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Abstract

The search for two-dimensional (2D) magnetic materials has attracted a great deal of attention 

because of the experimental synthesis of 2D CrI3, which has a measured Curie temperature of 45 

K. Often times, these monolayers have a higher degree of electron correlation and require more 

sophisticated methods beyond density functional theory (DFT). Diffusion Monte Carlo (DMC) is a 

correlated electronic structure method that has been demonstrated to be successful for calculating 

the electronic and magnetic properties of a wide variety of 2D and bulk systems, since it has 

a weaker dependence on the Hubbard parameter (U) and density functional. In this study, we 

designed a workflow that combines DFT +U and DMC in order to treat 2D correlated magnetic 

systems. We chose monolayer CrX3 (X = I, Br, Cl, F), with a stronger focus on CrI3 and CrBr3, 

as a case study due to the fact that they have been experimentally realized and have a finite 

critical temperature. With this DFT+U and DMC workflow and the analytical method of Torelli 

and Olsen, we estimated a maximum value of 43.56 K for the Tc of CrI3 and 20.78 K for the 

Tc of CrBr3, in addition to analyzing the spin densities and magnetic properties with DMC and 

DFT+U. We expect that running this workflow for a well-known material class will aid in the 

future discovery and characterization of lesser known and more complex correlated 2D magnetic 

materials.
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Graphical Abstract

INTRODUCTION

Recently, the search for two-dimensional (2D) magnetic materials, especially ferromagnets, 

has become an important task for the materials science community. The revolutionary 

experimental synthesis of 2D CrI3, which has a measured Curie temperature of 45 

K,1 has sparked interest in discovering and utilizing similar ferromagnetic materials for 

next generation devices. Beyond monolayer CrI3, room temperature magnetism has been 

experimentally measured for 2D VSe2 on a van der Waals substrate,2 and it has been shown 

that ferromagnetic order exists in 2D Cr2Ge2Te6
3 and Fe3GeTe2.4 In addition, theoretical 

calculations have predicted ferromagnetic ordering in monolayers such as CrBr3,5 CrCl3,5,6 

CrF3,7 MnO2,8,9 FeCl2,10 K2CuF4,11 the family of MPX3 (M is a 3d transition metal atom, 

X is a group VI atom),12 α-RuCl3,13 RuBr3, RuI3,14 and several other reported materials.5

Often times, however, these monolayers have a higher degree of electron correlation and 

require more sophisticated methods beyond density functional theory (DFT). Diffusion 

Monte Carlo (DMC)15 is a many-body correlated electronic structure method that has been 

successful for the calculation of electronic and magnetic properties of a variety of bulk 

and low-dimensional systems.16-40 This method has a much weaker dependence on the 

starting density functional and Hubbard parameter, can achieve results with an accuracy 

beyond DFT,15 and scales similarily to DFT with respect to the number of electrons in 

the simulation.15 For example, DMC has successfully predicted the magnetic structure for 

FeSe when DFT methods contradicted.28 In addition, the correct spin superexchange in the 

correlated cuprate Ca2CuO3 has been determined27 using DMC methods.27 With regards 

to 2D materials and DMC, the band gap of GaSe31 has been calculated to be in excellent 

agreement with experiment, the correct atomic structure and potential energy surface of 

CrI3
39 and GeSe30 have been predicted, and the critical temperature of MnO2

9 has been 

estimated.

The last step in the investigation of 2D correlated magnetic systems is the estimation of 

Tc. Specifically, the Mermin-Wagner theorem41 implies that magnetic order in a monolayer 
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cannot exist unless magnetic anisotropy (MA) is present and perpendicular to the plane, 

which allows a finite critical temperature (Tc). In order to obtain an appropriate value for Tc, 

the magnetic anisotropy energies (MAE) should be determined by performing noncollinear 

(spin–orbit) calculations. Once the MAE and magnetic exchange parameters of a 2D system 

are obtained from first-principles, they can be input into analytical models such as the one 

derived by Torelli and Olsen42 to estimate Tc.

Data-driven high-throughput studies of 2D materials are needed to identify candidates that 

meet the criteria to be a 2D ferromagnet with a finite Tc. Development of an efficient 

framework dealing with all the computational steps highlighted above is necessary to make 

such a high-throughput search possible.

In this work, we developed one such workflow and used it to perform a systematic 

DFT+U and Quantum Monte Carlo benchmark of magnetic two-dimensional (2D) materials. 

The framework and data it produced have been made available to the public through 

the JARVIS (Joint Automated Repository for Various Integrated Simulations, https://

jarvis.nist.gov/) project. JARVIS, which is part of Materials Genome Initiative (MGI), is 

a computational materials science framework developed at National Institute of Standards 

and Technology (NIST).43 One of the main components, JARVIS-DFT, is a comprehensive 

database of DFT-computed material properties for over 3000 2D and 2D-like materials 

and over 60 000 bulk materials, with results from multiple functionals such as PBE and 

vdW-DF-OptB88. JARVIS-DFT contains DFT-calculated structural, energetic,44 elastic,45 

optoelectronic,45 thermo-electric,46 piezoelectric, dielectric, infrared,47 solar-efficiency,48 

topological,49 anomalous quantum confinement,50 and superconducting51 properties. As 

a response to the limitations of DFT, a limited number of beyond-DFT data, such as 

hybrid functionals (HSE06, PBE0) or many-body (GW, DMFT) results have been added 

to JARVIS, to increase accuracy and reliability of data. The discrepancies observed 

in DFT results, between different density functionals and experimental data, are more 

prevalent for materials that have a higher degree of electron correlation and are common 

for the 2D magnetic structures of interest. Specifically, this failure of DFT to describe 

correlated systems can be due in part to the tendency of standard exchange-correlation 

functionals to overdelocalize valence electrons.52 That is why DFT fails for systems 

whose ground state is characterized by a more pronounced localization of electrons, such 

as transition-metal-based materials. This delocalization occurs due to the inability of the 

exchange-correlation functional to completely cancel out the electronic self-interaction, and 

a fragment of the same electron remains that can induce added self-interaction, inducing an 

excessive delocalization of the wavefunction.52 To combat this self-interaction error, more 

sophisticated density functionals such as meta-GGAs,53,54 hybrid functionals,55 or DFT 

functionals with the added Hubbard (U) correction56 can be utilized. Despite the fact that 

these more sophisticated DFT methods exist, often times, the calculated properties of 2D 

magnets are heavily influenced by which density functional and U parameter are used. Due 

to this, a method that has a weaker dependence on the U parameter and functional and 

can capture the electron correlation that drives magnetic ordering is required. With such a 

many-body method, the realization of a 2D magnetic device fabrication can be significantly 

expedited.
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The goal of this study is to utilize a higher-order many-body method such as DMC, in 

order to treat 2D correlated magnetic systems. We chose monolayer CrX3 (X = I, Br, Cl, F) 

as a case study because they are an ideal class of materials to benchmark, due to the fact 

that they have been experimentally realized,1,57,58 have a finite critical temperature,1,5 and 

have extensively been studied with DFT.5 We hope that making such a DMC framework 

public through the JARVIS project, for a well-known class of materials, will aid in the future 

discovery and characterization of lesser known and more complex correlated 2D materials.

The outline of this paper is as follows: The Computational Methods section will outline the 

computational approaches for DFT, Quantum Monte Carlo (QMC), and postprocessing of 

QMC data as well as detail the newly developed DFT-QMC JARVIS workflow to obtain 

accurate magnetic properties of 2D systems. The Results and Discussion section will present 

DFT benchmarking using various DFT methods and QMC results, and the Conclusion 

section will provide concluding remarks.

COMPUTATIONAL METHODS

DFT and QMC Methods.

We performed DFT calculations with the added Hubbard correction (U)56 to treat the 

on-site Coulomb interaction of the 3d orbitals of Cr atoms. To determine how the choice 

of functional impacts the results, benchmarking DFT simulations were performed using 

the Vienna Ab initio Simulation (VASP) code and projector augmented wave (PAW) 

pseudopotentials59,60 (please note that the use of commercial software (VASP) does not 

imply recommendation by the National Institute of Standards and Technology). It is 

advantageous to benchmark these materials with VASP and PAW pseudopotentials due to 

the fact that they require a much smaller cutoff energy and are therefore more cost-effective 

for a large number of simulations. For these reference calculations, the Perdew–Burke–

Ernzerhof (PBE),61 local density approximation (LDA),62 the strongly constrained and 

appropriately normed (SCAN),53 meta-GGA, and recently developed r2SCAN54 functionals 

were used. r2SCAN was developed to improve the numerical performance of SCAN, at 

the expense of breaking constraints known from the exact exchangecorrelation functional.54 

In addition, to increase accuracy, we also performed calculations with the screened hybrid 

HSE06 functional, which is created by mixing 75% of the PBE exchange with 25% of the 

Fock exchange and 100% of the correlation energy from PBE.55 For our VASP calculations 

using PBE, LDA, SCAN, and r2SCAN (+U), we used the Crpv PAW potential (12 electrons), 

while for HSE06, we used the standard Cr PAW potential (6 electrons) due to computational 

restraints. We justified this choice for the HSE06 calculations by performing PBE+U (U = 2 

eV) calculations with the Crpv PAW potential and the Cr standard PAW potential separately, 

and found the results for magnetic exchange to be within 2–4% of each other. There was at 

least 20 Å space of vacuum given between periodic layers of CrX3 in the c-direction. We 

used a kinetic energy cutoff of 500 eV for CrI3, CrBr3, and CrCl3 and a cutoff of 700 eV for 

CrF3. A 5 × 5 × 1 k-point grid was used for the eight atom unit cell of all CrX3 monolayers. 

To calculate MAE, spin–orbit DFT (DFT+U) calculations were carried out for the FM and 

AFM states of each 2D CrX3. This is done by performing two spin–orbit calculations, one 

where the spins are oriented in the off-plane direction (in our case, z) and one where the 
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easy axis is rotated 90° (in our case, x). A workflow where these four static spin–orbit 

calculations (for the FM and AFM phases) are performed (using the previously optimized 

vdW-DF-OptB8863 geometry) was carried out within JARVIS.

For all QMC calculations, we used DFT and the PBE functional to create the trial wave 

function for subsequent fixed-node DMC calculations. The Quantum Espresso (QE)64 code 

was used for the DFT calculations within our QMC workflow. The trial wave function was 

generated separately for the FM and AFM configurations of each CrX3 monolayer, using 

various values of U. The reason for this was to variationally determine the optimal nodal 

surface (find the value of U that produces the lowest total energy). All QMC calculations 

require norm-conserving (NC) pseudopotentials. For Cr, we used hard NC RRKJ (OPT), 

scalar relativistic pseudopotentials.65 For Br, Cl, and F, scalar relativistic effective core 

potentials (ECP) were used.66,67 For I, a newly developed averaged relativistic effective 

potential (AREP) was used.68 For DMC calculations that explicitly include spin–orbit 

effects, a spin–orbit relativistic effective potential (SOREP) for I68 could be used, but since 

the spin–orbit interaction of CrI3 is on the order of the DMC error bar, we decided to use 

the AREP potential for I. These NC potentials are meant to produce all electron results 

(in accordance with coupled cluster theory), while the PAW pseudopotentials are meant to 

reproduce all electron density functional results. Ideally, the energy differences obtained 

with either method should yield similar results, which we verify by observing a 2–6% 

difference between PAW results and NC results for magnetic exchange (for PBE+U, U = 2 

eV). For these pseudopotentials, we used a kinetic energy cutoff of 300 Ry (~4080 eV) for 

all calculations, with the exception of F, which required 600 Ry (~8160 eV, see Figure S1). 

We tested the reciprocal grid size at the DFT level and determined that a k-grid of 3 × 3 × 

1 was sufficient for each CrX3 monolayer (see Figure S2). Although three different types 

of pseudopotentials were used in our calculations (PAW for DFT benchmarking, PAWpv for 

HSE06 benchmarking, and NC for DMC), the results at the DFT level are all within 2–8% 

of each other, which indicates that pseudopotential choice does not significantly hinder the 

accuracy of such small energy scale calculations.

The QMCPACK69,70 code was used to carry out variational Monte Carlo (VMC) and 

DMC15,71 calculations, after the DFT generation of the trial wave function. VMC 

calculations are the intermediate steps between the DFT and DMC calculations, where the 

single determinant wave function from DFT is converted into a many-body wave function 

by use of the Jastrow parameters,72,73 which aid in modeling the electron correlation and 

ultimately reduce the uncertainty in the DMC simulations.74,75 Up to two-body Jastrow76 

correlation functions were included in the trial wave function. The linear method77 was used 

to minimize the variance and energy respectively of the VMC energies. The cost function 

of the variance optimization is 100% variance minimization, while the cost function of the 

energy optimization is split as 95% energy minimization and 5% variance minimization, 

which has been demonstrated to reduce the uncertainty for DMC results.74 The DFT-VMC-

DMC workflows were automated using the Nexus78 software suite. After testing, a large 

supercell size of 48 atoms was deemed to be sufficient in eliminating finite-size effects for 

the FM and AFM configurations of 2D CrI3 (see Figure S3), which justified our choice 

to use a 48 atom supercell to calculate the magnetic exchange energy with QMC for the 

other materials of interest. For the DMC simulations, the T-moves79 algorithm was used 
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to evaluate the nonlocal part of the pseudopotentials, and after testing, a time step of 0.01 

Ha1− was determined to be sufficient (see Table S1). The error in our DMC calculations 

is the standard error about the mean value. This ±value about the mean is indicated by the 

error bars in the figures and the parentheses in the tabulated results. As previously stated, 

in our DMC simulations, controllable errors such as time step, finite size, and choice of 

nodal surface are appropriately addressed. The remaining sources of uncertainty can arise 

from the fixed-node bias and the error associated with evaluating the nonlocal part of the 

pseudopotential. Luckily, the fixed-node error has been demonstrated to be on the order 

of 1–2% in other crystal systems,26 and the T-moves79 algorithm has been proved to be 

successful in evaluating the nonlocal part of the pseudopotential, since it is treated in a 

variational way.26,79

The total charge and spin densities were extracted from our DMC results. The spin density 

(ρs) is the difference between the spin-up contribution to the total charge density and 

the spin-down contribution to the total charge density (ρs = ρup − ρdown). We used an 

extrapolation scheme on the DMC densities in order to eliminate the bias that occurs 

from using a mixed estimator. Because the density estimator does not commute with the 

fixed-node Hamiltonian, the DMC density we calculated is a mixed estimator between the 

pure fixed-node DMC and VMC densities. The extrapolation formula takes the form:15

ρ1 = 2ρDMC − ρVMC + O [(Φ − ΨT)2] (1)

where ρDMC and ρVMC are the DMC and VMC charge densities, respectively. Φ is the trial 

wave function arising from the DMC Hamiltonian, and ΨT is the trial wave function arising 

from VMC.

We integrated the DFT (DFT+U) and DMC spin densities up to a cutoff radius rcut (which 

is defined as half of the Cr─X bond distance in CrX3 monolayers) to obtain an estimate for 

the site-averaged atomic magnetic moment per atom. To calculate these magnetic moments 

per atom (MA), we summed over the spherically interpolated spin densities:

MA = 4π∫
0

rcut
r2ρs(r)dr ≈ 4π ∑

i = 0

rcut ∕ Δr

ri
2ρs(ri)Δr (2)

where Δr is the radial grid size and ri is the distance from the center of the atom to a given 

point on the grid.

To estimate the critical temperature of CrX3 monolayers, we used the method outlined by 

Torelli and Olsen,42 which derived a simple expression for Tc of 2D ferromagnets by fitting 

classical Monte Carlo results for different lattice types. The expression they derived is a 

solely a function of the first-principles obtained MAE and magnetic exchange constants. By 

calculating the magnetic exchange constants with DMC and the MAE from DFT+U, we 

were able to obtain an estimate of Tc for the monolayers.

JARVIS Workflow.

The full form of the 2D model spin Hamiltonian42,80 takes the form:
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ℋ = − ∑
i

D(Si
z)2 + J

2 ∑
i, i′

S i ⋅ S i′ + λ
2 ∑

i, i′
Si

zSi′
z

(3)

where the sum over i runs over the lattice of Cr atoms and i′ runs over the nearest Cr site 

of atom i due to a strong magnetic moment localized on Cr atoms. Due to the fact that 

long-range interactions have previously been shown to die out in 2D CrI3,80 we focused 

solely on the nearest neighbor interactions (our calculations consisted of a unit cell of two 

Cr atoms and six X atoms). From this unit cell (which is depicted in Figure 1), we adopt 

two magnetic orientations: ferromagnetic (FM), consisting of two spin-up Cr atoms, and 

antiferromagnetic (AFM), consisting of one spin-up Cr atom and one spin-down Cr atom. 

This nearest neighbor AFM magnetic configuration is commonly referred to as the Neel 

configuration.80

The first term in the spin Hamiltonian refers to the easy axis single ion anisotropy (z chosen 

as the off-plane direction). The second term describes the Heisenberg isotropic exchange, 

and the last term describes the anisotropic exchange. The sign convention is as follows: 

J > 0 favors FM interactions, D > 0 favors off-plane easy axis, and λ = 0 implies full 

isotropic exchange. We treat eq 3 classically, describing the spins S  collinearly as either S 
= Sx or S = Sz. By doing this, it possible to write the energy of the four possible magnetic 

ground states: (i) ferromagnetic off-plane (FM, z), (ii) antiferromagnetic off-plane (AFM, 

z), (iii) ferromagnetic in-plane (FM, x), and (iv) antiferromagnetic in-plane (AFM, x). The 

corresponding energy equations take the form:

EFM, z = − 2S2D − 3S2(J + λ) (4)

EAFM, z = − 2S2D + 3S2(J + λ) (5)

EFM, x = − 3S2J (6)

EAFM, x = + 3S2J (7)

where S = 3/2. This model has been extensively used to model 2D magnetism.5,80 However, 

the model assumes diagonal exchange interaction and does not include Dzyaloshinskii-

Moriya interactions, Kitaev interactions, or higher-order spin interactions. Recently, there 

have been attempts to modify this model with various types of spin interactions, but 

presently, the roles of the different terms are not completely understood. Most importantly, 

there are strong disagreements between calculations81,82 and experiments83 in regards to the 

magnitude of Kitaev interactions.

To obtain initial reference values for J, λ, and D, we performed self-consistent noncollinear 

DFT calculations in VASP (PAW). In these spin–orbit calculations, we rotated the easy 

axis by 90° and calculated the energy difference between the rotated and nonrotated 
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configurations separately for FM and AFM. Since the magnetic anisotropy calculations 

are more difficult to converge than the total energy, we adjusted certain parameters to 

allow for careful convergence. Specifically, the cutoff energy was increased by 100–200 

eV, the electronic convergence threshold was decreased to 1.0 × 10−7 eV, symmetry was 

turned off, and the well-converged k-point grid obtained from JARVIS was used.84 Upon 

comparison to the magnetic anisotropy energy results from other recent studies5,10,42 

that used even higher convergence criteria (cutoff energy, k-points, supercell size), our 

results are in excellent agreement, which further demonstrates that our results are carefully 

converged. These four DFT calculations were automated using the JARVIS workflow, where 

four distinct total energy values were calculated for each material. This workflow was 

benchmarked for 2D CrI3 (JVASP-76195), CrBr3 (JVASP-6088), CrCl3 (JVASP-76498), 

and CrF3 (JVASP-153105) for using multiple flavors of DFT (discussed in detail in DFT 

Benchmarking section).

Although performing these four noncollinear DFT+U calculations is a robust method for 

determining the magnetic exchange and anisotropy parameters of a 2D system, these results 

can be systematically improved with QMC simulations. QMC can improve the magnetic 

property predictions in two ways. First, one can variationally determine the optimal U value 

using DMC (discussed in further detail in the following section), and second, a statistical 

bound can be calculated for the J parameter by performing DMC simulations for the FM 

and AFM phases separately. It is important to note that these QMC energies are collinear 

(spin-polarized), in contrast to the previous noncollinear (spin–orbit) DFT calculations. 

Currently, spin–orbit implementation is limited in DMC. For this reason, we neglect the λ 
contribution when calculating J with QMC using eqs 4 and 5, since such a contribution can 

only be obtained from spin–orbit calculations. This does not have a significant impact the 

final result for J, since J ⪢ λ. As a result, we design a high-throughput workflow that allows 

us to variationally determine the optimal value of U using DMC, calculate a statistical bound 

on J by performing collinear DMC calculations for the FM and AFM phases, and use that 

optimal determined U to perform DFT+U simulations and extract the anisotropy parameters 

(D, λ), with the end goal of using these parameters to accurately estimate the 2D critical 

temperature. A full schematic of this workflow is depicted in Figure 2.

It is possible to estimate the critical temperature using the analytical method outlined in 

Torelli and Olsen42 with our obtained values of J, D, and λ. In Torelli’s work, classical 

Monte Carlo and random phase approximation (RPA) simulations were used to derive a 

simple expression for Tc that depends solely on lattice type and the ab initio exchange 

coupling constants. The analytical function for Tc takes the form:

Tc = Tc
Isingf(x) (8)

with

f(x) = tanh1 ∕ 4 6
Nnn

log(1 + γx) (9)
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where Nnn is the number of nearest neighbors and γ = 0.033 (dimensionless constant). 

Tc
Ising is the critical temperature for the standard Ising model, which can be written as 

Tc
Ising = S2JT c ∕ kB where T c is the fitted dimensionless critical temperature (1.52 for a 

honeycomb lattice). In cases where single ion anisotropy and anisotropic exchange are 

present, x = Δ/J(2S − 1), where Δ is the spin gap:

Δ = D(2S − 1) + λSNnn (10)

Postprocessing of the energies to determine J, D, λ, and, finally, Tc were also carried out 

within the JARVIS workflow.

RESULTS AND DISCUSSION

DFT Benchmarking.

Prior to incorporating QMC calculations in the workflow (as depicted in Figure 2), we 

performed reference DFT calculations using VASP (PAW) to benchmark the magnetic 

properties of monolayer CrX3 (X = I, Br, Cl, F). Performing these reference calculations in 

VASP is advantageous because it allows us to perform spin–orbit calculations, and the DFT 

calculations come at a much lower cost than those performed with the NC pseudopotentials 

in QE (due to higher cutoff energy). Due to these advantages, we performed these 

calculations with a variety of local and semilocal density functionals such as PBE, LDA, 

SCAN, r2SCAN (with and without a U correction of 2 eV), and HSE06, including spin–

orbit effects, to identify if such a choice made a real difference. Table 1 depicts the values 

of J, D, λ, and Tc calculated with each functional, using static geometry (depicted in Figure 

1) and structures taken from the JARVIS-DFT database, where the geometry was optimized 

with vdW-DF-OptB88. A scatter plot of the data presented in Table 1 is depicted in Figure 

S4. The reason we did not perform this workflow with vdW-DF-OptB88 is because spin–

orbit coupling is not compatible with vdW functionals such as vdW-DF-OptB88.63 Similar 

to previous DFT results, CrI3 has the highest degree of MA when compared to the other 

2D CrX3 materials. This is due to the larger contribution of spin–orbit coupling that can be 

attributed to the I atoms in the cell. Depending on functional, a wide variety of J is predicted 

for CrI3, ranging from 1.98 to 4.22 meV. This drastic difference in magnetic exchange 

demonstrates the shortcomings of local/semilocal density functionals being used to deal with 

correlated electronic systems. This wide, functional-dependent spread in J is also observed 

for 2D CrBr3, CrCl3, and CrF3 (see Table 1). Since the magnetic exchange is the driving 

force behind the magnitude of the Curie temperature, the estimation of J is crucial for an 

accurate Tc. For example, the LDA J value of 1.98 yields a Tc of 27.09 K, and the HSE06 J 
value yields a Tc of 48.63 K for CrI3. With respect to the experimental value of Tc = 45 K 

for CrI3,1 PBE+U, SCAN+U, and HSE06 are closest.

In terms of the MA of CrI3 (D and λ), there is a relatively consistent trend between density 

functionals, with the exception of SCAN and SCAN+U. For SCAN and SCAN +U, the 

in-plane easy axis is favored (D < 0) and for pure SCAN, a smaller value of λ combined 

with this negative D results in a negative spin gap (see eq 10) and a nonphysical critical 
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temperature in the Torelli and Olsen model. This negative spin gap behavior as a result 

of SCAN is not unique to CrI3. As seen in Table 1, this occurs for CrBr3 (calculated 

with SCAN+U) and CrF3 (calculated with SCAN). This behavior can be due in part to 

the numerical instabilities of the SCAN functional when being used to calculate properties 

of complex and correlated systems. This is even more evident when comparing SCAN 

and SCAN+U findings to r2SCAN and r2SCAN+U (r2SCAN is meant to correct the 

numerical instabilities in SCAN54) results, where we only obtain positive spin gaps and 

finite Tc (see Table 1). In recent literature, concerns about the performance of the SCAN 

functional for magnetic materials have been brought up, including the overmagnetization of 

transition metal solids, deeming SCAN inappropriate for open shell metallic ferromagnetic 

metals.85,86 However, SCAN has been reported to yield accurate properties across all bulk 

MnO2 polymorphs.87 Regardless of these successes and concerns, we believe it is important 

to report these SCAN results as a benchmark to compare DMC and other density functionals 

to.

In addition to performing this DFT/DFT+U workflow for a fixed geometry, we investigated 

the geometry dependence on the magnetic exchange and anisotropy. We did so by first 

relaxing the FM orientation of each structure with each respective functional (PBE, LDA, 

SCAN, r2SCAN, and +U for each) using spin-polarized DFT (as opposed to spin–orbit DFT, 

which comes at a much higher computational cost for geometric relaxation calculations). 

The relaxation using HSE06 was omitted due to the high computational expense of such 

calculations. Once the relaxed FM geometry was obtained, we fixed this geometry and 

performed the same noncollinear DFT (as Table 1) workflow to obtain the magnetic 

constants. The results of these calculations are presented in Table 2, and the relaxed 

structural parameters are given in Table S2. A scatter plot of the data presented in Table 

2 is depicted in Figure S5.

For the most part, geometry has little effect on the magnetic properties of each monolayer, 

which implies that the functional dependence is stronger. When comparing Tables 1 and 2 

for 2D CrI3, we observe that the J parameters and Tc values are consistent between whether 

the geometry is relaxed or the geometry is fixed to the vdW-DF-OptB88 (JARVIS) structure. 

The only exception of this is the LDA relaxed geometry, where the lattice parameters are 

severely underestimated (see Table S2) for CrI3, and subsequently, the values for J and 

Tc are much lower than expected (1.13 meV and 17.16 K). This LDA trend also occurs 

for monolayer CrBr3, CrCl3, and CrF3. For CrCl3, the lattice compression from the LDA 

relaxation causes a magnetic phase transition from FM favorable to AFM favorable (see 

negative J value in Table 2). This compression-induced phase transition has been reported 

theoretically for 2D CrCl3 in Dupont et al.6 Changes in the MA energy with respect to 

geometry are most prevalent for 2D CrCl3, where we see a shift from out-of-plane easy axis 

(D > 0) to in-plane easy axis (D < 0) favorability for PBE and r2SCAN. This sign change in 

D occurs while relaxing with the respective functionals for CrCl3, but there is only a small 

shift in Tc (between Tables 1 and 2) due to the fact that J is the driving force behind the 

critical temperature. For these reasons, we proceeded to use the vdW-DF-OptB88 relaxed 

geometry for subsequent QMC calculations in the next section. Further justification of using 

the vdW-DF-OptB88 geometry for QMC calculations stems from the fact that the geometry 

of 2D CrI3 calculated with vdW-DF-OptB88 is in identical statistical agreement with the 
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geometry calculated from a previous DMC study from Staros et al.39 (see Table S2). In 

addition, the lattice constant obtained with vdW-DF-OptB88 for 2D CrCl3 is in the closest 

agreement with the bulk lattice constant of layered CrCl388 (see also Table S2).

Although the structural parameters impact the magnetic properties of CrCl3 more 

significantly than CrI3, CrBr3, and CrF3 (see difference between Table 1 and Table 2), 

overall the functional dependence is stronger than the structural dependence. For comparison 

purposes, we present literature results5,7,42,80,82,89-92 for all four monolayers calculated with 

a variety of computational methods in Table S3. Similar to our own results, we see a large 

variability in J and Tc with respect to the computational method used, but we observe the 

same overall trends between each material. This is especially prevalent in works such as the 

one by Pizzochero et al.,92 which benchmarks the properties of CrI3 for a variety of DFT 

methods and multireference configuration interaction (MRCI) theory.

This high-throughput benchmarking with VASP is an important preliminary step in 

identifying the key areas where higher-order correlated methods such as QMC can be used 

to improve electronic and magnetic property prediction. The next section will detail the 

process of incorporating QMC calculations into the workflow (as depicted in Figure 2) and 

provide a deeper analysis of our QMC results.

QMC Results.

QMC calculations in this study (which consist of a VMC calculation to optimize the Jastrow 

parameters of the wave function, followed by a DMC calculation) require a well-converged 

trial wave function that is created via a DFT calculation. As opposed to the VASP DFT 

(PAW) calculations in the previous section, the DFT calculations detailed in this section 

(for additional benchmarking and creating the trial wave function) are performed using NC 

pseudopotentials (for additional information, see Computational Methods). DMC has the 

property of zero-variance, which means that as the trial wave function approaches the exact 

ground state (exact nodal surface), the statistical fluctuations in the energy reduce to zero.15 

There have been reported instances where various sophisticated and expensive methods have 

been used to optimize the nodal surface of the trial wave function.93-96 Similar to other 

DMC studies of magnetic materials,9,19,27,29,39,97 we employed a PBE +U approach where 

the Hubbard U value was used as a variational parameter to optimize the nodal surface using 

DMC. Since we can determine the optimal U parameter variationally using DMC, it makes 

our final results more reliable than solely using DFT+U, where the U parameter is arbitrarily 

chosen or fitted to experimental data. In addition, the DMC determined U value can be 

used for subsequent DFT +U calculations, giving a more reliable and less costly method to 

compute correlated material properties.

Figure 3 depicts the total energies of a 16 atom supercell (normalized per formula unit (f.u.)) 

of the FM orientation of 2D (a) CrI3 and (b) CrBr3, while Figure S6 depicts (a) CrCl3 

and (b) CrF3 calculated as a function of the U parameter, with the goal of variationally 

determining the optimal trial wave function. For convenience of presentation, the DMC 

energies are shifted by the lowest DMC energy obtained at the appropriate U value (U = 2 

eV for CrI3 and CrBr3, U = 1 eV for CrCl3, and U = 4 eV for CrF3). Unsurprisingly, the U 
value that yields the lowest energy for 2D CrI3 is 2 eV, which is similar to the result obtained 
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by Staros et al.39 U = 2 eV also yields the lowest energy for CrBr3, but the difference in 

energy between U = 2 eV, and other values of U are much larger than that of CrI3, indicating 

that the U dependence on the trial wave function is stronger for 2D CrBr3. As seen in Figure 

S6a,b, U = 1 eV produces an optimal wave function for CrCl3 and U = 4 eV produces an 

optimal wave function for CrF3. Although these U values differ from the U = 2 eV value for 

CrI3 and CrBr3, the energies at the minimum points are statistically identical to the energy 

produced at U = 2 eV for CrCl3 and CrF3.

Due to the fact that 2D CrI3 and CrBr3 have the highest predicted Tc out of the four 

CrX3 monolayers (at the DFT level, see Tables 1 and 2) and the fact that the largest 

discrepancy in predicted J and Tc occurs for CrI3 and CrBr3, we decided to focus primarily 

on these two materials for the remainder of this study. Therefore, we ran monolayer CrI3 

and CrBr3 through the full workflow depicted in Figure 2, with the goal of determining a 

statistical bound on J and Tc. In order to compute J, we had to perform calculations for both 

monolayers in the FM and AFM (Neel) configurations. We performed these calculations 

using NC pseudpotentials (as previously mentioned) and based on our results presented 

in Figure 3a,b, created the trial wave function with PBE+U (U = 2 eV). For the sake of 

completeness, we also determined that U = 2 eV yields the optimal wave function for 

the AFM phase of CrI3 and CrBr3 (see Figure S7), and this was used for all subsequent 

DMC calculations of the AFM phase. In addition, we performed these QMC simulations 

at a supercell size of 48 atoms (see Figure S3 for convergence details). Figure 4 depicts 

the calculated J parameter of 2D (a) CrI3 and (b) CrBr3 using PBE+U (red triangle) 

and DMC (blue square). It is important to note that the DMC simulations required to 

achieve an estimate for J (both FM and AFM calculations) require significant computational 

resources. Specifically, the DMC estimate of J required ~1.0 × 106 seconds/node to properly 

reduce the uncertainty (further details in the Supporting Information). With more substantial 

computational resources beyond our capabilities, the uncertainty could be further reduced. 

As expected with PBE+U, as the U value increases from U = 0 to 4 eV, the J parameter 

also increases linearly. In comparison to the PBE+U values, the average DMC-calculated J 
for CrI3 falls slightly under that of the PBE+2 value, with the error bar overlapping with the 

DFT values at U = [0, 1, 2] eV. For 2D CrBr3, the average value of J falls about 1 meV under 

the PBE+2 value, with the error bar overlapping with the DFT values at U = 0 and 1 eV. We 

report a DMC J value of 2.49(1.16) meV for 2D CrI3 and a value of 1.30(1.00) meV for 2D 

CrBr3. This average DMC value of 2.49(1.16) meV for CrI3 is in excellent agreement with 

the MRCI-calculated value of 2.88 meV reported in Pizzochero et al.92 (see Table S3).

In order to understand the implications of the DMC results presented in Figure 4, we went 

a step further and calculated the Ising temperature (as described in the JARVIS Workflow 

section) and Curie temperature (Tc, calculated with the Torelli and Olsen model). These 

results are presented in Table 3. It is important to reiterate that the PBE+U and DMC 

J (and subsequent Tc
Ising) values are determined from spin-polarized calculations and NC 

pseudopotentials, while the MA that is used in the Torelli and Olsen model to determine 

Tc is carried out using VASP with PAW pseudopotentials (from the DFT Benchmarking 

section). This combination of methods (out-lined in Figure 2) allows us to put a statistical 

bound on Tc for a given magnetic material. As seen in Table 3, we present Tc calculated 
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with various values of J (rows: PBE+U with varying U and DMC at U = 2 eV) and various 

values for the MA parameters (columns: using various functionals at the optimal U of 2 

eV, indicated by the superscript on Tc). It is clear from Table 3 that J is more of a driving 

force behind the variability of Tc than the MA. The largest difference in anisotropy (and 

therefore Tc) occurs for r2SCAN+2 for CrI3 and r2SCAN+2 and HSE06 for CrBr3, with 

respect to other functionals used to calculate anisotropy. Similarly to the data reported in 

Table 1, we observe a nonphysical Tc for CrBr3 with MA calculated with SCAN+2 (due 

to a negative spin gap). For 2D CrI3, we obtain a statistical bound of Tc = 43.56 K using 

the J obtained from DMC and the anisotropy parameters obtained from HSE06, which is in 

excellent agreement with the measured value of 45 K.1 For 2D CrBr3, we obtain a maximum 

value of Tc = 20.78 K using the J obtained from DMC and the anisotropy parameters 

obtained from LDA+2. For the sake of completeness, we calculated the Tc with a fixed J 
obtained from DMC and the anisotropy (D and λ) from a wider range DFT functionals, 

resulting in a sweep of possible values for Tc (a more detailed extension of Table 3). This 

thorough sensitivity analysis of the DMC-DFT-calculated critical temperature is given in 

Table S4, where we observe that the different values of anisotropy have a ~20% impact 

on the variability of the critical temperature for CrI3 and CrBr3. Interestingly, anisotropy 

obtained from PBE (no U correction) results in a slightly higher critical temperature for both 

monolayers (and bare LDA for CrBr3), but we find our maximum value estimates of Tc 

= 43.56 K and Tc = 20.78 K (for CrI3 and CrBr3 respectively) to be more reliable, since 

the anisotropy was obtained from hybrid and Hubbard corrected functionals. Although these 

critical temperatures are far below room temperature, it has been demonstrated that Tc can 

be increased by applying strain8 or by changing the monolayer substrate.2

As an additional benchmark, we extracted the total charge density from our DMC 

simulations of 2D CrI3 and CrBr3 (using a trial wave function at U = 2 eV and a 48 atom 

supercell). From the total charge densities, we were able to determine the spin densities (ρup 

− ρdown), which are depicted in the insets of Figure 5a,c for CrI3 and CrBr3 respectively. 

From this many-electron DMC approach, we observe that for both materials, the Cr atoms 

are highly spin-polarized, while the I and Br atoms are slightly polarized antiparallel with 

respect to the Cr atoms. We went a step further by plotting the radial averaged densities as a 

function of distance for Cr and I separately for CrI3 and Cr and Br separately for CrBr3. This 

gives us the spatial variations in total charge density (Figure S8) and spin density (Figure 

5). We benchmarked these radially averaged densities with PBE+U (U = [0, 1, 2, 3, 4] eV) 

using NC pseudopotentials in QE.

Figure S8a,c depicts the radially averaged total charge density of the Cr atoms as a function 

of distance for CrI3 and CrBr3 respectively. We observe that while the PBE+U results 

are almost identical for the Cr atoms for both materials, the total charge density of Cr is 

overestimated (mostly around the peak) with respect to the DMC total density. Although this 

PBE+U overestimation occurs for both CrI3 and CrBr3, it is much more apparent for CrBr3 

(see Figure S8c). For I and Br (Figure S8b,d)), the difference between the PBE+U and DMC 

total charge density is negligible. The larger discrepancy between DMC and PBE+U for the 

Cr atom (for both CrI3 and CrBr3) near the radial density peak (peak of d orbital) is due 

in part to the fact that DFT functionals tend to unsuccessfully capture 3d orbitals. Although 

this sizable difference between PBE+U and DMC occurs for the total charge densities, it has 
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been reported that various DFT methods can give a more accurate description of the spin 

density than the total charge density.38Figure 5 depicts the radially averaged spin densities 

for each atom of 2D CrI3 and CrBr3. For CrI3 (Figure 5a,b), we observe excellent agreement 

between the DMC and PBE+2 spin densities for Cr and I, indicating that the PBE+2 method 

does not only reproduce a correct Tc with respect to DMC but also correct spin density. In 

contrast, the results for CrBr3 are slightly different. Although it was determined that PBE+2 

yields the most optimal wave function for DMC (Figure 3b), the DMC spin density of Cr in 

CrBr3 is closest to the PBE+0 result (see Figure 5c). This is consistent with the trend of the 

DMC-calculated J (and Tc) overlapping more closely with PBE +0 for CrBr3 (see Figure 4b 

and Table 3). As for the Br atom in CrBr3, the DMC spin density is within the margin of 

error of that calculated with PBE+U for U = [0, 1, 2, and 3] eV. Most importantly for both 

materials (Figure 5b,d), the antiparallel polarization of I and Br with respect to Cr is present 

for DMC and all PBE+U results.

We went one step further and estimated the site-averaged atomic magnetic moments per Cr 

and I for 2D CrI3 and Cr and Br for CrBr3 by integrating the spin densities depicted in 

Figure 5. These tabulated magnetic moments are presented in Table 4. The results of Table 

4 are consistent with the spin density results presented in Figure 5, where we see that the 

DMC-calculated magnetic moment for CrI3 is closest to PBE +2, and the DMC-calculated 

magnetic moment of CrBr3 is closest to PBE+0. Since PBE+0 produces results closest to 

DMC, we decided to recalculate the Tc using the anisotropy from PBE+U (U = 0 eV). We 

find that this increases the DMC maximum value to Tc = 21.39 K, which is about 1 K larger 

than previously reported (see Table S4). By analyzing and integrating the spin densities, we 

obtain a clear picture of how the magnetization of each ion depends on the computational 

method used. These results serve as a many-body theoretical benchmark for the magnetic 

properties of 2D CrI3 and CrBr3 and give information on how to assess the accuracy of DFT 

calculations with various Hubbard corrections.

CONCLUSION

In this work, we designed and applied a workflow that combines DFT+U, QMC (VMC, 

DMC), and analytical models to estimate a statistical bound for the critical temperature 

of a 2D magnetic system. Such a workflow is intended to be integrated into the JARVIS 

framework. We chose monolayer CrX3 (X = I, Br, Cl, F) as a case study, since they have 

been experimentally realized and have a finite critical temperature. After extensive DFT+U 

benchmarking with several functionals, we deemed that 2D CrI3 and CrBr3 were worthwhile 

to run through the more computationally expensive DFT+U and QMC workflow, due to their 

higher Tc and higher degree of disagreement between DFT functionals. After variationally 

determining the optimal wave function for DMC (Hubbard U value used in the DFT wave 

function generation), we calculated a maximum value of 43.56 K for the Tc of CrI3 and of 

20.78 K for the Tc of CrBr3. We also extracted the spin density from our DMC results for 

Cr and I atoms separately for CrI3 and Cr and Br atoms separately for CrBr3 and provide a 

detailed comparison with DFT+U. In terms of the workflow, this procedure can be used for 

the investigation of future 2D magnetic systems that have a higher degree of complexity and 

electron correlation, such as transition metal oxides. The findings of this specific case study 

show the successes of the DMC method when applied to a 2D magnetic system and provide 
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a many-body theoretical benchmark for CrX3 monolayers that will guide experimentalists in 

characterizing 2D magnets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Top (a) and side (b) views of the atomic structure of monolayer CrX3 (X = I, Br, Cl, F). 

More detailed structural parameters are given in Table S2.
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Figure 2. 
Full high-throughput workflow proposed in this work to obtain the accurate magnetic 

properties of a 2D system using a combination of DFT+U and QMC.
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Figure 3. 
DMC-calculated total energies and subsequent standard error about the mean (indicated by 

error bars) of a 16 atom supercell (normalized per formula unit (f.u.)) of the ferromagnetic 

orientation of 2D (a) CrI3 and (b) CrBr3 calculated as a function of the U parameter used to 

variationally determine the optimal trial wave function. For convenience of presentation, the 

DMC energies are shifted by the lowest DMC energy obtained at the appropriate U value (U 
= 2 eV for CrI3 and CrBr3).
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Figure 4. 
Values of J for 2D (a) CrI3 and (b) CrBr3 as a function of U calculated with PBE+U (red) 

and DMC (blue, using PBE+2 to create the trial wavefuction). Both methods used NC 

pseudopotentials in the calculation, and a 48 atom supercell was used for each material. The 

standard error about the mean is indicated by error bars for DMC in blue.
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Figure 5. 
Radially averaged spin density (ρup − ρdown) as a function of distance, calculated with DMC 

and PBE+U (U = [0, 1, 2, 3, 4] eV) of (a) Cr and (b) I for 2D CrI3 and (c) Cr and (d) Br 

for 2D CrBr3. The insets of (a) and (c) depict the spin isosurface density of CrI3 and CrBr3 

respectively, where the isosurface value was set to 5 × 10−5 e/Å3. The standard error about 

the mean for DMC is indicated by error bars in green.
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Table 1.

Benchmarking Noncollinear DFT and DFT+U (U = 2 eV) Data Calculated with Various Functionals (PBE, 

LDA, SCAN, r2SCAN, HSE06) and the VASP Code with PAW Pseudopotentials for CrX3 Monolayers
a

CrI3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 2.83 0.192 0.173 38.33

PBE+U 3.70 0.075 0.161 43.60

LDA 1.98 0.139 0.126 27.09

LDA+U 2.80 0.054 0.147 34.21

SCAN 3.24 −0.129 0.019 -

SCAN+U 4.06 −0.069 0.216 46.23

r2SCAN 2.57 0.145 0.049 29.00

r2SCAN+U 3.08 0.146 0.044 32.91

HSE06 4.22 0.068 0.173 48.63

CrBr3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 2.14 0.035 0.032 20.36

PBE+U 2.85 0.020 0.032 24.28

LDA 1.44 0.041 0.031 15.23

LDA+U 2.45 0.025 0.031 21.82

SCAN 1.63 0.083 −0.016 13.40

SCAN+U 1.83 0.016 −0.052 -

r2SCAN 1.85 0.037 0.013 16.21

r2SCAN+U 1.98 0.024 0.016 16.68

HSE06 2.16 0.011 0.014 16.17

CrCl3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 1.20 0.002 0.007 8.44

PBE+U 2.04 −0.003 0.009 12.44

LDA 0.49 0.011 0.002 4.14

LDA+U 1.87 0.009 0.002 10.69

SCAN 0.94 0.032 −0.003 7.64

SCAN+U 1.33 0.005 0.004 8.57

r2SCAN 1.42 0.007 0.004 9.33

r2SCAN+U 1.80 0.007 0.004 11.26

HSE06 1.89 0.006 0.000 8.91

CrF3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 1.53 0.055 0.000 13.45

PBE+U 1.33 0.053 −0.001 11.91

LDA 1.87 0.068 0.003 16.83

LDA+U 1.63 0.065 0.002 14.91

SCAN 1.41 −0.028 −0.044 -
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SCAN+U 1.29 0.048 −0.013 8.97

r2SCAN 1.66 0.023 0.000 11.38

r2SCAN+U 1.44 0.050 −0.002 12.22

HSE06 1.02 0.053 −0.001 9.79

a
Values for J, D, λ, and Tc are given for each functional and material. It is important to note that the geometry in these calculations is fixed to the 

geometry obtained from the JARVIS-2D DFT database (relaxed with vdW-DF-OptB88).
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Table 2.

Benchmarking Noncollinear DFT and DFT+U (U = 2 eV) Data Calculated with Various Functionals (PBE, 

LDA, SCAN, r2SCAN, HSE06) and the VASP Code with PAW Pseudopotentials for CrX3 Monolayers
a

CrI3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 2.80 0.211 0.176 38.42

PBE+U 3.84 0.077 0.182 46.06

LDA 1.13 0.149 0.117 17.61

LDA+U 2.54 0.083 0.148 32.52

SCAN 2.73 0.041 0.071 28.61

SCAN+U 4.00 −0.089 0.167 41.69

r2SCAN 2.58 0.142 0.057 29.48

r2SCAN+U 3.17 0.345 −0.077 30.72

CrBr3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 2.48 0.041 0.036 23.53

PBE+U 3.12 0.016 0.044 27.52

LDA 0.13 0.040 0.028 2.51

LDA+U 2.01 0.022 0.028 18.37

SCAN 1.73 0.050 0.018 16.64

SCAN+U 1.89 0.061 0.011 17.56

r2SCAN 1.95 0.037 0.020 17.76

r2SCAN+U 2.01 0.023 0.020 17.29

CrCl3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 1.78 −0.022 0.026 13.49

PBE+U 2.41 −0.029 0.028 16.77

LDA −1.46 0.009 0.002 -

LDA+U 1.26 0.006 0.001 7.48

SCAN 1.04 0.041 0.012 10.64

SCAN+U 1.26 0.032 −0.023 -

r2SCAN 1.57 −0.012 0.024 12.67

r2SCAN+U 1.92 −0.018 0.026 14.63

CrF3
Functional J (meV) D (meV) λ (meV) Tc (K)

PBE 1.74 0.058 0.001 15.12

PBE+U 1.44 0.057 −0.001 12.86

LDA 1.12 0.067 0.003 11.41

LDA+U 1.55 0.061 −0.001 13.86

SCAN 1.49 0.025 −0.007 8.52

SCAN+U 1.22 0.044 −0.006 9.76

r2SCAN 1.68 0.037 0.008 14.38

r2SCAN+U 1.42 0.049 0.020 14.45
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a
Values for J, D, λ, and Tc are given for each functional and material. For these calculations, the geometry was relaxed using each respective 

functional, using collinear spin-polarized DFT for the FM orientation of each material. After this preliminary relaxation, the geometry was fixed 
and used in the DFT workflow to calculate Tc.
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Table 4.

Site-Averaged Atomic Magnetic Moments (in μB) of Cr and I for 2D CrI3 and Cr and Br for 2D CrBr3, 

Estimated by Integrating the Spin Density for DMC and PBE+U Results
a

CrI3
Method MCr (μB) MI (μB)

PBE+0 3.06 −0.08

PBE+1 3.15 −0.1

PBE+2 3.25 −0.13

PBE+3 3.34 −0.16

PBE+4 3.43 −0.18

DMC 3.21(5) −0.13(5)

CrBr3
Method MCr (μB) MBr (μB)

PBE+0 3.01 −0.03

PBE+1 3.07 −0.05

PBE+2 3.14 −0.07

PBE+3 3.2 −0.09

PBE+4 3.26 −0.11

DMC 2.96(5) −0.07(5)

a
DMC uncertainties are given in the parentheses.
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