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Abstract

Single-cell RNA sequencing (scRNA-seq) identifies cell subpopulations within tissue but does 

not capture their spatial distribution nor reveal local networks of intercellular communication 

acting in situ. A suite of recently developed techniques that localize RNA within tissue, including 

multiplexed in situ hybridization and in situ sequencing (here defined as high-plex RNA imaging) 

and spatial barcoding, can help address this issue. However, no method currently provides as 

complete a scope of the transcriptome as does scRNA-seq, underscoring the need for approaches 

to integrate single-cell and spatial data. Here, we review efforts to integrate scRNA-seq with 

spatial transcriptomics, including emerging integrative computational methods, and propose ways 

to effectively combine current methodologies.

Organ systems are composed of distinct cellular subpopulations whose spatial locations 

within a given tissue are deeply intertwined with their functions1. Single-cell RNA 

sequencing (scRNA-seq) characterizes the transcriptome of individual cells and can reveal 

cell subpopulations within a given organ. However, the isolation of single cells during 

the necessary tissue dissociation step of scRNA-seq destroys information on their spatial 

localization within native tissue and their proximities to each other. Given that juxtacrine 

and paracrine signals operate from 0 to 200 μm, such spatial information is vital to 

understand the intercellular communication underlying normal and diseased tissues. 

Interrogating intact tissue with spatial transcriptomics1 addresses this challenge 

by physically localizing gene sets expressed in specific cell subsets identified by scRNA-

seq (FIG. 1). Current spatial transcriptomics approaches themselves cannot yet provide 
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deep transcriptomic information on precisely localized single cells in tissue; however, 

they can shed light on the niches enriched for distinct gene sets. This localizes cell 

subpopulations to the tissue ‘neighbourhoods’ where they reside, and designates the ligands 

and receptors that they express to effect local intercellular communication. When used 

in combination, scRNA-seq and spatial transcriptomics can thus localize transcriptionally 

characterized single cells within their native tissue context. Integrating scRNA-seq and 

spatial transcriptomics data may therefore increase our understanding of the roles of specific 

cell subpopulations and their interactions in development, homeostasis and disease (FIG. 1).

scRNA-seq has improved on bulk RNA-seq2, which alone is unable to capture cellular 

heterogeneity. Moreover, since its emergence in 2009 (REF.3), analytical pipelines for 

scRNA-seq have matured, and its limitations are increasingly understood4. For example, 

a key drawback of cell isolation through tissue dissociation is the potential to induce ectopic 

gene expression, which can lead to mischaracterization of certain cell subpopulations5. 

Spatial transcriptomics techniques avoid this technical artefact by assaying cells in their 

native tissue context. Compared with scRNA-seq, spatial transcriptomics workflows and 

efforts to integrate spatial transcriptomics and scRNA-seq data have emerged fairly recently 

and are an area of rapid evolution (TABLE 1). Building on single-molecule in situ 

hybridization (ISH)6, spatial methods that interrogate larger gene sets than single-molecule 

ISH have become more accessible7. For example, early ISH techniques8,9 have now 

advanced to methods that localize hundreds of genes in intact tissue through high-plex 

RNA imaging (HPRI) (FIG. 2A; TABLE 1), which encompasses techniques such as in situ 

sequencing10, multiplexed error-robust fluorescence in situ hybridization (MERFISH)11 and 

sequential fluorescence in situ hybridization (seqFISH)12–14. Spatial barcoding15–18 

(FIG. 2B; TABLE 1) was recently developed to ‘capture’ the spatial coordinates of 

mRNA transcripts in an unbiased manner, which yields greater coverage. Capture spot 

resolution continues to improve, reaching a resolution smaller than the diameter of 

a typical single cell (according to two preprint publications19,20), thereby improving the 

likelihood that only a single cell or subtype is contributing to the RNA mixture. However, 

depth continues to be a limiting factor for spatial barcoding techniques. Conversely, 

HPRI improves on depth, but lacks transcriptome-wide coverage. Therefore, current spatial 

methods are still unable to create single-cell resolution spatial transcriptomics maps in 

which the transcriptome of each cell is captured at a depth akin to scRNA-seq (FIG. 

2Ab, Bb). This limitation underscores the need to integrate current spatial transcriptomics 

platforms with scRNA-seq to maximize resolution in tissue.

This Review provides an overview of the types of biological insights gained from integrating 

spatial transcriptomics and scRNA-seq data, and describes approaches to help optimize 

spatial analyses to deeply characterize single cells in tissue. This includes how spatial 

barcoding capture spots can be deconvolved to establish cell-type proportions and how 

scRNA-seq cell-type data can be mapped onto HPRI data. Additionally, the enhancement 

of ligand–receptor intercellular communication analysis with spatial resolution will be 

addressed. Finally, we discuss newly emerging experimental modalities and algorithms for 

interrogating the spatial transcriptome.
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Biological insight from integrated data

Spatial transcriptomics has accelerated the capacity to elucidate the inner workings of 

discrete cell subpopulations within various contexts and organ systems (FIG. 1a). These 

approaches have been applied to assess the homeostasis and development of healthy tissue 

in the liver21–24, intestine25,26, bone marrow27, mouse embryo28, brain13,29, reproductive 

system30 and heart31,32. The widest application of spatial transcriptomics to studying disease 

has been the tumour microenvironment of cancers33–35. Spatial transcriptomics has also 

been applied to other diseased and injured microenvironments, such as the brain36,37 and 

spine38 in neurodegenerative diseases, the heart after myocardial infarction39 or other 

injury40 and the lungs during respiratory infection41. Recent work has begun to integrate 

spatial transcriptomics data with additional modalities, namely scRNA-seq, to provide new 

insights into tissue composition and function (TABLE 2).

Normal tissue homeostasis and development.

A major goal of spatial transcriptomics is to provide an increased understanding of the 

roles of distinct cell types in steady-state tissue homeostasis. For example, each liver 

lobule unit along a radial axis surrounding a blood vessel contains a distinct gradient of 

oxygen, nutrients and hormones42. As the liver is classically divided into two periportal 

and pericentral hepatocyte zones, one study used a probabilistic inference model to assign 

each cell from scRNA-seq-based single-molecule fluorescence in situ hybridization into nine 

discrete zones21, and thereby revealed the roles for a novel class of intermediate lobule cells. 

Other studies used fluorescence-activated cell sorting (FACS) with zonated 

liver cell surface markers22 and laser-capture microdissection (LCM)23 to elucidate the 

spatial dynamics of signalling pathways regulating metabolic zonation and regeneration. 

Although it was known that intestinal epithelial cells migrate up from crypts along the villus 

axis, a recent analysis defined three functionally distinct regions along the villus axis in 

the absence of any pre-existing knowledge of landmark genes unique to each section25, 

providing new insight into cell subpopulations that mediate tissue homeostasis.

In cases in which homeostatic cellular division of labour is less understood, physical 

partitioning-based spatial transcriptomics may provide meaningful insight. One such 

approach mapped bone marrow-resident cell types to previously unrecognized, spatially 

distinct niches and defined cellular origins of pro-haematopoietic factors27. The work 

first used scRNA-seq to establish the transcriptomes of discrete cellular subtypes found 

in bone marrow. Then, on separate samples, classic immunostaining guided LCM of 

bone marrow cross-sections, followed by bulk RNA-seq for each LCM niche. mRNA 

mixtures from LCM niches were deconvolved to localize scRNA-seq-based bone marrow 

subtypes. Immunofluorescence based on gene markers specific to the cell types validated 

deconvolution findings, thereby providing insight into resident cell subpopulations active 

in normal bone marrow. LCM on single mid-gastrulation mouse embryos followed by 

RNA-seq was performed to render a 3D understanding of the regionalization of cell fates in 

the embryo28.

In the absence of such physical manipulation, spatial transcriptomics can help interrogate 

tissues without having an idea of where cell types localize. For example, an analysis of the 
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functional organization of neurons in the preoptic hypothalamus combined scRNA-seq and 

HPRI to discover novel cell subtypes, their spatial localization and their activation during 

certain behaviours29. A preliminary study investigated the dynamics of spermatogenesis 

using spatial barcoding to discover two spatially segregated populations, each comprising 

stem cells at unique transcriptional states30. Moreover, a map of development stages was 

constructed through pseudo-time analysis43 deconvolved from the gene signature at 

each capture spot.

Excitingly, spatial transcriptomics is also amenable to discovering the dynamics of tissue 

development across multiple key time points during development. One effort used scRNA-

seq to define the transcriptomes of cardiomyocyte subtypes, and then applied spatial 

barcoding to study subtype spatial localization during human embryonic heart development 

at three key development time points31. Transcriptomic data from both spatial barcoding 

and scRNA-seq were then synthesized to select probes for HPRI to ultimately produce a 3D 

map of the developing heart at single-cell resolution. To discover the spatial coordination 

of intestine development, another group integrated spatial barcoding with scRNA-seq across 

three critical developmental time points26. Notably, the authors analysed how morphogen 

gradients direct the dynamic development of cell types linked to developmental intestinal 

disorders, which are challenging to study in utero. Algorithms for aligning spatial barcoding 

data across spatio-temporal development are still in their nascency44,45.

The tumour microenvironment.

Although spatial transcriptomics analyses of several disease microenvironments exist, 

tumour microenvironments are presently the most extensively studied46. Tumour 

microenvironments are particularly heterogeneous and have complex, spatially restricted 

interactions with the immune system47,48. Until recently, the ability to interrogate the 

inner workings and heterogeneity of the tumour microenvironment has relied largely 

on bulk RNA-seq49. scRNA-seq has advanced our understanding by identifying cancer 

subpopulations that can drive drug resistance, predict metastatic risk and provide prognostic 

value50,51.

A recent study combined spatial barcoding and scRNA-seq to localize an 

immunosuppressive tumour-specific keratinocyte subpopulation to a fibrovascular niche 

at the tumour borders (as defined by aligning haematoxylin and eosin images) in 

human squamous cell carcinoma33. This population expressed genes associated with 

immunotherapy resistance and numerous ligands inferred to modulate cancer-associated 

fibroblasts, suggesting ways tumour subpopulations may promote local immunosuppression. 

In pancreatic ductal adenocarcinoma, another study intersected scRNA-seq and spatial 

barcoding with annotated haematoxylin and eosin images to reveal that inflammatory 

fibroblasts play a significant role in cancer stress responses34. In addition to providing 

insights into tumour resistance and stress responses, such integrated data may offer 

insight into clinical prognosis. For example, one study observed that greater heterogeneity 

of a transition area within cross-sections of melanoma metastases was associated with 

poorer patient survival35. Furthermore, spatial data enabled the identification of the most 

abundantly expressed genes in the transition area and could guide microdissection of 

Longo et al. Page 4

Nat Rev Genet. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this area to provide more a detailed characterization in the future. Ultimately, spatial 

data enabled a more detailed analysis of clinically relevant characteristics of the tumour 

microenvironment, thereby yielding greater prognostic power and potential therapeutic 

targets.

Other diseased and injured microenvironments.

Integrating spatial data with scRNA-seq can elucidate the molecular pathogenesis of 

localized gene expression programmes proximal to disease biomarkers, such as amyloid 

plaques in Alzheimer disease52,53. One study discovered an Alzheimer disease-associated 

subpopulation of microglia in mouse brains using single-molecule fluorescent ISH (in which 

probes were selected based on the most highly expressed genes in the disease-associated 

subpopulations of their scRNA-seq data); annotating the spatial cross-sections from diseased 

brain tissues revealed that this disease-associated population localized to amyloid plaques36. 

Similarly, alignment of spatial barcoding data with immunostained adult mouse brain cross-

sections identified gene networks common to cells in areas with higher densities of amyloid 

plaques37. HPRI was then used to develop a single-cell resolution map of these gene 

networks and to capture their spatial dynamics at different disease stages. Elucidating gene 

networks that are upregulated adjacent to amyloid plaques provided candidate therapeutic 

targets of greater interest compared with those from gene networks obtained from scRNA-

seq alone in which proximity to the plaque biological feature was lost37.

Spatial analysis around disease-relevant biological features has also been performed 

outside the neurological context. A spatial multiomics analysis integrating single-nucleus 

RNA-seq (snRNA-seq), spatial barcoding and, uniquely, single-cell sequencing assay for 

transposase-accessible chromatin using sequencing (scATAC-seq) spatially mapped the gene 

regulatory networks controlling the fibroblast to myofibroblast differentiation that drives 

cardiac scar formation in the myocardial border zone area39 (which is the leading cause 

of death in patients with myocardial infarction54). To spatially map the gene regulatory 

networks, snRNA-seq and scATAC-seq were integrated first, and then snRNA-seq cell-

type annotations were used to score each capture spot. One study characterized zebrafish 

cardiomyocyte regeneration following cardiac injury40. Analysis of cryo-sections parallel to 

the wound border revealed three distinct spatially restricted zones with unique signalling 

patterns.

Spatial transcriptomics can also be leveraged to map disease pathogenesis across key 

time points. For example, given that a lack of spatial resolution has hampered efforts 

to understand amyotrophic lateral sclerosis, spatial barcoding was applied to profile the 

spatial transcriptome of spinal cord cross-sections during three key disease states38. The 

resulting co-expression analysis identified 31 major disease-relevant co-expression modules 

and charted their dynamic expression levels across time points of disease progression, 

ultimately nominating potential therapeutic targets. Ultimately, spatial transcriptomics data 

can validate what scRNA-seq can merely impute: the spatial coordinates of the discrete 

cellular subpopulations, dynamic changes in spatial arrangement during development and 

pathogenic progression, and proximity to disease-relevant bio-features.
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A model workflow for integration

The lack of spatial transcriptomics methods yielding depth and coverage comparable with 

scRNA-seq underscores the need to integrate data from both techniques (FIG. 3).

Establishing discrete cell subtypes through scRNA-seq.

scRNA-seq typically detects a significantly greater number of unique genes per cell 

compared with any spatial transcriptomics method55,56, thereby revealing novel cell 

subtypes as well as more detail on transcriptomes of each subpopulation. Furthermore, many 

scRNA-seq analytic pipelines plot cellular differentiation trajectories and gene regulatory 

networks17,57–59. Classifying cell types leverages several clustering methods60–65. Seurat66, 

an unsupervised clustering method using the Louvain method, has emerged as one of the 

most commonly employed, with SCANPY58 and SC3 (REF.63) being two other popular 

scRNA-seq subtype clustering tools. In silico sub-clustering can identify subpopulations 

within cell types of interest, which can then be validated by additional scRNA-seq 

experiments67. Because of its depth and single-cell precision, scRNA-seq is thus the current 

optimal platform for defining cell subpopulations in a given tissue.

Investigating tissue niches of interest from spatial data.

HPRI and spatial barcoding both benefit from inference of cell types based on scRNA-seq 

data (FIG. 3b,c). To more clearly define and validate cell types in niches of interest 

from spatial data, cells can be labelled based on their niche in situ and then sequenced. 

One approach to niche-labelling uses photoactivatable reporters, which are activated by a 

particular wavelength of light to label a given tissue niche. For example, GeoMx Digital 

Spatial Profiling allows the user to select small regions of interest to profile while viewing 

the tissue slide stained with desired imaging reagents68. Indexing oligonucleotides are 

attached to targets of interest (primary antibodies or to mRNA hybridization probes); upon 

exposure to UV light, these probes are cleaved and then quantified. Similarly, ZipSeq69 

anneals a particular ‘zip code’ DNA barcode to cells targeted with UV light. The annealed 

barcode can then be read out during typical scRNA-seq workflows to localize the cell’s 

signature at the niche associated with the barcode. Transcriptome in vivo analysis poly-U 

oligo tags with photocleavable linkers70 can be loaded into tissues and photo-activated to 

capture mRNA in the niche of interest. In NICHE-seq71, a cell-expressed photoactivatable 

green fluorescent protein is activated by two-photon irradiation. Following activation, 

FACS-based sorting captures labelled cells for scRNA-seq. An alternative FACS-based 

approach uses a labelling system in which metastatic cancer cells engineered to secrete the 

sLP-mCherry protein are injected into metastatic niches of interest72. Unlabelled cells in 

the niche take up the sLP-mCherry protein and are then sorted by FACS for subsequent 

scRNA-seq analysis to profile metastatic niche cells involved in colonization. Each of these 

methods may augment conventional spatial transcriptomics approaches by enabling further 

characterization of tissue regions of interest.

Corroborating cell-type classifications made from mapping.

Given that mRNA is a proxy for protein expression, a valuable means of corroborating 

scRNA-seq-based cell-type assignments for HPRI data is multiplexed epitope-based tissue 
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imaging73–76 using immunofluorescence microscopy77–80 or imaging mass cytometry81–86. 

Whereas immunofluorescence microscopy reveals more detailed organelle architecture, 

imaging mass cytometry commonly maps more protein targets (up to 100)80; both 

approaches require validated antibody reagents. Emerging integrative approaches include 

an imaging mass cytometry method that simultaneously measures mRNA transcripts and 

16 different proteins87. In this regard, algorithms such as CellProfiler are helpful in 

quantitatively characterizing cellular phenotypes of single-cell resolution images from 

various assays88. These approaches provide valuable protein-based corroboration of spatial 

transcriptomics data in tissue.

Integrating scRNA-seq and spatial data

Given that spatial transcriptomics methods do not yet generate deep single-cell resolution 

transcriptomic maps in tissue, analyses that can successfully integrate both single-cell and 

spatial transcriptomics data will be helpful in understanding the architecture of the cell-type 

distribution (FIG. 3c) and the putative mechanisms of intercellular communication that 

underlie this architecture (FIG. 3d). There are two primary approaches for integrating 

scRNA-seq and spatial data: deconvolution and mapping (TABLE 3). Deconvolution seeks 

to disentangle discrete cellular subpopulations from mixtures of mRNA transcripts from 

each capture spot based on single-cell data (FIG. 4a). Mapping has two facets: mapping of 

assigned scRNA-based cell subtypes to each cell on HPRI maps (FIG. 4b) and mapping each 

scRNA-seq cell to a specific niche or region of a tissue. Such analyses can provide spatial 

context for putative ligand–receptor interactions obtained from analysis of scRNA-seq data.

Deconvolution: disentangling discrete cellular subtypes from a single capture spot.

There are two main ways to approach deconvolution: inferring the proportions of cellular 

subtypes for a given spot89–92 (FIG. 4c,d) and scoring a given spatial transcriptomics spot 

for how strongly it corresponds to a single cellular subtype29,31,33,34 (FIG. 4e). There are 

many models that can deconvolve cell types from an mRNA mixture of an entire tissue 

sample, as from bulk RNA-seq17,93–101; however, given that spatial barcoding methods 

have only recently emerged as an accessible technique, a limited number of models are 

specifically tailored towards deconvolving mRNA mixtures from capture spots90–92,101,102. 

Regardless of which approach is taken, the first step in deconvolution is establishing which 

cellular subtypes exist in a given tissue sample (as described in the section ‘Establishing 

discrete cell subtypes through scRNA-seq’).

Inference-based deconvolution techniques involve estimating proportions of each cell type 

for a given capture spot. One approach to this form of deconvolution employs models 

based on statistical regression, which use a matrix of scRNA-seq data containing 

cell-type classifications for each cell to deconvolve the mRNA mixture for each capture 

spot (FIG. 4c). Various linear regression models have been applied to deconvolving bulk 

RNA-seq mixtures17,93–101. Non-negative least squares91 and dampened weighted least 

squares102 linear regression have been specifically applied to the deconvolution of capture 

spot mixtures.
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A complementary approach to estimating exact proportions of each cell type in a 

given capture spot is through a Bayesian statistical framework that fits a 

probability distribution, often a negative binomial distribution92,103 (alternatively a Poisson 

distribution90), to the distribution of gene counts from scRNA-seq data (FIG. 4d). Once this 

probabilistic model is fit to the scRNA-seq data for each cell type and gene, empirical 

data for each capture spot are input as a prior to the model to yield a maximum a 

posteriori estimation of a cell-type distribution given gene distributions at that particular 

capture spot. Additional approaches that are specifically tailored towards addressing the 

spatial barcoding deconvolution problem are likely to emerge. Given the recent and rapid 

development of these models, a standardized approach to benchmark model performance 

has yet to be developed. In cases where two samples of matched cell-type composition can 

be obtained, the efficacy between one processed by scRNA-seq and the other through bulk 

RNA-seq followed by deconvolution can be compared96,99,100. However, a more convenient 

strategy for assessing efficacy is to create mixtures in silico by combining the transcript 

measurements from multiple well-characterized scRNA-seq cells90–92,95,96,100 or bulk RNA-

seq mixtures of known cell-type composition97,99. The model’s deconvolution output can 

be compared with the ground-truth cell subtype proportion values to assess efficacy. 

SPOTlight’s benchmarking strategy is among the most thorough: assessing the accuracy, 

sensitivity and specificity of cell-type detection and overall correlation with the ground 

truth91. Furthermore, physical validation of subtype spatial localization at a higher resolution 

can be obtained through HPRI91,92,102. However, until HPRI improves the transcriptome 

coverage and applicability of untargeted methods to intact tissue, spatial barcoding may 

remain advantageous, especially for obtaining an unbiased characterization of the spatial 

transcriptome (FIG. 2Ab,Bb). As more deconvolution methods develop, more systematic 

unbiased benchmarking studies will be necessary.

There are many enrichment score-based techniques to deconvolution (FIG. 4e). Seurat 

3.0 (REF.66) calculates relative expression scores of a cell type for a given capture spot 

by subtracting the average relative expression of the control gene set from the average 

relative expression of the gene set for that cell type62. Alternatively, multimodal intersection 

analysis34 computes the overlap between cell-type gene programmes established from 

scRNA-seq and tissue-type gene programmes established from spatial barcoding data 

to elucidate to what degree certain cell types are enriched or depleted in each region. 

Importantly, scRNA-seq-based scoring of a spot does not have to be limited to scoring for a 

cell type — one can score for characteristics such as cell cycle phase, tissue type, cancerous 

versus non-cancerous and specific gene expression programmes62. The limitation to this 

scoring approach is finding truly unique genes expressed by cell types of interest because 

overlapping genes may confound scoring.

Principles of data set mismatch and deconvolution method strategies to address it.

Mismatch between cell subtypes present in scRNA-seq data and those in spatial data 

(spatial barcoding and HPRI) can complicate deconvolution and mapping. Broadly, 

mismatch can result from errors in the pre-sequencing steps and/or in the post-sequencing 

analysis. Furthermore, mismatch can be exacerbated when using independent scRNA-seq 
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atlases as references whose tissue conditions do not align well to newly generated spatial 

data.

Pre-sequencing mismatch causes are similar for both spatial barcoding and HPRI. More 

subtypes in scRNA-seq data than in spatial data could reflect pre-sequencing issues, such 

as the artificial creation of subtypes from stress response to scRNA-seq tissue dissociation5, 

the relatively low transcript capture depth per cell unit area in spatial barcoding and the 

relatively low transcript coverage with HPRI or an inability of HPRI or spatial barcoding 

to detect transcripts coming from a certain cell subtype due to tissue structure. Although 

probably rare, it is also possible that tissue dissociation may cause loss of subtypes 

whose phenotype can be acutely altered by the disruption of in situ spatial dynamics (a 

systemic analysis on this has yet to be performed); however, spatial barcoding is unlikely 

to be sensitive enough to capture changes in gene expression responsible for such subtle 

differences in phenotype. But if such genes can be pinpointed, HPRI could leverage its 

greater depth to capture these subtypes (FIG. 2Ab). Additional or missing subtypes detected 

from either assay can stem from sampling bias (of the tissue section used for scRNA-seq or 

spatial transcriptomics).

Post-sequencing mismatch can result from poor clustering choices (that is, over-annotating 

or under-annotating subtypes). A common strategy to assess the validity of scRNA-seq 

clusters is to see whether marker genes104 are observed in the proper cell-type clusters105. 

As capture spot deconvolution models typically treat scRNA-seq as a gold standard for 

establishing cellular subtypes, a subtype only present in spatial barcoding data is treated 

as noise by inference-based models90,92,103 whose presence hinders optimal fit. However, 

as we and others have found previously29,31,33,39,106, certain cell types either are difficult 

to dissociate or do not survive the scRNA-seq workflow, and therefore are not detected in 

scRNA-seq despite their verified presence in spatial data. To assess whether scRNA-seq 

has missed cell types, clustering capture spots29,31,39 (as one would cluster scRNA-seq 

data to obtain cell subtypes) may reveal subtypes only captured by spatial barcoding. 

Clustered captured spots may serve as a surrogate reference in deconvolution when no 

suitable scRNA-seq data set is available35,107.

Although inadequate depth and subtype detection cannot easily be computationally 

remedied, creation of cellular subtypes during dissociation is not likely to confound cell-type 

modelling, because these artificial cell types usually occur at low frequencies and do not 

pass confidence thresholding. In fact, SPOTlight91 has a minimum frequency threshold. 

Furthermore, SpatialDWLS102 performs an additional round of capture spot deconvolution, 

with subtypes below the minimum frequency removed. Under the premise that capture spots 

with three or more cell types are rare, robust cell-type decomposition90 wields the ‘doublet 

mode’ to mitigate overfitting by determining whether a model fit to one cell type or two 

cell types better explains the capture spot’s transcript mixture. The doublet mode can be 

extended to triplets and beyond. As higher resolution spatial barcoding assay techniques 

emerge (thereby decreasing the typical number of cell types per capture spot), the doublet 

mode will serve as a model deconvolution strategy. The aforementioned strategies reflect 

the ways in which the spatial barcoding capture spot deconvolution problem is distinct from 

the bulk RNA-seq deconvolution problem. As additional matched scRNA-seq and spatial 
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barcoding data sets are generated, we anticipate the refinement of current deconvolution 

strategies and development of novel algorithms to maximize deconvolution accuracy.

Mapping: creating spatially resolved cell-type maps at single-cell resolution.

Just as with deconvolution, the first step to mapping is establishing cellular subtypes 

based on scRNA-seq data. Then, the primary challenge of mapping is to assign scRNA-seq-

based cell types onto each cell from HPRI data (FIG. 4b). Intuitively, scRNA-seq-based 

cell-type scoring can be applied to each individual cell from HPRI similarly to how it 

is applied to scoring capture spots (FIG. 4e). Just as with deconvolution, there are also 

more computationally sophisticated approaches to addressing the mapping problem. Early 

efforts to spatially map scRNA-seq data relied on ISH of a small number of landmark genes 

to probabilistically map scRNA-seq cells to user-defined regions21,108,109 or single-cell 

coordinates110 in 2D or 3D space. However, these methods rely on the tissue having a 

prototypical structure. Furthermore, given rapid advances in throughput of HPRI techniques, 

most mapping algorithms have not yet caught up to specifically address integration of 

scRNA-seq with HPRI. Instead, they have focused on batch-correcting two different scRNA-

seq experiments, but nevertheless have demonstrated successful application to single-cell 

resolution spatial data111.

A systematic evaluation of 14 published algorithms that implement batch correction 

strategies for mapping through cluster-based analysis112 identified three algorithms 

that most effectively integrate scRNA-seq data with single-cell resolution spatial data: 

LIGER113, Seurat Integration114 (from Seurat 3.0) and Harmony115 (FIG. 4f). All three 

algorithms ultimately obtain cell types from community detection of clusters that have 

been integrated into a low-dimensional space through different methods. Harmony projects 

both mapping data sets into low-dimensional space using principal component analysis 

and then iteratively removes batch effects by favouring the clustering of cells with a 

greater diversity of batches, while simultaneously maintaining cell-type similarity in the 

k-means clusters. Intuitively, mismatch would increase the odds of spuriously assigning 

data set-unique subtypes to the most similar cell type of the other data set; however, 

Harmony incorporates other penalties to successfully address mismatch. Seurat Integration 

begins by projecting scRNA-seq and HPRI mapping data sets into low-dimensional space 

using canonical correlation analysis, and then finds anchor cell pairs encoding cellular 

relationships across the two data sets through mutual nearest neighbour clustering116. 

Anchors can then be evaluated: higher-scoring anchors are those wherein many similarly 

clustered cells in one data set are predicted to correspond to that same group of similar 

cells in the other data set. Mutual nearest neighbour clustering has proved to be robust to 

mismatch as cells in non-overlapping populations displayed lower median anchor scores114; 

therefore, they were given less weight when transforming the data sets into a shared space.

As Harmony and Seurat Integration both attempt to ameliorate batch effects by mapping 

data sets into a completely shared latent space, they both implicitly assume that differences 

between the data sets are entirely due to technical variations. LIGER does not make the 

same assumption. LIGER addresses this during the dimensionality reduction step 

through employing integrative non-negative matrix factorization, wherein each 
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cell is defined by a set of data-set-specific genes and a separate set of shared genes. 

Using the values for these genes, each cell is assigned a type based on whichever cell 

type corresponds to its maximum factor loading. Then, shared factor neighbourhood 

graph clustering is performed on both data sets to connect cells with similar factor loading 

neighbourhoods, thereby linking scRNA-seq and HPRI data. Given that the factor loadings 

often successfully characterized biological sources of variation, LIGER has proved to be 

robust to mismatch during mapping from scRNA-seq to HPRI cell types.

In addition to ascertaining community clusters of cell types, Seurat Integration and LIGER 

can impute expression of genes not measured for the spatially resolved single cells. Seurat 

Integration readily imputes by using the scRNA-seq gene expression profile of the spatial 

cell’s highest scoring anchor. Higher-scoring pairs have more shared nearest neighbours 

in low-dimensional space. By contrast, LIGER and SpaGE117, a newly published mapping 

algorithm tailored towards integration of scRNA-seq and single-cell spatial data, impute by 

obtaining the average expression of a certain number of corresponding scRNA-seq nearest 

neighbours in low-dimensional space. Imputation of spatial gene expression can be validated 

by comparing actual HPRI data with the predicted values from mapping for each HPRI gene 

assayed114,115.

Instead of a clustering approach, pciSeq89 uses a mean-field approximation118 Bayesian 

algorithm that leverages scRNA-seq data to simultaneously estimate the probability of 

assigning each read to each cell from the HPRI data. For each gene, pciSeq assesses 

the probability distribution for numerous gene spots for a given gene and their locations, 

known as a spatial point process. To obtain cell-type classification probabilities, the model 

calculates the expected number of copies of each gene assigned to the cell relative to the 

number of gene assignments predicted from scRNA-seq counts, cell area and estimated 

efficiency.

As additional matched scRNA-seq and spatial data sets are generated, algorithms 

specifically suited to address the challenges of both mapping and deconvolution will likely 

evolve. Eventually, improvement of spatial barcoding towards single-cell resolution could 

obviate the need for deconvolution and convert it into a mapping problem. In fact, given 

that the spatial barcoding deconvolution algorithms (both linear regression and Bayesian 

models) generally have lower accuracy on sparse data103, that is, many fewer transcripts per 

capture spot, mapping algorithms may begin to yield more accurate cell-type predictions for 

single-cell resolution spatial barcoding data. This may be especially true in tissues where 

there is a low degree of cell-type intermixing26.

Incorporating spatial data into analysis of intercellular communication.

Interactions between cell subpopulations mediate tissue homeostasis, development 

and disease. Given that much cellular cross-talk, notably juxtracrine and paracrine 

communication, is spatially restricted109,119, spatial transcriptomics data are well suited 

to evaluate the reliability of the ligand–receptor interactions computed from scRNA-seq 

(FIG. 5). Standard algorithms for predicting the ligand–receptor interaction pairs involved 

in intercellular communication primarily incorporate scRNA-seq data and a database of 

known ligand–receptor interactions120–127. When a landmark of interest is known, such as 
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the tumour leading edge33, the co-expression of ligands and receptors at proximal spots 

in the region can be evaluated for statistical significance above the background to extend 

insight beyond the cell subtypes present to the level of the potential proteins they use to 

communicate with each other to drive local phenotypic features.

Numerous approaches exist to decode such mechanisms of intercellular communication. 

For example, one group fit a generalized linear model to test whether ligand–receptor pairs 

co-localize within a capture spot or among adjacent capture spots26. Similarly, for each 

pair of interacting cells from two different cell types, the Giotto workflow128 evaluates 

the likelihood that a given ligand–receptor interaction is used more or less based on 

the proximity of all of the co-expressing cells (FIG. 5A). The SpaOTsc algorithm129 

combines scRNA-seq and spatial data to create a 3D single-cell resolution map with 

intercellular communication networks charted. It treats mapping cells and their ligand–

receptor interactions as an optimal transport problem130 in which the cell–cell distance, 

obtained from mapping scRNA-seq cells to spatial positions from HPRI data, is used as 

a transport cost to spatially constrain the ligand–receptor signalling network. The yielded 

optimal transport plan represents likelihoods of cell–cell communication events between 

each pair of cells. An additional constraint is the maximum spatial range for the signalling, 

which is calculated by evaluating expression levels of a ligand’s downstream signalling 

targets (FIG. 5B), and the distance between the two cells with the strongest downstream 

correspondence is the maximum range.

Additionally, spatial data can be used to evaluate scRNA-seq map reconstructions 

and imputed ligand–receptor interactions. The novoSpaRc algorithm131 does this by 

reconstructing scRNA-seq single cells into a virtual tissue map through the assumption 

that physically close cells have similar transcription profiles. CSOmap132 combines scRNA-

seq gene expression profiles and a database of ligand–receptor interactions to reconstruct 

single-cell resolution maps through dimensionality reduction. Once the cells are mapped, the 

contribution of each ligand–receptor pair to interactions between each cell-type cluster can 

be calculated. These approaches involving scRNA-seq integrated with spatial information 

can be used to nominate the receptors and ligands that mediate communication between 

proximal cell subpopulations. Going one step beyond, models to quantify the influence of 

cell–cell interactions on specific gene expression markers in the cell’s neighbourhood133 or 

on tissue-wide expression134 are beginning to emerge.

Several methods to further validate and characterize intercellular communication have 

been recently developed. For example, PIC-seq135 captures physically interacting pairs of 

cells (doublets) and performs scRNA-seq on them. Another means of measuring ligand–

receptor interactions between cells in tissue culture is through an enzyme-based labelling 

technique. The ID-PRIME method136 labels static interactions between cells. To track more 

transient interactions, LIPSTIC137 has been developed and applied to the immune system. 

Such assays complement recent approaches designed to integrate scRNA-seq with spatial 

transcriptomics to nominate communicating cell subtypes and the receptors and ligands they 

use within specific spatial niches in tissue.
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Future directions

Integrating single-cell expression data with existing spatial transcriptomics techniques 

will sharpen the resolution of physically proximal cell subpopulations within healthy and 

diseased tissue. The insights from such integrative efforts may help uncover previously 

opaque mechanisms of intercellular communication and biologic function operating below 

the signal to noise ratio in diverse tissues. In doing this, such advances may help define 

disease subtypes, guide prognosis and enable targeting of cell populations, along with 

the ligands and receptors critical for their actions, for precision therapy. Accomplishing 

such goals for human health will benefit from additional innovations that enhance 

spatial transcriptomics efficiency and resolution, incorporate more information about tissue 

architecture and apply new learning algorithms to discern patterns of cell subpopulations 

linked to disease behaviour.

Integration of additional modalities.

Currently, spatial transcriptomics techniques are largely focused on measuring mRNA 

transcripts through next-generation sequencing (spatial barcoding) or fluorescent markers 

(HPRI). However, spatial transcriptomics experiments generate a rich set of data that are 

often left untapped, namely, histologic images of tissue sections. Based on the premise that 

a significant amount of spatial variance manifests visually at the level of tissue architecture, 

a group developed ST-Net138, a deep learning algorithm that predicts the spatial variation 

in expression of 102 genes for each spatial barcoding capture spot superimposed onto 

tissue histology. Furthermore, XFuse incorporates spatial barcoding and histology sections 

to predict expression at single-cell resolution139. Saliency maps of these deep learning 

models are essential to extract novel spatial features linked to the expression of individual 

genes in the transcriptome. Such deep learning approaches, if successfully applied on large 

series of well-characterized data sets, may complement integrated scRNA-seq and spatial 

transcriptomics data sets by capturing information on cell types and gene expression via 

conventional histology. In addition to improving deconvolution and mapping algorithms, 

one needed focus centres on developing additional deep learning models138–141 to help 

disentangle which features of a given spatial transcriptome are most biologically relevant.

Defining the 3D spatial transcriptome and real-time cell tracking offer additional frontiers 

for future progress. Currently, most studies of the 3D spatial transcriptome take high-

density cross-sections and computationally reconstruct them31,45,142 or infer scRNA-seq cell 

locations through sparse 3D single-molecule fluorescence in situ hybridization data108,110. 

However, STARmap143 and ExSeq144 are newly developed methods that pair HPRI with 

transformation of intact tissue into a hydrogel to preserve the 3D arrangement of the 

amplicons. Furthermore, ExSeq boasts an untargeted HPRI method that successfully 

leverages expansion microscopy to better resolve the normally densely packed RNA 

transcripts associated with untargeted HPRI methods.

Although it is true that the spatial transcriptome across a time course of development 

or tissue pathogenesis can be charted, spatial transcriptomics techniques do not monitor 

the physical dynamics of cell subtypes in real time. Real-time tissue tracking of cellular 

subtypes is especially important to understanding the inner workings of the tumour 
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microenvironment interface with immune cells. In this regard, optical coherence tomography 

has been used to track the migration of tumour-associated myeloid cells145, and CellGPS 

has been used with positron emission tomography to track human breast cancer cells 

loaded with radioisotope146. When paired with spatial transcriptomics, both of these live 

tracking techniques could be applied to cell types of interest from spatial data to elucidate 

cell kinetics in settings, such as metastatic progression and immune cell dynamics during 

cancer immunotherapy. RNA timestamping represents an alternative means to elucidate the 

temporal dynamics of gene expression programmes in which the age of transcripts can 

be recorded on a 1-h timescale147. Recording transcriptional dynamics on this timescale 

is crucial to chart responses to perturbations. The application of such newly emerging 

efforts in 3D mapping and real-time analysis promises to extend current opportunities in 

understanding spatial tissue dynamics at the resolution of single cells.

An even deeper understanding of tissue function can be developed by going beyond 

resolution of the spatio-temporal transcriptome by spatially resolving other biomolecules 

integral to the central dogma of molecular biology148. DBiT-seq can spatially resolve 

proteins and mRNA transcripts on the same tissue by applying a mixture of antibody-derived 

DNA tags to localize proteins of interest prior to ligating two barcode sets through crossflow 

of two perpendicular microfluidic channels149. Remarkably, given the high barcoding 

resolution (10 × 10 μm2 squares), DBiT-seq used Seurat Integration (designed for integration 

of two single-cell data sets)114 to map scRNA-seq cell types to spatially resolved cells. In a 

recent preprint, the creators of DBiT-seq employed a similar barcoding strategy to localize 

the spatial epigenome on a tissue-wide scale and were able to successfully integrate these 

data with ISH at single-cell resolution and overlay scRNA-seq cell-type annotations150. 

3D imaging of the sequenced genome in situ151, subcellular resolution of RNA152 and 

simultaneous imaging of 3D chromatin organization within the context of nucleoli and 

RNA153 all exist now at single-cell scale. They hold promise to advance to application on 

intact tissue and to revolutionize our understanding of how the machinery of the central 

dogma functions in the 3D context of a cell153 to reveal the inner workings of developmental 

trajectories151,152 and disease, namely cancer151.

Clinical relevance.

Spatial transcriptomics studies that perform comparative analysis between diseased and 

healthy tissue have begun to elucidate prognosis, optimal therapeutic treatment and potential 

therapeutic targets. Such efforts, however, have been limited in sample size and have thus 

far been exploratory. Aggregating the spatially resolved transcriptome of diseased and 

healthy cells across many patients may be important to enhance the clinical relevance and 

predictive prognostic power of such data. To increase the pace of data generation, analyses 

can focus on characterizing a much smaller number of regions of interest that drive disease-

relevant phenotypes. In addition to describing trends in patient outcomes, interrogating how 

existing drugs, especially repurposed ones, affect spatio-temporal gene expression patterns 

in disease-driving cell types may lend insight into potential therapeutic agents. In this regard, 

monitoring mRNA transcripts in response to stimuli through methods such as NASC-

seq154 may be useful in better understanding how drug perturbations affect the spatial 

transcriptome of diseased cells. Once these patient tissue data are aggregated, deep learning 
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models could help identify the most relevant spatial expression patterns associated with 

survival outcomes or therapeutic response, potentially highlighting favourable landmarks 

to recapitulate or additional nodes of intervention during treatment. Cancer serves as a 

prototype for the promise of such strategies. Although therapeutic resistance in cancer 

remains a daunting challenge, the presence of tertiary lymphoid structures155 or densely 

fibrous stroma156 have served as positive and negative prognosticators of response to 

immune checkpoint blockade, a reminder that additional useful features may be waiting 

to be uncovered through spatial transcriptomics.

As more spatial transcriptomics analyses are performed, it will be increasingly challenging 

to disentangle definitive, disease-relevant cell types and their gene modules. As more cell 

types are identified and mapped in tissue, tools such as Seurat Integration114, Harmony115 

and LIGER113 may evolve to integrate data across different experimental assays to 

determine whether specific cell types are consistently observed in each tissue. Furthermore, 

efforts to centralize spatial transcriptomics data for each organ system and disease will be 

valuable157, as the Allen Brain Atlas158 has done for the mouse brain, the National Institutes 

of Health (NIH) Blueprint Non-Human Primate159 has done for the rhesus macaque monkey 

brain and SpatialDB160 has done for multiple species and spatial transcriptomics techniques. 

Ultimately, better-defined spatial transcriptomes for disease-driving cell types, especially for 

cases in which cellular function is particularly dependent on an in situ context and adjacent 

cell populations, may yield more fruitful biological mechanisms for therapeutic targeting.

Conclusions

Integration of scRNA-seq with spatial transcriptomics can produce high-resolution maps 

of cellular subpopulations in tissue. Techniques for examining the spatial transcriptome 

are rapidly evolving, and therefore no singular spatial transcriptomics technique is best 

for all applications. Depending on the biological questions being asked, the experimental 

methodology can be designed to integrate any spatial transcriptomics approach with 

scRNA-seq. In addition to developing enhanced methods, carefully selecting algorithms for 

integrating such data is paramount, because spatial transcriptomics methods that spatially 

resolve tissue at single-cell resolution with scRNA-seq depth and whole-transcriptome 

coverage do not yet exist. Such integrative approaches are beginning to spatially map 

specific cell subpopulations in development and disease, and to shed light on the 

mechanisms whereby such populations collaboratively shape tissue phenotypes.
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Glossary

Single-cell RNA sequencing

Longo et al. Page 15

Nat Rev Genet. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(scRNA-seq). A method that sequences RNA transcripts (primarily mRNA) isolated from 

each cell of a tissue, thereby characterizing individual cells’ transcriptomes; aggregated data 

characterize the gene expression distribution of tissue cell subpopulations

Intercellular communication
Communication between cells, typically through ligand–receptor interaction. Juxtracrine 

denotes direct cellular contact for signalling molecules to be passed between cells, whereas 

paracrine refers to diffusion of signalling molecules from a sender to a receiver cell

Spatial transcriptomics
A method that localizes mRNA transcripts to precise spatial locations (single cells or capture 

spots, formerly regions) in a tissue. In this Review, the term refers broadly to all spatial 

transcriptomics methods, not exclusively spatial barcoding

Bulk RNA-seq
A method that sequences a mixture of RNA transcripts (primarily mRNA) from the whole 

tissue to generate an average expression level for each gene across all cells sequenced

High-plex RNA imaging (HPRI)
A targeted spatial transcriptomics method that localizes and quantifies RNA transcripts 

through multiplexed fluorescent microscopy imaging. Can typically target up to ~100–200 

genes simultaneously in intact tissue sections

Spatial barcoding
Spatial transcriptomic methods that use a microarray of poly-T oligonucleotides to ‘capture’ 

mRNA transcripts of tissue cross-sections, typically followed by next-generation sequencing

Coverage
In the context of single-cell or spatial transcrtipomics assays, the number of distinct genes 

that are represented from captured RNA molecules

Capture spots
Individual coordinates or capture locations on the microarray used to ‘capture’ mRNA 

transcripts for spatial barcoding and identified by a DNA barcode; each capture spot 

generally captures mRNA from multiple cells

Resolution
In spatial data, the distance between spatial coordinates that identify the source of 

molecules. For spatial barcoding, higher resolution refers to a smaller distance between 

capture spot coordinates with smaller capture spot diameter

Depth
In the context of single-cell or spatial transcriptomics assays, the number of unique RNA 

molecules captured for a particular gene

Fluorescent-activated cell sorting
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(FACS). A cell sorting technique based on flow cytometry for isolating and identifying 

different cell types using fluorescent antibodies targeting known cell type-specific cell 

surface proteins

Microdissection
A method, such as laser-capture microdissection (LCM), that finely isolates different tissue 

parts from cryo-sections. LCM-seq is a spatial transcriptomics method that couples LCM 

with RNA sequencing

Deconvolution
The process of predicting cell-type proportions at a given spatial barcoding capture spot 

based on its mRNA mixture. Cell types are typically derived from single-cell RNA 

sequencing profiles of the tissue

Pseudo-time analysis
Computational ordering of single cells, namely of single-cell RNA sequencing, based on 

a gradual evolution of their transcriptomes to measure progress through a given biological 

process (for example, differentiation or proliferation

Mapping
The process of assigning a single-cell RNA sequencing (scRNA-seq)-based cell type to each 

cell spatially resolved by high-plex RNA imaging assays; secondarily, predicting the spatial 

location of each scRNA-seq cell based on its transcriptome

Statistical regression
In the context of deconvolution, linear regression models are fit to determine to what extent 

each cell type explains the gene expression values for each capture spot

Bayesian statistical framework
In the deconvolution context, statistical models that rely on inferences about the distribution 

of transcripts for each cell type to yield a probability that a mixture of transcripts can be 

explained by a specific single-cell RNA sequencing cell type

Maximum a posteriori
A Bayesian estimate of an unknown conditional. In the context of spatial transcriptomics 

integration methods, the maximum a posteriori estimate most often refers to the cell-type 

distribution given the gene distribution at a capture spot

Enrichment
Refers to a particular class of genes that is over-represented in a large set of genes. In the 

deconvolution and mapping contexts, this class is often the cell type

Mismatch
Incongruity between cell types detected as present in single-cell RNA sequencing and 

spatial transcriptomics data that can complicate spatial barcoding deconvolution, but less so 

high-plex RNA imaging mapping

Mutual nearest neighbor
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A robust algorithm for clustering single cells between two different single-cell 

transcriptomic data sets (that is, single-cell RNA sequencing with high-plex RNA imaging) 

based on the cell subtype

Dimensionality reduction
A mathematical technique to represent high-dimensional data in lower dimensions. Mostly 

used in transcriptomic analysis for visualization of cell subtype clustering in 2D, sometimes 

3D, space to establish subtypes

Non-negative matrix factorization
A method commonly used in bioinformatics for dimensionality reduction of gene expression 

data as the non-negativity constraint reflects that genes are either expressed or not and 

cannot be negatively expressed

Factor loading
In the context of transcriptomics, correlation coefficients between known gene transcript 

levels and latent cell subtype information. Can be plotted in low-dimensional space prior to 

joint clustering of single-cell RNA sequencing and high-plex RNA imaging data

Impute
In the context of spatial transcriptomics, the computational process of determining unknown 

gene expression values of spatially resolved single cells (high-plex RNA imaging) with 

corresponding values from mapped single-cell RNA sequencing data
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Fig. 1 |. Adding spatial information to transcriptomes: integration of single-cell and spatial 
transcriptomics data.
a | ‘Tissue homeostasis’ refers to elucidating spatial division of discrete cellular subtypes in 

a healthy tissue at a singular time point, for example, in the intestinal epithelium. ‘Tissue 

development’ refers to the study of how the spatial transcriptome changes in tissue at key 

stages in the development of a tissue. ‘Disease microenvironment’ refers to elucidating the 

spatial transcriptome in diseased and injured tissue niches with an eye towards proximity 

to relevant biological features, for example, proximity to amyloid plaques in brain tissue of 
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patients with Alzheimer disease. ‘Tumour microenvironment’ refers to the study of spatial 

architecture of tumours and their interface with other cell subtypes in their environment. b | 

Workflows combining single-cell RNA sequencing (scRNA-seq) and spatial transcriptomic 

techniques begin by establishing cell subtypes typically through dimensionality reduction 

and clustering of scRNA-seq data. c | Deconvolution and mapping are used to localize cell 

subpopulations. Deconvolution is typically applied to spatial barcoding data, and mapping 

is typically applied to single-cell resolution spatial data (that is, high-plex RNA imaging 

(HPRI) data) to localize scRNA-seq subpopulations. d | Algorithms that evaluate spatial 

arrangement of localized subpopulations can further assess ligand–receptor interactions 

predicted from scRNA-seq data. Figure component in parts c and d adapted from REF.33, 

CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Fig. 2 |. Common spatial transcriptomics techniques.
Aa | High-plex RNA imaging (HPRI) methods localize mRNA transcripts through probes 

that target specific genes. Fluorescent probe methods typically employ an encoding scheme 

whereby each gene can be identified through a unique sequence of fluorescent probe 

signals obtained through multiple rounds of hybridization. Padlock probe methods typically 

use probes that target the complementary DNA (cDNA) of target genes. Each probe has 

an identification (ID) sequence of nucleotides specific to each gene. The strategy for 

fluororescent sequencing of this ID varies by method. Ab | HPRI map of human breast 

cancer tissue cross-section with mRNA transcripts decoded based on gene fluorescent 

signals (not yet annotated by cell type, which can be done through mapping). Left: 

associated haematoxylin and eosin (H&E) stain (scale bar = 100 μm). Strengths and 

drawbacks of HPRI methods are listed. Pre-selected gene target panels typically range 

from 100 to 200 genes for intact tissue sections (proof-of-concept literature indicates an 

~10,000 gene limit in tissue culture that is not easily scaled to intact tissue), and for 

some well-established methods only long RNA species (greater than 1,000 nucleotides) 

can be included. More specialized equipment typically makes for a more labour-intensive 
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workflow. Ba | Spatial barcoding uses spatially barcoded (ID = location barcode) poly-

T oligonucleotide capture of mRNA transcripts across tissue cross-sections followed by 

detachment and deep sequencing. Following sequencing, each transcript is de-multiplexed 

for assignment to its capture spot of origin based on its ID. Bb | Spatial barcoding 

map of human squamous cell carcinoma cross-section with capture spot mRNA mixtures 

deconvolved by cell type. Left: associated H&E stain (scale bar = 500 μm). Strengths and 

drawbacks of spatial barcoding methods are listed. Unbiased refers to the fact that the 

method does not involve selection of target genes. Greater accessibility also comes from the 

commercialization of spatial barcoding methods. NGS, next-generation sequencing. Part Ab 
reprinted from REF.10, Springer Nature Limited.
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Fig. 3 |. Model workflow integrating scRNA-seq and spatial transcriptomics: the four As.
a | Adopt a rationale for assessing the spatial transcriptome in a particular tissue type. 

Common applications are depicted in FIG. 1a. b | Assay using single-cell RNA sequencing 

(scRNA-seq) to identify discrete cell subpopulations in a given tissue, and then with 

spatial barcoding to ascertain their physical locations in situ. Given their unbiased nature, 

scRNA-seq and spatial barcoding can help identify optimal gene panels for high-plex RNA 

imaging (HPRI) studies. Additional genes of interest for HPRI studies can be obtained by 

algorithms that identify spatially differentially expressed genes165,166 and through literature 
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research. c | Assemble maps that localize specific cell subtypes spatially within the tissue. 

For spatial barcoding data, deconvolution can be used to localize cell types. For HPRI data, 

mapping can be used to localize cell types. Matched histology images can be annotated for 

landmarks of interest such as the tumour leading edge to further inform spatial analysis. 

d | Analyse assembled cell-type maps to nominate the cell types, tissue niches and 

ligand–receptor interactions involved in intercellular communication that drive the tissue 

phenotype. Figure component used in parts b and c adapted from REF.33, CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/).
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Fig. 4 |. Deconvolution and mapping methods.
Computational approaches that localize cellular subtypes through integration of single-cell 

and spatial transcriptomics data. As spatial transcriptomics can only measure a fraction 

of the genes compared with single-cell RNA sequencing (scRNA-seq), deconvolving and 

mapping scRNA-seq-based cell types enriches spatial transcriptomics cell-type tissue maps. 

a | For spatial barcoding data, cell subpopulations can be localized by deconvolving the 

mixture of mRNA transcripts from each capture spot to predict the proportions of each cell 

type from the mixture of cells at each spot. b | For high-plex RNA imaging (HPRI) data, cell 

subpopulations can be localized by mapping scRNA-seq-based cell types onto each spatially 

resolved cell. Deconvolution and mapping methods to characterize spatial transcriptomics 

data using scRNA-seq cell subtypes exist on a weighted spectrum as each type of method 

can theoretically be applied to elucidate the subtype composition for both capture spots 

and single-cell transcript mixtures. Statistical regression (left) is most commonly applied 

to capture spot deconvolution and cluster-based mapping methods mostly towards HPRI 

cell-type mapping. c | Regression-based deconvolution combines scRNA-seq data clustered 

by cell type with capture spot data to yield a matrix containing capture spot profiles 

with scRNA-seq cell subtypes overlaid. Regression is used to find the scRNA-seq subtype 

Longo et al. Page 32

Nat Rev Genet. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profiles that best explain each capture spot mixture. d | Probabilistic distribution models 

are fitted to scRNA-seq transcript distributions for each cell type, with each capture spot 

characterized by determining the degree to which each cell type fits that spot’s transcript 

distribution. e | Cell-type scoring assigns cell types to single cells or capture spots based 

on overlap of spatial gene expression (black circles) with the marker genes for each cell 

type (coloured circles). f | Cluster-based mapping involves integrating scRNA-seq data 

(blue plot) and single-cell resolution spatial data (red plot) into a shared low-dimensional 

space (purple plot) whose clusters represent scRNA-seq cell types correspondening to 

spatial assay cell types. Tissue cross-section in part a adapted from REF.33, CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0). Parameter estimation distribution graphs in 

part d adapted from REF.92, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part 

f adapted from REF.33, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Fig. 5 |. Principles used to decode mechanisms of intercellular communication via expression of 
ligands and receptors in physically proximal cell subpopulations.
In a given tissue niche, cell subpopulations are more likely to be in communication if 

they are spatially proximal to each other (part A) and exhibit appropriate target gene 

signatures in signal-receiving cells (part B). A | Communicative cell types are established 

by evaluating co-localization to a given capture spot and/or expression of cell types 

in adjacent capture spots or cells. B | To account for longer-range communicative cell 

types that might be missed by the aforementioned strategies, the SpaOTsc algorithm 
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predicts the maximum communication range for a given ligand–receptor pair through 

ligand–receptor target gene co-expression. Whereas ligand–receptor and ligand–receptor–

target co-expression restriction can be used to establish intercellular communications from 

single-cell RNA sequencing (scRNA-seq) data alone, the spatial context can enhance this 

analysis by predicting maximum communication ranges and may disprove communications 

if the distance between the pairs is much farther than expected based on typical ranges 

recorded in the literature. Tissue cross-section adapted from REF.33, CC BY 4.0 (https://

creativecommons.org/licenses/by/4.0/).
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