the gene
regulatory networks controlling the fibroblast to myofibroblast differentiation that drives
cardiac scar formation in the myocardial border zone area3® (which is the leading cause

of death in patients with myocardial infarction®#). To spatially map the gene regulatory
networks, SnRNA-seq and SCATAC-seq were integrated first, and then SnRNA-seq cell-

type annotations were used to score each capture spot. One study characterized zebrafish
cardiomyocyte regeneration following cardiac injury#C. Analysis of cryo-sections parallel to
the wound border revealed three distinct spatially restricted zones with unique signalling
patterns.

Spatial transcriptomics can also be leveraged to map disease pathogenesis across key

time points. For example, given that a lack of spatial resolution has hampered efforts

to understand amyotrophic lateral sclerosis, spatial barcoding was applied to profile the
spatial transcriptome of spinal cord cross-sections during three key disease states38. The
resulting co-expression analysis identified 31 major disease-relevant co-expression modules
and charted their dynamic expression levels across time points of disease progression,
ultimately nominating potential therapeutic targets. Ultimately, spatial transcriptomics data
can validate what sScCRNA-seq can merely impute: the spatial coordinates of the discrete
cellular subpopulations, dynamic changes in spatial arrangement during development and
pathogenic progression, and proximity to disease-relevant bio-features.
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A model workflow for integration

The lack of spatial transcriptomics methods yielding depth and coverage comparable with
scRNA-seq underscores the need to integrate data from both techniques (FIG. 3).

Establishing discrete cell subtypes through scRNA-seq.

SscRNA-seq typically detects a significantly greater number of unique genes per cell
compared with any spatial transcriptomics method®°%6, thereby revealing novel cell
subtypes as well as more detail on transcriptomes of each subpopulation. Furthermore, many
scRNA-seq analytic pipelines plot cellular differentiation trajectories and gene regulatory
networks”57-59, Classifying cell types leverages several clustering methods89-65, Seurat®6,
an unsupervised clustering method using the Louvain method, has emerged as one of the
most commonly employed, with SCANPY?38 and SC3 (REF.%3) being two other popular
scRNA-seq subtype clustering tools. In silico sub-clustering can identify subpopulations
within cell types of interest, which can then be validated by additional SCRNA-seq
experiments8’. Because of its depth and single-cell precision, sScRNA-seq is thus the current
optimal platform for defining cell subpopulations in a given tissue.

Investigating tissue niches of interest from spatial data.

HPRI and spatial barcoding both benefit from inference of cell types based on sScRNA-seq
data (FIG. 3b,c). To more clearly define and validate cell types in niches of interest

from spatial data, cells can be labelled based on their niche in situ and then sequenced.
One approach to niche-labelling uses photoactivatable reporters, which are activated by a
particular wavelength of light to label a given tissue niche. For example, GeoMx Digital
Spatial Profiling allows the user to select small regions of interest to profile while viewing
the tissue slide stained with desired imaging reagents®®. Indexing oligonucleotides are
attached to targets of interest (primary antibodies or to mRNA hybridization probes); upon
exposure to UV light, these probes are cleaved and then quantified. Similarly, ZipSeq®®
anneals a particular ‘zip code’ DNA barcode to cells targeted with UV light. The annealed
barcode can then be read out during typical ScRNA-seq workflows to localize the cell’s
signature at the niche associated with the barcode. Transcriptome in vivo analysis poly-U
oligo tags with photocleavable linkers® can be loaded into tissues and photo-activated to
capture mRNA in the niche of interest. In NICHE-seq’?, a cell-expressed photoactivatable
green fluorescent protein is activated by two-photon irradiation. Following activation,
FACS-based sorting captures labelled cells for scRNA-seq. An alternative FACS-based
approach uses a labelling system in which metastatic cancer cells engineered to secrete the
sLP-mCherry protein are injected into metastatic niches of interest’2. Unlabelled cells in
the niche take up the sLP-mCherry protein and are then sorted by FACS for subsequent
scRNA-seq analysis to profile metastatic niche cells involved in colonization. Each of these
methods may augment conventional spatial transcriptomics approaches by enabling further
characterization of tissue regions of interest.

Corroborating cell-type classifications made from mapping.

Given that mMRNA is a proxy for protein expression, a valuable means of corroborating
ScRNA-seqg-based cell-type assignments for HPRI data is multiplexed epitope-based tissue
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imaging”3-76 using immunofluorescence microscopy’’~89 or imaging mass cytometry81-86,
Whereas immunofluorescence microscopy reveals more detailed organelle architecture,
imaging mass cytometry commonly maps more protein targets (up to 100)80; both
approaches require validated antibody reagents. Emerging integrative approaches include
an imaging mass cytometry method that simultaneously measures mRNA transcripts and
16 different proteins8’. In this regard, algorithms such as CellProfiler are helpful in
quantitatively characterizing cellular phenotypes of single-cell resolution images from
various assays®8. These approaches provide valuable protein-based corroboration of spatial
transcriptomics data in tissue.

Integrating scRNA-seq and spatial data

Given that spatial transcriptomics methods do not yet generate deep single-cell resolution
transcriptomic maps in tissue, analyses that can successfully integrate both single-cell and
spatial transcriptomics data will be helpful in understanding the architecture of the cell-type
distribution (FIG. 3c) and the putative mechanisms of intercellular communication that
underlie this architecture (FIG. 3d). There are two primary approaches for integrating
scRNA-seq and spatial data: deconvolution and mappi ng (TABLE 3). Deconvolution seeks
to disentangle discrete cellular subpopulations from mixtures of mRNA transcripts from
each capture spot based on single-cell data (FIG. 4a). Mapping has two facets: mapping of
assigned scRNA-based cell subtypes to each cell on HPRI maps (FIG. 4b) and mapping each
scRNA-seq cell to a specific niche or region of a tissue. Such analyses can provide spatial
context for putative ligand-receptor interactions obtained from analysis of SCRNA-seq data.

Deconvolution: disentangling discrete cellular subtypes from a single capture spot.

There are two main ways to approach deconvolution: inferring the proportions of cellular
subtypes for a given spot89-92 (FIG. 4c,d) and scoring a given spatial transcriptomics spot
for how strongly it corresponds to a single cellular subtype?9:31:33.34 (F|G. 4e). There are
many models that can deconvolve cell types from an mRNA mixture of an entire tissue
sample, as from bulk RNA-seql7:93-101: however, given that spatial barcoding methods
have only recently emerged as an accessible technique, a limited number of models are
specifically tailored towards deconvolving mRNA mixtures from capture spots20-92:101,102,
Regardless of which approach is taken, the first step in deconvolution is establishing which
cellular subtypes exist in a given tissue sample (as described in the section ‘Establishing
discrete cell subtypes through scRNA-seq’).

Inference-based deconvolution techniques involve estimating proportions of each cell type
for a given capture spot. One approach to this form of deconvolution employs models
based on st ati stical regression,which use amatrix of SCRNA-seq data containing
cell-type classifications for each cell to deconvolve the mRNA mixture for each capture
spot (FIG. 4c). Various linear regression models have been applied to deconvolving bulk
RNA-seq mixtures’:93-101 'Non-negative least squares®! and dampened weighted least
squarest0? linear regression have been specifically applied to the deconvolution of capture
spot mixtures.

Nat Rev Genet. Author manuscript; available in PMC 2023 January 31.
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A complementary approach to estimating exact proportions of each cell type in a

given capture spot is through a Bayesi an statistical framework that fitsa
probability distribution, often a negative binomial distribution92:103 (alternatively a Poisson
distribution?9), to the distribution of gene counts from scRNA-seq data (FIG. 4d). Once this
probabilistic model is fit to the SCRNA-seq data for each cell type and gene, empirical

data for each capture spot are input as a prior to the model to yield a maxi mum a
posteriori estimation of a cell-type distribution given gene distributions at that particular
capture spot. Additional approaches that are specifically tailored towards addressing the
spatial barcoding deconvolution problem are likely to emerge. Given the recent and rapid
development of these models, a standardized approach to benchmark model performance
has yet to be developed. In cases where two samples of matched cell-type composition can
be obtained, the efficacy between one processed by scRNA-seq and the other through bulk
RNA-seq followed by deconvolution can be compared?6:99.100, However, a more convenient
strategy for assessing efficacy is to create mixtures in silico by combining the transcript
measurements from multiple well-characterized sSCRNA-seq cells?0-92.95.96,100 or hylk RNA-
seq mixtures of known cell-type composition®”%9, The model’s deconvolution output can
be compared with the ground-truth cell subtype proportion values to assess efficacy.
SPOTIight’s benchmarking strategy is among the most thorough: assessing the accuracy,
sensitivity and specificity of cell-type detection and overall correlation with the ground
truth9, Furthermore, physical validation of subtype spatial localization at a higher resolution
can be obtained through HPRI91:92.102 However, until HPRI improves the transcriptome
coverage and applicability of untargeted methods to intact tissue, spatial barcoding may
remain advantageous, especially for obtaining an unbiased characterization of the spatial
transcriptome (FIG. 2Ab,Bb). As more deconvolution methods develop, more systematic
unbiased benchmarking studies will be necessary.

There are many enr i chment score-based techniques to deconvolution (FIG. 4e). Seurat
3.0 (REF.%5) calculates relative expression scores of a cell type for a given capture spot

by subtracting the average relative expression of the control gene set from the average
relative expression of the gene set for that cell type52. Alternatively, multimodal intersection
analysis34 computes the overlap between cell-type gene programmes established from
scRNA-seq and tissue-type gene programmes established from spatial barcoding data

to elucidate to what degree certain cell types are enriched or depleted in each region.
Importantly, sScRNA-seg-based scoring of a spot does not have to be limited to scoring for a
cell type — one can score for characteristics such as cell cycle phase, tissue type, cancerous
versus non-cancerous and specific gene expression programmes®2. The limitation to this
scoring approach is finding truly unique genes expressed by cell types of interest because
overlapping genes may confound scoring.

Principles of data set mismatch and deconvolution method strategies to address it.

M smat ch between cell subtypes present in SCRNA-seq data and those in spatial data
(spatial barcoding and HPRI) can complicate deconvolution and mapping. Broadly,
mismatch can result from errors in the pre-sequencing steps and/or in the post-sequencing
analysis. Furthermore, mismatch can be exacerbated when using independent scRNA-seq
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atlases as references whose tissue conditions do not align well to newly generated spatial
data.

Pre-sequencing mismatch causes are similar for both spatial barcoding and HPRI. More
subtypes in SCRNA-seq data than in spatial data could reflect pre-sequencing issues, such
as the artificial creation of subtypes from stress response to ScCRNA-seq tissue dissociation5,
the relatively low transcript capture depth per cell unit area in spatial barcoding and the
relatively low transcript coverage with HPRI or an inability of HPRI or spatial barcoding

to detect transcripts coming from a certain cell subtype due to tissue structure. Although
probably rare, it is also possible that tissue dissociation may cause loss of subtypes

whose phenotype can be acutely altered by the disruption of in situ spatial dynamics (a
systemic analysis on this has yet to be performed); however, spatial barcoding is unlikely

to be sensitive enough to capture changes in gene expression responsible for such subtle
differences in phenotype. But if such genes can be pinpointed, HPRI could leverage its
greater depth to capture these subtypes (FIG. 2Ab). Additional or missing subtypes detected
from either assay can stem from sampling bias (of the tissue section used for scRNA-seq or
spatial transcriptomics).

Post-sequencing mismatch can result from poor clustering choices (that is, over-annotating
or under-annotating subtypes). A common strategy to assess the validity of sScRNA-seq
clusters is to see whether marker genes'94 are observed in the proper cell-type clusters195,
As capture spot deconvolution models typically treat sScRNA-seq as a gold standard for
establishing cellular subtypes, a subtype only present in spatial barcoding data is treated
as noise by inference-based models®0:92.103 ywhose presence hinders optimal fit. However,
as we and others have found previously2%:31.33.39.106 certain cell types either are difficult
to dissociate or do not survive the sScRNA-seq workflow, and therefore are not detected in
scRNA-seq despite their verified presence in spatial data. To assess whether SCRNA-seq
has missed cell types, clustering capture spots22:31:39 (as one would cluster ScsRNA-seq
data to obtain cell subtypes) may reveal subtypes only captured by spatial barcoding.
Clustered captured spots may serve as a surrogate reference in deconvolution when no
suitable ScRNA-seq data set is available3>:107,

Although inadequate depth and subtype detection cannot easily be computationally
remedied, creation of cellular subtypes during dissociation is not likely to confound cell-type
modelling, because these artificial cell types usually occur at low frequencies and do not
pass confidence thresholding. In fact, SPOTlight®! has a minimum frequency threshold.
Furthermore, Spatial DWLS192 performs an additional round of capture spot deconvolution,
with subtypes below the minimum frequency removed. Under the premise that capture spots
with three or more cell types are rare, robust cell-type decomposition®? wields the ‘doublet
mode’ to mitigate overfitting by determining whether a model fit to one cell type or two

cell types better explains the capture spot’s transcript mixture. The doublet mode can be
extended to triplets and beyond. As higher resolution spatial barcoding assay techniques
emerge (thereby decreasing the typical number of cell types per capture spot), the doublet
mode will serve as a model deconvolution strategy. The aforementioned strategies reflect
the ways in which the spatial barcoding capture spot deconvolution problem is distinct from
the bulk RNA-seq deconvolution problem. As additional matched scRNA-seq and spatial
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barcoding data sets are generated, we anticipate the refinement of current deconvolution
strategies and development of novel algorithms to maximize deconvolution accuracy.

Mapping: creating spatially resolved cell-type maps at single-cell resolution.

Just as with deconvolution, the first step to mapping is establishing cellular subtypes

based on scRNA-seq data. Then, the primary challenge of mapping is to assign SCRNA-seq-
based cell types onto each cell from HPRI data (FIG. 4b). Intuitively, ScRNA-seq-based
cell-type scoring can be applied to each individual cell from HPRI similarly to how it

is applied to scoring capture spots (FIG. 4e). Just as with deconvolution, there are also

more computationally sophisticated approaches to addressing the mapping problem. Early
efforts to spatially map scRNA-seq data relied on ISH of a small number of landmark genes
to probabilistically map scRNA-seq cells to user-defined regions21:108.109 gr single-cell
coordinates!19 in 2D or 3D space. However, these methods rely on the tissue having a
prototypical structure. Furthermore, given rapid advances in throughput of HPRI techniques,
most mapping algorithms have not yet caught up to specifically address integration of
scRNA-seq with HPRI. Instead, they have focused on batch-correcting two different SCRNA-
seq experiments, but nevertheless have demonstrated successful application to single-cell
resolution spatial datall.

A systematic evaluation of 14 published algorithms that implement batch correction
strategies for mapping through cluster-based analysis!12 identified three algorithms

that most effectively integrate SCRNA-seq data with single-cell resolution spatial data:
LIGER13, Seurat Integration!14 (from Seurat 3.0) and Harmony!1® (FIG. 4f). All three
algorithms ultimately obtain cell types from community detection of clusters that have
been integrated into a low-dimensional space through different methods. Harmony projects
both mapping data sets into low-dimensional space using principal component analysis
and then iteratively removes batch effects by favouring the clustering of cells with a
greater diversity of batches, while simultaneously maintaining cell-type similarity in the
k-means clusters. Intuitively, mismatch would increase the odds of spuriously assigning
data set-unique subtypes to the most similar cell type of the other data set; however,
Harmony incorporates other penalties to successfully address mismatch. Seurat Integration
begins by projecting scRNA-seq and HPRI mapping data sets into low-dimensional space
using canonical correlation analysis, and then finds anchor cell pairs encoding cellular
relationships across the two data sets through nut ual near est nei ghbour clustering
Anchors can then be evaluated: higher-scoring anchors are those wherein many similarly
clustered cells in one data set are predicted to correspond to that same group of similar
cells in the other data set. Mutual nearest neighbour clustering has proved to be robust to
mismatch as cells in non-overlapping populations displayed lower median anchor scores!14:;
therefore, they were given less weight when transforming the data sets into a shared space.

116

As Harmony and Seurat Integration both attempt to ameliorate batch effects by mapping
data sets into a completely shared latent space, they both implicitly assume that differences
between the data sets are entirely due to technical variations. LIGER does not make the
same assumption. LIGER addresses this during the di mensi onal i ty reducti on step
through employing integrative non- negati ve matrix factorizati on, wherein each
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cell is defined by a set of data-set-specific genes and a separate set of shared genes.

Using the values for these genes, each cell is assigned a type based on whichever cell

type corresponds to its maximum f act or | oadi ng. Then, shared factor neighbourhood
graph clustering is performed on both data sets to connect cells with similar factor loading
neighbourhoods, thereby linking sScRNA-seq and HPRI data. Given that the factor loadings
often successfully characterized biological sources of variation, LIGER has proved to be
robust to mismatch during mapping from scRNA-seq to HPRI cell types.

In addition to ascertaining community clusters of cell types, Seurat Integration and LIGER
can i nput e expression of genes not measured for the spatially resolved single cells. Seurat
Integration readily imputes by using the sScRNA-seq gene expression profile of the spatial
cell’s highest scoring anchor. Higher-scoring pairs have more shared nearest neighbours

in low-dimensional space. By contrast, LIGER and SpaGE!1’, a newly published mapping
algorithm tailored towards integration of ScCRNA-seq and single-cell spatial data, impute by
obtaining the average expression of a certain number of corresponding scRNA-seq nearest
neighbours in low-dimensional space. Imputation of spatial gene expression can be validated
by comparing actual HPRI data with the predicted values from mapping for each HPRI gene
assayed114.115,

Instead of a clustering approach, pciSeq8® uses a mean-field approximation!!® Bayesian
algorithm that leverages sScCRNA-seq data to simultaneously estimate the probability of
assigning each read to each cell from the HPRI data. For each gene, pciSeq assesses

the probability distribution for numerous gene spots for a given gene and their locations,
known as a spatial point process. To obtain cell-type classification probabilities, the model
calculates the expected number of copies of each gene assigned to the cell relative to the
number of gene assignments predicted from scRNA-seq counts, cell area and estimated
efficiency.

As additional matched scRNA-seq and spatial data sets are generated, algorithms
specifically suited to address the challenges of both mapping and deconvolution will likely
evolve. Eventually, improvement of spatial barcoding towards single-cell resolution could
obviate the need for deconvolution and convert it into a mapping problem. In fact, given
that the spatial barcoding deconvolution algorithms (both linear regression and Bayesian
models) generally have lower accuracy on sparse datal03, that is, many fewer transcripts per
capture spot, mapping algorithms may begin to yield more accurate cell-type predictions for
single-cell resolution spatial barcoding data. This may be especially true in tissues where
there is a low degree of cell-type intermixing26.

Incorporating spatial data into analysis of intercellular communication.

Interactions between cell subpopulations mediate tissue homeostasis, development

and disease. Given that much cellular cross-talk, notably juxtracrine and paracrine
communication, is spatially restricted109119  spatial transcriptomics data are well suited
to evaluate the reliability of the ligand—receptor interactions computed from scRNA-seq
(FIG. b). Standard algorithms for predicting the ligand—receptor interaction pairs involved
in intercellular communication primarily incorporate sScRNA-seq data and a database of
known ligand—receptor interactions20-127 When a landmark of interest is known, such as
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the tumour leading edge33, the co-expression of ligands and receptors at proximal spots
in the region can be evaluated for statistical significance above the background to extend
insight beyond the cell subtypes present to the level of the potential proteins they use to
communicate with each other to drive local phenotypic features.

Numerous approaches exist to decode such mechanisms of intercellular communication.
For example, one group fit a generalized linear model to test whether ligand—receptor pairs
co-localize within a capture spot or among adjacent capture spots2%. Similarly, for each
pair of interacting cells from two different cell types, the Giotto workflow!28 evaluates

the likelihood that a given ligand—receptor interaction is used more or less based on

the proximity of all of the co-expressing cells (FIG. 5A). The SpaOTsc algorithm12?
combines scRNA-seq and spatial data to create a 3D single-cell resolution map with
intercellular communication networks charted. It treats mapping cells and their ligand—
receptor interactions as an optimal transport problem39 in which the cell-cell distance,
obtained from mapping scRNA-seq cells to spatial positions from HPRI data, is used as

a transport cost to spatially constrain the ligand-receptor signalling network. The yielded
optimal transport plan represents likelihoods of cell-cell communication events between
each pair of cells. An additional constraint is the maximum spatial range for the signalling,
which is calculated by evaluating expression levels of a ligand’s downstream signalling
targets (FIG. 5B), and the distance between the two cells with the strongest downstream
correspondence is the maximum range.

Additionally, spatial data can be used to evaluate SCRNA-seq map reconstructions

and imputed ligand—receptor interactions. The novoSpaRc algorithm?3! does this by
reconstructing SCRNA-seq single cells into a virtual tissue map through the assumption

that physically close cells have similar transcription profiles. CSOmap!32 combines scRNA-
seq gene expression profiles and a database of ligand-receptor interactions to reconstruct
single-cell resolution maps through dimensionality reduction. Once the cells are mapped, the
contribution of each ligand—receptor pair to interactions between each cell-type cluster can
be calculated. These approaches involving scRNA-seq integrated with spatial information
can be used to nominate the receptors and ligands that mediate communication between
proximal cell subpopulations. Going one step beyond, models to quantify the influence of
cell—cell interactions on specific gene expression markers in the cell’s neighbourhood33 or
on tissue-wide expression134 are beginning to emerge.

Several methods to further validate and characterize intercellular communication have

been recently developed. For example, PIC-seq3 captures physically interacting pairs of
cells (doublets) and performs scRNA-seq on them. Another means of measuring ligand-
receptor interactions between cells in tissue culture is through an enzyme-based labelling
technique. The ID-PRIME method36 labels static interactions between cells. To track more
transient interactions, LIPSTIC137 has been developed and applied to the immune system.
Such assays complement recent approaches designed to integrate SCRNA-seq with spatial
transcriptomics to nominate communicating cell subtypes and the receptors and ligands they
use within specific spatial niches in tissue.
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Future directions

Integrating single-cell expression data with existing spatial transcriptomics techniques
will sharpen the resolution of physically proximal cell subpopulations within healthy and
diseased tissue. The insights from such integrative efforts may help uncover previously
opaque mechanisms of intercellular communication and biologic function operating below
the signal to noise ratio in diverse tissues. In doing this, such advances may help define
disease subtypes, guide prognosis and enable targeting of cell populations, along with

the ligands and receptors critical for their actions, for precision therapy. Accomplishing
such goals for human health will benefit from additional innovations that enhance

spatial transcriptomics efficiency and resolution, incorporate more information about tissue
architecture and apply new learning algorithms to discern patterns of cell subpopulations
linked to disease behaviour.

Integration of additional modalities.

Currently, spatial transcriptomics techniques are largely focused on measuring mRNA
transcripts through next-generation sequencing (spatial barcoding) or fluorescent markers
(HPRI). However, spatial transcriptomics experiments generate a rich set of data that are
often left untapped, namely, histologic images of tissue sections. Based on the premise that
a significant amount of spatial variance manifests visually at the level of tissue architecture,
a group developed ST-Net!38, a deep learning algorithm that predicts the spatial variation
in expression of 102 genes for each spatial barcoding capture spot superimposed onto
tissue histology. Furthermore, XFuse incorporates spatial barcoding and histology sections
to predict expression at single-cell resolution3°. Saliency maps of these deep learning
models are essential to extract novel spatial features linked to the expression of individual
genes in the transcriptome. Such deep learning approaches, if successfully applied on large
series of well-characterized data sets, may complement integrated scRNA-seq and spatial
transcriptomics data sets by capturing information on cell types and gene expression via
conventional histology. In addition to improving deconvolution and mapping algorithms,
one needed focus centres on developing additional deep learning models38-141 to help
disentangle which features of a given spatial transcriptome are most biologically relevant.

Defining the 3D spatial transcriptome and real-time cell tracking offer additional frontiers
for future progress. Currently, most studies of the 3D spatial transcriptome take high-
density cross-sections and computationally reconstruct them31:45.142 or infer scRNA-seq cell
locations through sparse 3D single-molecule fluorescence in situ hybridization datal08.110,
However, STARmap!43 and ExSeq44 are newly developed methods that pair HPRI with
transformation of intact tissue into a hydrogel to preserve the 3D arrangement of the
amplicons. Furthermore, ExSeq boasts an untargeted HPRI method that successfully
leverages expansion microscopy to better resolve the normally densely packed RNA
transcripts associated with untargeted HPRI methods.

Although it is true that the spatial transcriptome across a time course of development

or tissue pathogenesis can be charted, spatial transcriptomics techniques do not monitor
the physical dynamics of cell subtypes in real time. Real-time tissue tracking of cellular
subtypes is especially important to understanding the inner workings of the tumour
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microenvironment interface with immune cells. In this regard, optical coherence tomography
has been used to track the migration of tumour-associated myeloid cells'#®, and CellGPS
has been used with positron emission tomography to track human breast cancer cells
loaded with radioisotopel4®. When paired with spatial transcriptomics, both of these live
tracking techniques could be applied to cell types of interest from spatial data to elucidate
cell kinetics in settings, such as metastatic progression and immune cell dynamics during
cancer immunotherapy. RNA timestamping represents an alternative means to elucidate the
temporal dynamics of gene expression programmes in which the age of transcripts can

be recorded on a 1-h timescalel4’. Recording transcriptional dynamics on this timescale

is crucial to chart responses to perturbations. The application of such newly emerging
efforts in 3D mapping and real-time analysis promises to extend current opportunities in
understanding spatial tissue dynamics at the resolution of single cells.

An even deeper understanding of tissue function can be developed by going beyond
resolution of the spatio-temporal transcriptome by spatially resolving other biomolecules
integral to the central dogma of molecular biology248. DBiT-seq can spatially resolve
proteins and mMRNA transcripts on the same tissue by applying a mixture of antibody-derived
DNA tags to localize proteins of interest prior to ligating two barcode sets through crossflow
of two perpendicular microfluidic channels!4®. Remarkably, given the high barcoding
resolution (10 x 10 pm? squares), DBiT-seq used Seurat Integration (designed for integration
of two single-cell data sets)114 to map scRNA-seq cell types to spatially resolved cells. In a
recent preprint, the creators of DBiT-seq employed a similar barcoding strategy to localize
the spatial epigenome on a tissue-wide scale and were able to successfully integrate these
data with ISH at single-cell resolution and overlay sScRNA-seq cell-type annotations150,

3D imaging of the sequenced genome in situ5, subcellular resolution of RNA52 and
simultaneous imaging of 3D chromatin organization within the context of nucleoli and
RNAI33 all exist now at single-cell scale. They hold promise to advance to application on
intact tissue and to revolutionize our understanding of how the machinery of the central
dogma functions in the 3D context of a cell1%3 to reveal the inner workings of developmental
trajectories’>1:152 and disease, namely cancer!®1,

Clinical relevance.

Spatial transcriptomics studies that perform comparative analysis between diseased and
healthy tissue have begun to elucidate prognosis, optimal therapeutic treatment and potential
therapeutic targets. Such efforts, however, have been limited in sample size and have thus
far been exploratory. Aggregating the spatially resolved transcriptome of diseased and
healthy cells across many patients may be important to enhance the clinical relevance and
predictive prognostic power of such data. To increase the pace of data generation, analyses
can focus on characterizing a much smaller number of regions of interest that drive disease-
relevant phenotypes. In addition to describing trends in patient outcomes, interrogating how
existing drugs, especially repurposed ones, affect spatio-temporal gene expression patterns
in disease-driving cell types may lend insight into potential therapeutic agents. In this regard,
monitoring mMRNA transcripts in response to stimuli through methods such as NASC-
seq'>4 may be useful in better understanding how drug perturbations affect the spatial
transcriptome of diseased cells. Once these patient tissue data are aggregated, deep learning
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models could help identify the most relevant spatial expression patterns associated with
survival outcomes or therapeutic response, potentially highlighting favourable landmarks
to recapitulate or additional nodes of intervention during treatment. Cancer serves as a
prototype for the promise of such strategies. Although therapeutic resistance in cancer
remains a daunting challenge, the presence of tertiary lymphoid structures®® or densely
fibrous stromal%6 have served as positive and negative prognosticators of response to
immune checkpoint blockade, a reminder that additional useful features may be waiting
to be uncovered through spatial transcriptomics.

As more spatial transcriptomics analyses are performed, it will be increasingly challenging
to disentangle definitive, disease-relevant cell types and their gene modules. As more cell
types are identified and mapped in tissue, tools such as Seurat Integration14, Harmony115
and LIGER!3 may evolve to integrate data across different experimental assays to
determine whether specific cell types are consistently observed in each tissue. Furthermore,
efforts to centralize spatial transcriptomics data for each organ system and disease will be
valuable!®7, as the Allen Brain Atlas!®8 has done for the mouse brain, the National Institutes
of Health (NIH) Blueprint Non-Human Primatel>9 has done for the rhesus macagque monkey
brain and SpatialDB10 has done for multiple species and spatial transcriptomics techniques.
Ultimately, better-defined spatial transcriptomes for disease-driving cell types, especially for
cases in which cellular function is particularly dependent on an in situ context and adjacent
cell populations, may yield more fruitful biological mechanisms for therapeutic targeting.

Conclusions

Integration of sScRNA-seq with spatial transcriptomics can produce high-resolution maps
of cellular subpopulations in tissue. Techniques for examining the spatial transcriptome
are rapidly evolving, and therefore no singular spatial transcriptomics technique is best
for all applications. Depending on the biological questions being asked, the experimental
methodology can be designed to integrate any spatial transcriptomics approach with
scRNA-seq. In addition to developing enhanced methods, carefully selecting algorithms for
integrating such data is paramount, because spatial transcriptomics methods that spatially
resolve tissue at single-cell resolution with scRNA-seq depth and whole-transcriptome
coverage do not yet exist. Such integrative approaches are beginning to spatially map
specific cell subpopulations in development and disease, and to shed light on the
mechanisms whereby such populations collaboratively shape tissue phenotypes.
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(scRNA-seq). A method that sequences RNA transcripts (primarily mRNA) isolated from
each cell of a tissue, thereby characterizing individual cells’ transcriptomes; aggregated data
characterize the gene expression distribution of tissue cell subpopulations

Intercellular communication

Communication between cells, typically through ligand-receptor interaction. Juxtracrine
denotes direct cellular contact for signalling molecules to be passed between cells, whereas
paracrine refers to diffusion of signalling molecules from a sender to a receiver cell

Spatial transcriptomics

A method that localizes MRNA transcripts to precise spatial locations (single cells or capture
spots, formerly regions) in a tissue. In this Review, the term refers broadly to all spatial
transcriptomics methods, not exclusively spatial barcoding

Bulk RNA-seq
A method that sequences a mixture of RNA transcripts (primarily mRNA) from the whole
tissue to generate an average expression level for each gene across all cells sequenced

High-plex RNA imaging (HPRI)

A targeted spatial transcriptomics method that localizes and quantifies RNA transcripts
through multiplexed fluorescent microscopy imaging. Can typically target up to ~100-200
genes simultaneously in intact tissue sections

Spatial barcoding
Spatial transcriptomic methods that use a microarray of poly-T oligonucleotides to ‘capture’
MRNA transcripts of tissue cross-sections, typically followed by next-generation sequencing

Coverage
In the context of single-cell or spatial transcrtipomics assays, the number of distinct genes
that are represented from captured RNA molecules

Capture spots

Individual coordinates or capture locations on the microarray used to ‘capture’ mRNA
transcripts for spatial barcoding and identified by a DNA barcode; each capture spot
generally captures mRNA from multiple cells

Resolution

In spatial data, the distance between spatial coordinates that identify the source of
molecules. For spatial barcoding, higher resolution refers to a smaller distance between
capture spot coordinates with smaller capture spot diameter

Depth
In the context of single-cell or spatial transcriptomics assays, the number of uniqgue RNA
molecules captured for a particular gene

Fluorescent-activated cell sorting
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(FACS). A cell sorting technique based on flow cytometry for isolating and identifying
different cell types using fluorescent antibodies targeting known cell type-specific cell
surface proteins

Microdissection

A method, such as laser-capture microdissection (LCM), that finely isolates different tissue
parts from cryo-sections. LCM-seq is a spatial transcriptomics method that couples LCM
with RNA sequencing

Deconvolution

The process of predicting cell-type proportions at a given spatial barcoding capture spot
based on its MRNA mixture. Cell types are typically derived from single-cell RNA
sequencing profiles of the tissue

Pseudo-time analysis

Computational ordering of single cells, namely of single-cell RNA sequencing, based on
a gradual evolution of their transcriptomes to measure progress through a given biological
process (for example, differentiation or proliferation

Mapping

The process of assigning a single-cell RNA sequencing (sScCRNA-seq)-based cell type to each
cell spatially resolved by high-plex RNA imaging assays; secondarily, predicting the spatial
location of each scRNA-seq cell based on its transcriptome

Statistical regression
In the context of deconvolution, linear regression models are fit to determine to what extent
each cell type explains the gene expression values for each capture spot

Bayesian statistical framework

In the deconvolution context, statistical models that rely on inferences about the distribution
of transcripts for each cell type to yield a probability that a mixture of transcripts can be
explained by a specific single-cell RNA sequencing cell type

Maximum a posteriori

A Bayesian estimate of an unknown conditional. In the context of spatial transcriptomics
integration methods, the maximum a posteriori estimate most often refers to the cell-type
distribution given the gene distribution at a capture spot

Enrichment
Refers to a particular class of genes that is over-represented in a large set of genes. In the
deconvolution and mapping contexts, this class is often the cell type

Mismatch

Incongruity between cell types detected as present in single-cell RNA sequencing and
spatial transcriptomics data that can complicate spatial barcoding deconvolution, but less so
high-plex RNA imaging mapping

Mutual nearest neighbor
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A robust algorithm for clustering single cells between two different single-cell
transcriptomic data sets (that is, single-cell RNA sequencing with high-plex RNA imaging)
based on the cell subtype
Dimensionality reduction
A mathematical technique to represent high-dimensional data in lower dimensions. Mostly
used in transcriptomic analysis for visualization of cell subtype clustering in 2D, sometimes
3D, space to establish subtypes
Non-negative matrix factorization
A method commonly used in bioinformatics for dimensionality reduction of gene expression
data as the non-negativity constraint reflects that genes are either expressed or not and
cannot be negatively expressed
Factor loading
In the context of transcriptomics, correlation coefficients between known gene transcript
levels and latent cell subtype information. Can be plotted in low-dimensional space prior to
joint clustering of single-cell RNA sequencing and high-plex RNA imaging data
Impute
In the context of spatial transcriptomics, the computational process of determining unknown
gene expression values of spatially resolved single cells (high-plex RNA imaging) with
corresponding values from mapped single-cell RNA sequencing data
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Fig. 1|. Adding spatial information to transcriptomes: integration of single-cell and spatial
transcriptomics data.

a| “Tissue homeostasis’ refers to elucidating spatial division of discrete cellular subtypes in
a healthy tissue at a singular time point, for example, in the intestinal epithelium. ‘Tissue
development’ refers to the study of how the spatial transcriptome changes in tissue at key
stages in the development of a tissue. ‘Disease microenvironment’ refers to elucidating the
spatial transcriptome in diseased and injured tissue niches with an eye towards proximity
to relevant biological features, for example, proximity to amyloid plaques in brain tissue of
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patients with Alzheimer disease. ‘Tumour microenvironment’ refers to the study of spatial
architecture of tumours and their interface with other cell subtypes in their environment. b |
Workflows combining single-cell RNA sequencing (scRNA-seq) and spatial transcriptomic
techniques begin by establishing cell subtypes typically through dimensionality reduction
and clustering of sScRNA-seq data. ¢ | Deconvolution and mapping are used to localize cell
subpopulations. Deconvolution is typically applied to spatial barcoding data, and mapping
is typically applied to single-cell resolution spatial data (that is, high-plex RNA imaging
(HPRI) data) to localize scRNA-seq subpopulations. d | Algorithms that evaluate spatial
arrangement of localized subpopulations can further assess ligand—receptor interactions
predicted from scRNA-seq data. Figure component in parts ¢ and d adapted from REF.33,
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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* Better suited to capture subtype © Lower coverage ¢ Greater field of view © Lower depth (per transcript)
change due to spatialinfluence * Smaller field of view * More accessible (typically

* More read-out noise
* Requires more specialized
equipment

sequenced using standard NGS
machine)

Fig. 2|. Common spatial transcriptomics techniques.
Aa | High-plex RNA imaging (HPRI) methods localize mRNA transcripts through probes

that target specific genes. Fluorescent probe methods typically employ an encoding scheme
whereby each gene can be identified through a unigue sequence of fluorescent probe
signals obtained through multiple rounds of hybridization. Padlock probe methods typically
use probes that target the complementary DNA (cDNA) of target genes. Each probe has

an identification (ID) sequence of nucleotides specific to each gene. The strategy for
fluororescent sequencing of this ID varies by method. Ab | HPRI map of human breast
cancer tissue cross-section with mRNA transcripts decoded based on gene fluorescent
signals (not yet annotated by cell type, which can be done through mapping). Left:
associated haematoxylin and eosin (H&E) stain (scale bar = 100 pm). Strengths and
drawbacks of HPRI methods are listed. Pre-selected gene target panels typically range
from 100 to 200 genes for intact tissue sections (proof-of-concept literature indicates an
~10,000 gene limit in tissue culture that is not easily scaled to intact tissue), and for

some well-established methods only long RNA species (greater than 1,000 nucleotides)
can be included. More specialized equipment typically makes for a more labour-intensive
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workflow. Ba | Spatial barcoding uses spatially barcoded (ID = location barcode) poly-

T oligonucleotide capture of MRNA transcripts across tissue cross-sections followed by
detachment and deep sequencing. Following sequencing, each transcript is de-multiplexed
for assignment to its capture spot of origin based on its ID. Bb | Spatial barcoding

map of human squamous cell carcinoma cross-section with capture spot mRNA mixtures
deconvolved by cell type. Left: associated H&E stain (scale bar = 500 um). Strengths and
drawbacks of spatial barcoding methods are listed. Unbiased refers to the fact that the
method does not involve selection of target genes. Greater accessibility also comes from the
commercialization of spatial barcoding methods. NGS, next-generation sequencing. Part Ab
reprinted from REF.19, Springer Nature Limited.
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Fig. 3|. Model workflow integrating SCRNA-seq and spatial transcriptomics: the four As.
a| Adopt a rationale for assessing the spatial transcriptome in a particular tissue type.

Common applications are depicted in FIG. 1a. b | Assay using single-cell RNA sequencing
(scRNA-seq) to identify discrete cell subpopulations in a given tissue, and then with

spatial barcoding to ascertain their physical locations in situ. Given their unbiased nature,
scRNA-seq and spatial barcoding can help identify optimal gene panels for high-plex RNA
imaging (HPRI) studies. Additional genes of interest for HPRI studies can be obtained by
algorithms that identify spatially differentially expressed genes65:166 and through literature

Nat Rev Genet. Author manuscript; available in PMC 2023 January 31.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Longo etal.

Page 31

research. c | Assemble maps that localize specific cell subtypes spatially within the tissue.
For spatial barcoding data, deconvolution can be used to localize cell types. For HPRI data,
mapping can be used to localize cell types. Matched histology images can be annotated for
landmarks of interest such as the tumour leading edge to further inform spatial analysis.

d | Analyse assembled cell-type maps to nominate the cell types, tissue niches and
ligand—receptor interactions involved in intercellular communication that drive the tissue
phenotype. Figure component used in parts b and ¢ adapted from REF.33, CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).
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a Deconvolution of spatial barcoding capture spots b Cell-type mapping of high-plex RNA imaging single cells
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Fig. 4 |. Deconvolution and mapping methods.
Computational approaches that localize cellular subtypes through integration of single-cell

and spatial transcriptomics data. As spatial transcriptomics can only measure a fraction

of the genes compared with single-cell RNA sequencing (ScCRNA-seq), deconvolving and
mapping scRNA-seq-based cell types enriches spatial transcriptomics cell-type tissue maps.
a | For spatial barcoding data, cell subpopulations can be localized by deconvolving the
mixture of MRNA transcripts from each capture spot to predict the proportions of each cell
type from the mixture of cells at each spot. b | For high-plex RNA imaging (HPRI) data, cell
subpopulations can be localized by mapping scRNA-seg-based cell types onto each spatially
resolved cell. Deconvolution and mapping methods to characterize spatial transcriptomics
data using scRNA-seq cell subtypes exist on a weighted spectrum as each type of method
can theoretically be applied to elucidate the subtype composition for both capture spots

and single-cell transcript mixtures. Statistical regression (left) is most commonly applied

to capture spot deconvolution and cluster-based mapping methods mostly towards HPRI
cell-type mapping. c | Regression-based deconvolution combines sScRNA-seq data clustered
by cell type with capture spot data to yield a matrix containing capture spot profiles

with scRNA-seq cell subtypes overlaid. Regression is used to find the sScRNA-seq subtype
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profiles that best explain each capture spot mixture. d | Probabilistic distribution models
are fitted to scRNA-seq transcript distributions for each cell type, with each capture spot
characterized by determining the degree to which each cell type fits that spot’s transcript
distribution. e | Cell-type scoring assigns cell types to single cells or capture spots based
on overlap of spatial gene expression (black circles) with the marker genes for each cell
type (coloured circles). f | Cluster-based mapping involves integrating sScRNA-seq data
(blue plot) and single-cell resolution spatial data (red plot) into a shared low-dimensional
space (purple plot) whose clusters represent SCRNA-seq cell types correspondening to
spatial assay cell types. Tissue cross-section in part a adapted from REF.33, CC BY 4.0
(https://creativecommons.org/licenses/by/4.0). Parameter estimation distribution graphs in
part d adapted from REF.92, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part
f adapted from REF.33, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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A Restricted by ligand-receptor proximity B Restricted by ligand-receptor-target co-expression
Aa Communicative cells Ba Communicative cell pair

Outcome

xpression
of target
genes

Ab Non-communicative cells Bb Non-communicative cell pair

No expression
of target
genes

Fig. 5|. Principles used to decode mechanisms of intercellular communication via expression of
ligands and receptorsin physically proximal cell subpopulations.
In a given tissue niche, cell subpopulations are more likely to be in communication if

they are spatially proximal to each other (part A) and exhibit appropriate target gene
signatures in signal-receiving cells (part B). A | Communicative cell types are established
by evaluating co-localization to a given capture spot and/or expression of cell types

in adjacent capture spots or cells. B | To account for longer-range communicative cell
types that might be missed by the aforementioned strategies, the SpaOTsc algorithm

Nat Rev Genet. Author manuscript; available in PMC 2023 January 31.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Longo etal.

Page 35

predicts the maximum communication range for a given ligand-receptor pair through
ligand—receptor target gene co-expression. Whereas ligand-receptor and ligand-receptor—
target co-expression restriction can be used to establish intercellular communications from
single-cell RNA sequencing (SCRNA-seq) data alone, the spatial context can enhance this
analysis by predicting maximum communication ranges and may disprove communications
if the distance between the pairs is much farther than expected based on typical ranges
recorded in the literature. Tissue cross-section adapted from REF.33, CC BY 4.0 (https:/
creativecommaons.org/licenses/by/4.0/).
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