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Correlated evolution of social organization
and lifespan in mammals

Pingfen Zhu 1,8, Weiqiang Liu 1,2,8, Xiaoxiao Zhang 1,2, Meng Li 1,
Gaoming Liu1, Yang Yu1,3, Zihao Li 1,2, Xuanjing Li1,2, Juan Du1,2, Xiao Wang1,
Cyril C. Grueter 4,5,6, Ming Li 1,7 & Xuming Zhou 1

Discerning the relationship between sociality and longevity would permit a
deeper understanding of how animal life history evolved. Here, we perform a
phylogenetic comparative analysis of ~1000 mammalian species on three
states of social organization (solitary, pair-living, and group-living) and long-
evity. We show that group-living species generally live longer than solitary
species, and that the transition rate froma short-lived state to a long-lived state
is higher in group-living than non-group-living species, altogether supporting
the correlated evolution of social organization and longevity. The comparative
brain transcriptomes of 94 mammalian species identify 31 genes, hormones
and immunity-related pathways broadly involved in the association between
social organization and longevity. Further selection features reveal twenty
overlapping pathways under selection for both social organization and long-
evity. These results underscore amolecular basis for the influence of the social
organization on longevity.

Extant mammals exhibit a wide diversity of grouping arrangements or
social organizations, including solitary living, pair-living, and various
forms of group-living1, e.g., multilevel society (e.g., Rhinopithecus
spp.)2 and eusociality (e.g., Heterocephalus glaber)3. Mammals also
show an extreme 100-fold variation in maximum lifespan (or long-
evity), ranging from ~2 years in shrews (e.g., Sorex spp.) to more than
200 years in bowhead whales (Balaena mysticetus)4. The evolutionary
relationships between sociality and longevity in mammals are
complex5 yet important for understanding evolutionary strategies, i.e.,
life history diversity across organisms. In mammals, most of the evi-
dence for links between sociality and longevity comes from single
species. For example, affiliative social bonds, which are pervasive
among group-living species, can extend a species’ lifespan by
decreasing mortality and enhancing health and survival outcomes. In
humans, strong social relationships can reduce the risk of physiolo-
gical dysregulation6. With respect to other mammals, female chacma

baboons (Papio ursinus) with strong and stable social bonds live longer
than thosewithweak connections7,8; similar results havebeen reported
in rhesus macaques (Macaca mulatta)9. Conversely, a negative corre-
lation between affiliative relationships and longevity has been repor-
ted in female yellow-bellied marmots (Marmota flaviventer)10. Even
though a small number of cross-species studies have tested the asso-
ciation between sociality and aging or longevity, they primarily
focused on eusocial species11–13 and cooperatively breeding species14,15.
Therefore, it remains unclear whether associations between longevity
andother types of social organization are a common feature across the
mammalian phylogeny.

In addition, the molecular mechanisms underlying the evolu-
tionary association between social organization and longevity are not
fully understood. Previous studies have suggested some possible
processes, e.g., stress reduction, parasite infections, and pace of life
(fast-slow continuum)16. According to the stress-buffering hypothesis,
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strong social bonds or social support can reduce adverse environ-
mental stimuli or stress and enhance health and longevity in humans17.
Social organization can also influence the spread of parasites in the
population. For example, group-living species are vulnerable to
infectious diseases because of the high social contact rates and close
social interactions among individuals, but social species may have
evolved a strong immune defense tominimize disease risk and protect
themselves against pathogens18. Onemorepossible link between social
organization and longevity is the pace of life, which reflects an
organism’s strategic allocation of resources between survival and
reproduction. Species with a fast life history are characterized by rapid
development, high reproductive rates, and short lifespan, whereas
species with a slow life history are characterized by slow development,
low reproductive rates, and a long lifespan19. Given that sociality and
fitness are positively associated in some mammals20–22 and social
bonds require major time investments before they yield survival ben-
efits, social bonds are expected to have evolved in species with a slow
life history and a longer lifespan23. In summary, we are only beginning
to understand the evolution and the molecular mechanisms under-
lying the diversity of social organizations24–28 and longevity29,30.

In this work, we compare models with different evolutionary
conjectures between social organization (i.e., solitary, pair-living, and
group-living)31 and longevity across ~1000 mammals using a Bayesian
framework.Moreover, we conduct a comparative brain transcriptomic
analysis of 94 mammals to detect candidate genes and pathways
associated with social organization and longevity, after controlling for
body mass, ecological factors, life history traits, and phylogenetic
relationships. We show that group-living species lived longer than
solitary species and identify 31 genes, hormones, and immunity-
related pathways involved in the correlated evolution of social orga-
nization and longevity.

Results
Evolutionary pathways for social organization and longevity
To assess the evolutionary transitions among social states and evolu-
tionary pathways for longevity, we collected data on the social orga-
nization for as many extant mammalian species as possible through a
comprehensive literature survey. We assigned 974 species into three
types of social organization: solitary (n = 497), pair-living (n = 115), and
group-living (n = 412). Fifty species had more than one state (Fig. 1a,
details of classification in “Methods”). Data on body mass and long-
evity (defined by the maximum lifespan of a given species) for these
species were also collected (Supplementary Table 1 and Supplemen-
tary Data 1). We first used phylogenetic comparative methods to cal-
culate thephylogenetic signal of social organization and longevity. The
maximum likelihood estimates of Pagel’s λ for the three social states
was 0.94 when taking into account social polymorphism for a given
species (phylogenetic signal test: n = 974, logλ = −788.03,
log0 = −1344.67, P <0.001) and was 0.94 when using the uni-state
species subset (n = 924, logλ = −535.38, log0 = −938.78, P <0.001).
Pagel’s λ for longevity was 0.97 (n = 974, logλ = 319.18, log0 = 1475.26,
P <0.001), illustrating that closely-related taxa generally have similar
social organizations and longevity.

To determine the evolutionary pathways connecting the three
states of social organization within mammals, we tested four models
that allowed the transition rates between any of two states to vary
differently. These four alternative models were: (a) the equal rates
model (ER), in which all transition rates were the same; (b) the
increasing complexity model (IC), which allowed transitions between
solitary and pair-living, pair-living and group-living, but not solitary
and group-living; (c) the all-rates-different model (ARD) or parameter-
rich model24, in which all transition rates were different; and (d) the
reversible-jumpMarkov chainMonte Carlo-derivedmodel (RJ-MCMC),
which is derived from the data using the reversible-jump procedure in
Bayes Traits and has the highest posterior support32 (Supplementary

Fig. 1a–d, Supplementary Table 2). Model comparisons showed that
the ARD model was the best-supported model, which was significant
against the RJ-MCMC model (Log BF = 9.24), the ER model (Log BF =
33.36), and the IC model (Log BF= 71.70) (Table 1). The ARD model
showed that the transition rates varied across the three states of social
organization (Supplementary Fig. 2a). For example, the transition rate
from pair-living to solitary was 14 times higher than from solitary to
pair-living (qpair-living-solitary = 4.00 ± 1.55 × 10−3; qsolitary-pair-living = 0.29 ±
1.50× 10−4), suggesting that the pair-living statewas relatively unstable.

We then reconstructed the evolutionary pathway of longevity
by constructing three alternative models (i.e., ER model, ARD
model, and RJ-MCMC model) (Supplementary Fig. 1e–g). Com-
parisons of these three models showed that the RJ-MCMC and ARD
models were better supported, on the basis of Bayes factors (BF),
than the ER model (Table 1 and Supplementary Table 3). The
average transition rate from a long-lived state to a non-long-lived
state (qabsolute = 2.09 ± 3.85 × 10−4; qrelative = 1.71 ± 6.23 × 10−4) was
about four times greater than that from a non-long-lived to a long-
lived state (qabsolute = 0.54 ± 1.42 × 10−4; qrelative = 0.53 ± 1.13 × 10−4)
(Supplementary Fig. 2b, c).

Correlated evolution of social organization and longevity
We conducted phylogenetic ANOVA analyses to estimate differences
in longevity among the three states of social organization while con-
trolling for phylogenetic non-independence among species. Longevity
was significantly different between the solitary state and the group-
living state, with group-living species showing higher longevity
than solitary species (phyloAVOVA: nmulti-states = 974, t = 12.40,
P-adjust =0.04; nuni-state = 924, t = 12.28, P-adjust = 0.02, Fig. 1b). Since
longevity is correlated with adult body mass (Spearman’s rank test:
r =0.71, P < 2.20 × 10−16), we alsomeasured relative longevitywhichwas
calculated using the body mass adjusted residuals with the equation
from the AnAge database (“Methods”). Similar results were obtained
for relative longevity (phyloAVOVA: nmulti-states = 974, t = 12.01,
P-adjust = 4.80× 10−2; nuni-state = 924, t = 11.94, P-adjust =0.02, Fig. 1c).
In addition, we conducted MCMCglmm models to control for phylo-
geny, body mass and factors related to external mortality: activity
(diurnal, nocturnal or others), lifestyle (terrestrial, aerial, arboreal,
semi-arboreal, freshwater, marine, or terrestrial-marine), and fossori-
ality (non-fossorial or subterranean). The results consistently showed
that pair-living or/and group-living species lived longer than solitary
species when using multi-states of the social organization dataset
(MCMCglmm: nmulti-states = 947, pair-living vs. solitary, post mean =
0.10, pMCMC = 1.11 × 10−3; group-living vs. solitary, post mean = 0.06,
pMCMC < 6.00 × 10−4; pair-living and group-living, post mean = 0.06,
pMCMC = 0.03) and uni-state of the social organization dataset
(nuni-state = 897, pair-living vs. solitary, post mean = 0.10, pMCMC <
6.00 × 10−4; group-living vs. solitary, post mean = 0.06, pMCMC =
1.11 × 10−3). The results of activity, lifestyle and fossoriality are shown in
Supplementary Table 4.

To evaluate whether changes in longevity depended on social
organization, we compared the independent and dependent RJ-MCMC
models of three combinations of variables: non-solitary/solitary and
absolute short-lived/long-lived (>26 years), non-pair-living/pair-living
and absolute short-lived/long-lived as well as non-group-living/group-
living and absolute short-lived/long-lived. The results favored the
dependent model for both solitary (Log BF= 3.18, Table 2 and Sup-
plementary Table 5) and group-living (Log BF = 9.58, Table 2 and
Supplementary Table 6), suggesting the existence of correlated evo-
lution between social organization and longevity across the mamma-
lian phylogeny. We also considered the effect of taxonomic sampling
and the different classifications of long-lived species on the correlated
evolution analyses. Random taxon sampling (i.e., randomly selecting
50 to 95% of the total number of species at a 5% interval) and repeated
comparisons of independent and dependent RJ-MCMC models
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provided further support for the correlated evolution of solitary living
and longevity (>26 years, 51% ofmodel comparisons), as well as group-
living and longevity (>26 years, 63% of model comparisons, Supple-
mentary Fig. 3a). Consistent with these findings, random taxon sam-
pling andmodel comparisons with twodifferent cut-offs for long-lived
species (>17 or >35 years), suggested the correlation between social
organization and longevity. There was a correlation between solitary
living and longevity when using the 17-year cut-off (79% of model
comparisons) and 35-year cut-off (52% of model comparisons); and

also a correlation between group living and longevity when using the
35-year cut-off (98% of model comparisons, Supplementary Fig. 3b, c).
In addition, when taking the uncertainty of phylogenetic relationships
into account and using a different phylogenetic tree33, the correlated
evolution between solitary and longevity was supported by the ana-
lyses with the 26-year and the 17-year cut-off; the correlated evolution
between group-living and longevity was supported by the analyses
with the 17-year and 35-year cut off (nmulti-states = 969; Supplementary
Table 7).
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Fig. 1 | Evolutionary analyses of social organization and longevity in 974
mammalian species. a Phylogenetic distributionof social organization, adult body
mass, and longevity (n = 974). The inner circle represents a species’ social organi-
zation: solitary (blue), pair-living (orange), and group-living (red). The middle layer
indicates the absolute adult body mass (g) and the outer layer indicates the long-
evity (years); both variables were log10 transformed. Colors of shadings distinguish
different mammals’ orders. b Difference in absolute longevity and c relative long-
evity (residuals of longevity, which was adjusted for body mass) across the three
social organization states (solitary: n = 491, pair-living:n = 65, group-living: n = 368).
We accounted for the effects of phylogenetic non-independence among species
using a Phylogenetic ANOVA. Two-sided and Hommel method adjust P values are
reported. The white dot represents the median in two violin plots, and the black

box represents interquartile ranges (IQRs), i.e., the 25th and 75th percentiles. The
whiskers extend up to the largest value within 1.5-fold IQR. Species numbers (n) are
indicated ineach social organization, respectively. Correlated evolutionanalysis for
absolute short-lived (cyan) or long-lived state (purple): d non-solitary or solitary
(blue); e non-pair-living or pair-living (orange); f non-group-living or group-living
(red). d and f demonstrate correlated evolution. The number of species used in the
analyses was n = 974. Arrows depict the likelihood of a transition between states,
and their thickness corresponds to the magnitude of the various rates. Numbers
indicate the transition rate across ten independent runs, and data are presented as
mean ± SD. Silhouette images of animals are from PhyloPic database [http://
phylopic.org/]. Source data are provided as a Source data file.
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We then attempted to determine whether transitions to a long-
lived state were more likely in group-living than solitary species.
Model estimation revealed that the transition rate from a short-lived
state to a long-lived state was higher for non-solitary than solitary
species (qnon-solitary = 12.44 ± 1.84 × 10−3; qsolitary = 2.77 ± 3.79 × 10−3),
and higher for group-living than non-group-living species (qgroupliving =
11.86 ± 1.55 × 10−3; qnon-group-living = 2.86 ± 9.89 × 10−4; Fig. 1d–f). This
result is consistent with the prediction that group-living species are
more likely to be long-lived. We then tested if transitions to a group-
living state were different for long-lived and short-lived species;
we found that the transition rate from a solitary to a non-solitary
state was the same in long-lived species and short-lived species
(qlong-lived = 12.47 ± 2.52 × 10−3; qshort-lived = 12.44 ± 2.37 × 10−3; Fig. 1d).
The transition rate from a non-group-living state to a group-living state
was also the same in long-lived species and short-lived species
(qlong-lived = 11.86 ± 1.53 × 10−3; qshort-lived = 11.86 ± 1.54 × 10−3; Fig. 1f),
suggesting that longer longevity does not promote the formation of
group-living. In addition, the correlated evolution of social organiza-
tion and longevity was also supported when body mass was taken into
account (Table 2; residuals of longevity > 1.38, solitary: Log BF = 17.68;
group-living: Log BF = 8.28, Supplementary Fig. 4a–c). The random
taxon sampling of different classifications of relative long-lived species
further supported the correlated evolution between solitary living and
longevity (residuals of longevity >1.38, 92% of model comparisons;

residuals of longevity >1.83, 98% of model comparisons; Supplemen-
tary Fig. 5a–c), and the correlated evolution between group living and
longevity (residuals of longevity >1.38, 55% of model comparisons;
residuals of longevity >1.83, 95% of model comparisons; Supplemen-
tary Fig. 5a–c). Similarly, when a different phylogenetic tree and dif-
ferent cut-offs of the residuals of longevity were used, the correlated
evolution between social organization and relative longevity was also
supported (nmulti-states = 969; Supplementary Table 7).

In addition, to investigate whether longevity favors any social
organization transformation, we compared the independent and
dependent RJ-MCMC models using species with a uni-state of social
organization. The results supported that social organization transfor-
mation favors longer life during solitary transit to the group-living state
rather than from solitary transit to pair-living, or from pair-living transit
to the group-living state (Supplementary Table 8). The transition rate
from short-lived to long-lived species was higher in group-living
than solitary species (absolute longevity: qsolitary = 2.98 ± 6.97 × 10−3;
qgroup-living = 10.45 ± 5.29 × 10−3; relative longevity: qsolitary = 3.37 ±
8.70 × 10−3; qgroup-living = 10.30 ± 9.51 × 10−3, Supplementary Fig. 6a–f).

Gene expression of social organization and longevity
To identify genes that could underpin the correlated evolution of
social organization and longevity, we generated brain transcriptomics
of 94 mammals belonging to 14 orders, 39 families, and 67 genera
(Fig. 2a, SupplementaryData 2, “Methods”). Specifically, 57% of species
and62%of samples (166 samples of 54 species)werenewly collected in
this study. The sampled species were assigned to three states of social
organization (solitary, n = 26; pair-living, n = 11; group-living, n = 65);
eight species had more than one state. The sampled species also
covered a longevity range from 3.2 years in Chinese mole shrew
(Anourosorex squamipes) to 122.5 years in Homo sapiens (Fig. 2a, Sup-
plementary Data 3, and Supplementary Table 9). Using the human
coding sequences as a reference, we employed a reciprocal-blast
approach to identify the orthologous gene set. The orthologous genes
that were shared by >70% of the total number of species (i.e., 66 of
94 species)were selected for subsequent analyses (“Methods”). Finally,
gene expression for 13,402 orthologous geneswasmeasured across all
brain samples. We then used MCMCglmm models to identify genes
whose expression significantly correlated with any of the social orga-
nization states; these models also controlled for phylogenetic rela-
tionships and other confounding factors, including adult body mass,
activity (nocturnal, diurnal, and other), diet (carnivore, herbivore, and
omnivore), and lifestyle (non-aerial and aerial). Hundreds of genes
were significantly associated with solitary living (up: 366 genes, down:
254 genes), pair-living (up: 393 genes, down: 66 genes), and group-
living (up: 162 genes, down: 321 genes) (Supplementary Fig. 7a–f,
Supplementary Data 4). There were three overlapping genes among
the three states of social organization: ATP1A2, ALDH1L2, and WDFY1.

Table 2 | Likelihoods of dependent and independent models estimated for the correlated evolution of social organization and
longevity

Social states Longevity states Mean likelihood of model Log BF Correlated evolution

(no/yes) (no/yes) Dependent Independent

Solitary Absolute long-lived −795.02 −796.61 3.18 Yes

Pair living Absolute long-lived −643.81 −637.58 −12.46 No

Group living Absolute long-lived −775.78 −780.57 9.58 Yes

Solitary Relative long-lived −768.18 −777.02 17.68 Yes

Pair living Relative long-lived −627.74 −622.30 −10.88 No

Group living Relative long-lived −756.35 −760.49 8.28 Yes

n = 974. Absolute long-lived species: longevity >26 years. Relative long-lived species: the residual of longevity >1.38. The residual of longevity for each species was calculated using the bodymass
adjusted residuals using the equation from the AnAge.

Table 1 | Comparison of evolutionary models for social orga-
nization and longevity

Trait Model Rank Parameters Mean
likelihood

Log BF

Social
organization

ARD 1 6 −555.27 –

RJ-
MCMC

2 5 −559.89 9.24

ER 3 1 −571.95 33.36

IC 4 4 −591.12 71.70

Absolute
lifespan

ARD 1 2 −346.26 –

RJ-
MCMC

1 2 −346.26 –

ER 2 1 −361.43 30.34

Relative
lifespan

ARD 1 2 −329.61 –

RJ-
MCMC

1 2 −329.61 –

ER 2 1 −339.16 19.10

n = 974. Log BF = 2 × (log marginal likelihood complex model – log marginal likelihood simple
model). The simplemodel is favoredwhen LogBF < 2, while there is positive evidence to support
the complex model when Log BF > 2 (strong evidence, 5–10; very strong evidence, >10)32.
ARD all-rates-different model, RJ-MCMC reversible-jump Markov chain Monte Carlo-derived
model, ER equal rates model, IC increasing complexity model.
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We also detected genes that were shared by two states (solitary-pair-
living: 21 genes; solitary-group-living: 284 genes; pair-living-group-liv-
ing: 14 genes, Supplementary Fig. 7f). We detected 262 genes whose
expression was significantly correlated with longevity; this was sup-
ported by all four different models in the MCMCglmm analyses
(“Methods”, Supplementary Fig. 8, Supplementary Data 5; see Sup-
plementary Data 6 for the results of each model).

In total, we found 31 genes whose expression levels were sig-
nificantly associated with both social organizations and longevity
(Fig. 2b, Supplementary Data 7). The pathway topology analysis of

these genes using the Reactome platform34,35 revealed two strong
clusters. The first cluster included immune-related genes (Fig. 2c).
Nine genes (i.e., UBL7, TNNT3, XRCC6, ATP2A2, NPHS1, KALRN, C1QC,
MCL1, and ZFP36) that are involved in the innate immune response36.
Gene C1QC (MCMCglmm: solitary, post mean = 1.16, pMCMC = 0.04;
longevity, post mean = −2.33 ±0.05, pMCMC = 0.03 ± 7.17 × 10−3) par-
ticipates in encoding a complex heterotrimer C1q that plays a vital
recognition role in the complement pathway. C1qhas diverse biological
functions, including complement activation, innate immune defense,
cellular regulation, reproduction, development and neurodegenerative
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Fig. 2 | Genes and pathways whose expression was correlated with social
organization and longevity in 94 mammalian species. a Species (n = 94) with
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body mass, and longevity) used in the MCMCglmm analyses. Colorful shadings
display different mammals’ orders. Silhouette images of animals are from PhyloPic
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overlapping genes across solitary, pair-living, group-living, and longevity. cClusters
according to the function of 31 genes that were significantly associated with social
organization and longevity. Each node represents a pathway from the Reactome
database34,35; pathways inwhich significant geneswere involved are colored brown.
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significant gene (XRCC6) thatwas downregulated in solitary species, upregulated in
group-living species and also positively correlated with lifespan; the regression
lines were generated from the linear regression model. Purple range display 95%
confidence interval around the smooth line. Coefficients (post mean) and P-values
(pMCMC) from the MCMCglmm analyses are also shown. The number of species
used in the MCMCglmm was n = 94. f A heat map showing pathways that were
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living; GL: group-living;ML1–ML4: longevity inmodel 1 tomodel 4 (see “Methods”).
Color code for social organization and longevity: blue = solitary; orange = pair-
living; red = group-living; purple = lifespan. Source data are provided as a Source
data file.

Article https://doi.org/10.1038/s41467-023-35869-7

Nature Communications |          (2023) 14:372 5

http://phylopic.org/


disorders37,38. The well-known immune gene ZFP36 (MCMCglmm: soli-
tary, post mean = 1.07, pMCMC = 0.02; longevity, post mean =
2.21 ± 0.07, pMCMC = 0.02 ± 5.05 × 10−3) modulates anti-viral immunity
by controlling T cell activation39 and protects against inflammatory
diseases through regulating inflammatory cytokines, such as TNF-α40,41.
ZFP36 also plays a role in neuroprotection and inhibits neuronal
apoptosis42. Another gene of interestwasXRCC6 (MCMCglmm: solitary,
post mean = −1.50, pMCMC = 3.33 × 10−3, Fig. 2d; group-living, post
mean = 1.39, pMCMC = 4.44 × 10−3, Fig. 2e; longevity, post mean =
2.27 ±0.05, pMCMC=0.01 ± 4.37 × 10−3), which encodes subunit p70 of
the p70/p80 autoantigen. A recent study has shown that a splicing
variant in XRCC6 may cause autism, a disorder that causes significant
social, communication, and behavioral challenges43. Knockout of
XRCC6 decreases lifespan in mice44 and the high expression of XRCC6
leads to a longer average lifespan in humans45. Thus, this gene likely
plays a role in both longevity and social organization.

The secondcluster of geneswhoseexpressionwas correlatedwith
longevity and social organization consisted of genes involved in the
regulation of hormones, neural systems, and signal transduction
(Fig. 2c), e.g.,MTM1, SLC29A2,ATP2A2, KALRN, RHOBTB2, SLC6A19, and
MCL1. Some of these genes are suggested to play a role in social
behavior. For instance, the KALRN gene (MCMCglmm: group-living,
postmean = −1.16, pMCMC=0.02; longevity, postmean = −2.40 ± 0.11,
pMCMC = 0.02 ± 6.93 × 10−3) produces several alternatively spliced
forms of kalirin, which is essential for synaptic connections, spine
development, cognition, learning, fear conditioning and social
behavior46. Knockout of this gene in mice caused working memory
deficits, locomotor hyperactivity and reduced social behavior47,48.
Gene SLC29A2 (MCMCglmm: pair-living, post mean= −1.65, pMCMC =
0.02; longevity, post mean = 2.30±0.05, pMCMC = 0.04 ± 3.18 × 10−3)
is linked to the development of depression. Knockout of the ATP2A2
(MCMCglmm: pair-living, post mean = −1.60, pMCMC = 0.02; long-
evity, post mean = 2.42 ±0.21, pMCMC = 0.03 ±0.02) impaired fear
memory and changedbehaviors innovel environments49. Nonetheless,
the contribution of these genes to longevity is currently unknown and
worthy of further exploration.

To gain an overall view of gene expression related to social
organization and longevity, we employed amodified summary statistic
approach (i.e., the polysel method, “Methods”). This approach identi-
fies pathways that show accumulated correlation rather than outlier
genes50,51. The sum of the posterior means (generated from
MCMCglmm models) of the genes in each pathway was calculated as
the SUMSTAT score and compared to a null distribution of random
gene sets. We found 56, 56, and 45 pathways showing significant cor-
relations with solitary, pair-living, and group-living species compared
with non-solitary, non-pair-living, and non-group-living species,
respectively (Supplementary Fig. 9, Supplementary Data 8). We also
identified 14 longevity-associated pathways that occurred in four
models (Supplementary Fig. 10, Supplementary Data 9; see Supple-
mentary Fig. 11 and Supplementary Data 10 for the results of each
model). A total of 10 pathways showed accumulated correlations with
both social organization and longevity (Fig. 2f, SupplementaryData 11).
Among them, the hormones-related pathway “G-protein-coupled
receptors (GPCRs), class B secretin-like”was positively associated with
both solitary living and longevity, but negatively associatedwith group
living (polysel: solitary, score = 6.18, P = 4.71 × 10−2; group-living,
score = −6.04, P = 3.96 × 10−2; longevity, score = 7.15, P = 3.83 × 10−2).
The secretin-like family of GPCRs include receptors for polypeptide
hormones, such as secretin, parathyroid hormone and vasoactive
intestinal peptide, which play vital roles in physiological homeostasis,
nervous diseases, the stress response and longevity52–54. Acting as a
catalyst in steroid hormone synthesis55, the cytochrome P450-related
pathway has been enriched (“drug metabolism - cytochrome P450”,
polysel: pair-living, score = 18.52, P = 1.40 × 10−4; longevity, score =
16.00 ±0.04, P =0.02 ± 1.06 × 10−3). Themutation of cytochrome P450

has been shown to increase longevity in Caenorhabditis elegans56,57. In
addition, cytochromes P450 regulate inflammation and infection58 and
the generation of eicosanoids (the “eicosanoid synthesis” pathway,
polysel: solitary, score = 7.94, P = 7.71 × 10−3; group-living, score =
−9.07, P = 7.77 × 10−4; longevity, score = 8.11, P = 4.68 × 10−2). Eicosa-
noids have a broad range of functions, including reproduction, phy-
siological homeostasis, and cell growth regulation; in particular, they
play a role in regulating immune response and inflammatoryprocesses
in various diseases59–62. Another immunity-related pathway “immu-
noregulatory interactions between a lymphoid and a non-lymphoid
cell” was negatively correlated with longevity (polysel: longevity,
score = −24.20±0.28, P = 7.78 × 10−3 ± 1.24 × 10−3). Interestingly, this
pathway is downregulated in solitary species, but upregulated in
group-living species (solitary, score = −11.19, P =0.01; group-living,
score = 11.99, P = 5.52 × 10−3), and may be an immune response to ele-
vated pathogen transmission among hosts and infectious disease risks
in a gregarious setting. Taken together, both the function annotation
of overlapping genes and the gene set enrichment analysis of all genes
identified the hormones and immunity processes underlying the
association between social organization and longevity.

Selection features of social organization and longevity
Whether social organizations or longer lifespans are under selection
remains controversial63,64. To characterize the selection features of
social organization and longevity, we used RELAX65 to estimate the
selection coefficients (K) for orthologous genes under different states
of social organization (solitary, pair-living, and group-living) and
longevity (long-lived vs. short-lived) (Fig. 3a–d, Supplementary
Data 12, Supplementary Data 13). In solitary branches, genes mostly
experienced intensified selection (5448 genes, K > 1, likelihood ratio
test (LRT) P < 0.05) rather than relaxed selection (3200 genes, K < 1,
LRT P < 0.05, Fig. 3a). We identified 3747 genes that showed evidence
of intensified selection and 4589 genes that showed evidence of
relaxed selection in the pair-living state (Fig. 3b). A larger number of
genes associated with group-living experienced relaxed selection
(5570 genes, K < 1, LRT P < 0.05) than intensified selection (3170 genes,
K > 1, LRT P <0.05, Fig. 3c). Longevity appeared to be under intensified
selection (Fig. 3d), as more genes were subjected to intensified selec-
tion (5364 genes, K > 1, LRT P <0.05) than relaxed selection (3564
genes, K < 1, LRT P <0.05) in the long-lived state. Moreover, a larger
number of genes that experienced intensified selection for longevity
were found under intensified selection in solitary rather than group-
living species (Pearson’s chi-squared test: χ2 = 527.96, df = 1, P <0.001).
By contrast, a greater number of genes under relaxed selection in the
long-lived state also experienced more relaxed selection in group-
living species than solitary species (Pearson’s chi-squared test:
χ2 = 430.42, df = 1, P <0.001). These results suggest that the long-lived
state in group-living mammals involves relaxation selection.

We then employed the same pathway enrichment approach as
described above (polyselmethod) using the selection coefficient (K) of
each gene as the statistic. For the trait social organization, we identi-
fied 132 pathways under significant intensified or relaxed selection
(solitary: 50 pathways; pair-living: 56 pathways; group-living: 53 path-
ways; P < 0.05, Supplementary Data 14; Supplementary Fig. 12a). We
detected more intensified pathways than relaxed pathways in solitary
species (34 vs. 16) and pair-living (36 vs. 20), but fewer intensified than
relaxed pathways in group-living species (21 vs. 32). One pathway was
shared among all three states of social organization (“Spliceosome,U2-
snRNP”pathway), and a fewpathwayswere also identified in two states
(i.e., solitary-pair-living: 2; solitary-group-living: 12; pair-living-group-
living: 4). For long-lived species, we also detected signatures of
intensified selection in 40 pathways and relaxed selection in 23 path-
ways (Supplementary Fig. 12b, Supplementary Data 15). In total, 20
overlapping pathways were detected under selection for both social
organization and longevity (Fig. 3e, Supplementary Data 16); however,
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most of thesepathways did not showan identical trend in the selection
force. For example, “B cell receptor signaling pathway” showed accu-
mulated relaxed selection in group-living species, but intensified
selection in long-lived species (polysel: group-living, score = −21.03,
P = 3.04 × 10−3; longevity, score = 36.61, P = 2.42 × 10−3);

“glycosphingolipid biosynthesis-lacto and neolacto series” experi-
enced accumulated intensified selection in group-living species, but
relaxed selection in long-lived species (polysel: group-living, score =
5.37, P =0.03; longevity, score = −3.07, P =0.04). These findings sug-
gest that even though common pathways can be utilized by natural
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Fig. 3 | Cross-talk between expression and selection in social organization and
longevity. The pattern of selection characterizing social organization identified
with aRELAX analysis (species:n = 94): a solitary species, P = 1.95 × 10−7,bpair-living
species, P = 5.89× 10−6, c group-living species, P = 5.81 × 10−7, and d longevity,
P = 6.76 × 10−7. P value was calculated using Likelihood-ratio test (LRT). K < 1 indi-
cates relaxed selection and K > 1 indicates intensified selection. Genes were under
purifying selection when dN/dS < 1 and positive selection when dN/dS > 1. Arrows
represent the direction of change in dN/dS. The median value of the proportion of
sites is shown with a bar plot. Social organization and longevity are colored as
follows: solitary: blue; pair-living: orange; group-living: red; short-lived state: cyan;
and long-lived state: purple. e A heat map of significant pathways that overlapped
between social organization and longevity. S: solitary; PL: pair-living; GL: group-

living; ML:maximum lifespan. f A Venn diagram showing the number of genes with
changes in expression levels and selection among solitary, pair-living, group-living,
and longevity. Examples of genes that were associated with expression and selec-
tion in both social organization and longevity: g gene XRCC6 was under relaxed
selection in group-living species (P < 1.00× 10−17) and h long-lived species
(P = 1.06 × 10−5). P value was calculated using Likelihood-ratio test (LRT). The
interpretation of K and dN/dS is the same as (a–d). The number of species used in
RELAX analyses was n = 94. i Network of pathways showing correlations with
expression (red round) and selection features (purple round) in both social orga-
nization and longevity. The circle size represents the number of genes in this
pathway. The thickness of connective lines displays the number of shared genes
between two pathways. Source data are provided as a Source data file.
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selection for longevity and social organization, the underlying mole-
cular mechanisms and regulatory approaches are different.

Cross-talk between gene expression and selection
We further discovered eight genes with changes in their expres-
sion levels and selection for both social organization (Supple-
mentary Fig. 12c–e) and longevity (Supplementary Fig. 12f), i.e.,
SHKBP1, MTM1, XRCC6, UBL7, VWA5A, PUS3, MCL1, and COX7A1)
(Fig. 3f, Supplementary Data 17). In particular, gene XRCC6 was not
only identified in the gene expression analyses (see above), but
also experienced selection in solitary, group-living and long-lived
species (RELAX: solitary, K = 2.58, P = 4.34 × 10−13; group-living,
K = 0.31, P = 1.00 × 10−17, Fig. 3g; longevity, K = 0.70, P = 1.06 × 10−5,
Fig. 3h). MTM1 was upregulated in both solitary and long-lived
species (MCMCglmm: solitary, post mean = 1.38, pMCMC = 0.03;
longevity, post mean = 2.55 ± 0.21, pMCMC = 0.03 ± 0.01). This
gene was also under intensified selection in solitary, but relaxed
selection in long-lived species (RELAX: solitary, K = 2.52,
P = 1.00 × 10−17; longevity, K = 0.52, P = 2.05 × 10−7). Loss-of-
function of MTM1 leads to a genetic neuromuscular disorder,
X-linked centronuclear myopathy66, as evidenced by a decreased
lifespan in knockout mice67. Another gene, MCL1, was upregulated
(MCMCglmm: pair-living, post mean = 1.31, pMCMC = 0.04) and
under relaxed selection in pair-living species (RELAX: K = 0.54,
P = 2.97 × 10−5). In addition, MCL1 was negatively associated with
longevity (MCMCglmm: post mean = −2.33 ± 0.13, pMCMC =
0.04 ± 8.48 × 10−3) and experienced intensified selection in long-
lived species (RELAX: K = 2.28, P = 4.55 × 10−6). As a notable mem-
ber of the anti-apoptotic Bcl-2 family,MCL1 can regulate cell cycle,
cell proliferation, and DNA damage repair, which may contribute
to longevity68. MCL1 is critical for neuronal development69, where
the loss of MCL1 leads to apoptosis of neuronal progenitors70.

One pathway was correlated with the expression and selection
features for both social organization and longevity: “sulfur relay sys-
tem” (polysel: expression in solitary, score = −4.17, P =0.02, in pair-
living, score = 5.37, P = 0.03 and in longevity, score = 6.81 ± 0.20,
P =0.02 ± 3.41 × 10−3; selection in solitary, score = 3.40, P = 0.03 and in
longevity, score = 4.26, P =0.03). The sulfur relay systems are involved
in the complex process of trafficking and delivery of sulfur, which is an
essential element for living organisms and a component of major
biomolecules71,72. For example, sulfur-containing nucleosides in tRNA
molecules have diverse functions, including stabilization of tRNA
structure, proper codon-anticodon base pairing, and insurance of
accurate and efficient translation73,74. Sulfur-containingmodification at
tRNA position 34 has revealed a biological role of sulfur in growth,
oxidative stress, and metabolic cycles in yeast73. The lack of this
modification can cause myoclonic epilepsy with ragged-red fibers
(MERRF), which clinically manifests as cerebellar ataxia in humans75.
Besides, only one pathwaywhose expression was associated with both
social organization and longevity was under significant selection in
social organization, but not longevity: “GPCRs, class B secretin-like.” In
addition, five pathways that were under selection for both social
organization and longevity also showed significant changes of
expression levels in social organization (i.e., “tight junction interac-
tions,” “axon guidance”) or longevity (i.e., “SRP-dependent cotransla-
tional protein targeting to membrane,” “mitochondrial protein
import,” “GPCRs, class A rhodopsin-like”). Among them, “GPCRs, class
A rhodopsin-like” (polysel: expression in longevity, score =
42.45 ± 2.02, P = 4.86 × 10−3 ± 1.25 × 10−3; selection in solitary, score =
−37.57, P = 2.50 × 10−6 and in longevity, score = 29.16, P = 1.27 × 10−3) is
the largest group of GPCRs, representing members such as light,
hormones and neurotransmitter receptors76,77. These receptors are
associated with regulation of neuroendocrine function, sleep-wake
cycle, energy metabolism, feeding, anxiety, and stress responses78,79.
Since mutations in class A GPCRs can lead to a large number of

diseases, including depressive disorders, schizophrenia, and bipolar
disorder, they also serve as drug targets in humans80,81. Another
pathway, “axon guidance” (polysel: selection in pair-living, score =
33.48, P = 6.17 × 10−4 and in longevity, score = 22.66, P = 0.04), is key to
brain development and neural circuit formation82. In addition, the
“tight junction interactions” pathway (polysel: selection in solitary,
score = −7.03, P =0.02; in group-living, score = 9.27, P = 1.25 × 10−4 and
in longevity, score = 8.20, P = 0.01) regulates cell-cell communication
and cellular growth, development, differentiation, and pathogen
infection83. Dysregulation of tight junctions not only increases the
entry and spread of viruses or bacteria84, but also affects age-related
neurodegenerative disorders85. Similarly, “SRP-dependent cotransla-
tional protein targeting to membrane” (polysel: expression in long-
evity, score = 38.39, P =0.02; selection in solitary, score = −26.09,
P = 2.45 × 10−4 and in longevity, score = 37.12, P = 2.50× 10−6) regulates
viral infections86, but its function in longevity remains unclear. Very
few pathways were shared by social organization and longevity in the
gene expression and selection analyses. This finding points to a fine-
tuned network (e.g., Fig. 3i), which involves beneficial mutations and
changes of expression in different, but functionally connected genes
or pathways, and is a favored approach to maintain the plasticity and
stable evolution of social organization and longevity.

Discussion
In this study,weprovide evidence for the correlated evolution of social
organization and longevity across the mammalian phylogeny and
show that group-living species lived longer than solitary species. There
was no significant difference in longevity between pair-living and
group-living species, or between pair-living and solitary species, sug-
gesting that pair-living alone is unable to mediate lifespan extension
despite it can generate an association between a pair of individuals.
Long lifespan favored by group-living species may be because group
living reduces extrinsic mortality by limiting the risks of predation and
starvation, and the strong and stable social bonds formed among
group members have the power to enhance longevity8,9,87. These
benefits are expected to override the costs inherent in group living,
such as competition for mating partners and food, stress from higher-
ranking individuals, and the spread of infectious diseases via social
contacts88. Another explanation for the correlated evolution is that kin
selection may be a driver of longevity89. Group living leads to the co-
residence of males or females and sex-specific philopatry. Preferential
associationamong kin can influencecoalition formation90, cooperative
breeding91, parallel dispersal92, and the establishment of social
hierarchies93, which further enhance individual health or offspring
survival7,93,94 and ultimately increase an individual’s or their relatives’
evolutionary fitness95. The length of a lifespan may be affected by
inclusive fitness benefits. For example, to maximize the rate of off-
spring survival, the lifespan of parents or grandparents may be
extended to allow for the provision of parental care or even grand-
parental care to offspring16,96.

The transcriptomic features associated with the correlated evo-
lution of social organization and longevity indicated that hormonal
regulation and immunity constitute the mechanistic foundation for
the association between social organization and longevity. Peptide
hormones (e.g., growth hormone, insulin-like growth factor-1, and
insulin) have also been shown to perform crucial roles in aging and
longevity. For example, defects in growth hormone production extend
longevity in Snell dwarf mice97. Reduced insulin-like growth factor-1
signaling has been shown to increase lifespan in mice, fruit flies, yeast,
and worms98,99. Other types of hormone, steroids (e.g., testosterone,
estradiol, and progesterone), control a range of social behaviors,
including copulatory behavior, aggression, grooming behavior, and
paternal behavior100,101. Specifically, neuroactive steroids produced in
the nervous system and their receptors also play a role in the regula-
tion of learning capacity,memory, decision-making, and depression102.
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A number of studies have demonstrated that steroid hormones also
regulate lifespan; for example, the inhibition of sulfatase increases
lifespan in C. elegans103.

The immunity or inflammation pathways and genes identified in
this study support the view that immunity is instrumental to the cor-
related evolution of sociality and longevity104. Social organizations can
affect immune responses. For example, in captive group-living long-
tailed macaques (Macaca fascicularis), a higher rate of affiliation
enhances an individual’s immune response105. In contrast, social iso-
lation or a limited number of social ties can activate neuroendocrine
regulation, accumulated inflammation burden, and impair immune
function106,107. Moreover, several lines of evidence have demonstrated
the effects of immunity and inflammation on social behavior, fitness,
health and lifespan of social mammals. For example, interleukin-17a
(IL-17a), a well-described mediator in inflammatory diseases, can res-
cue sociability deficits in offspring mice exposed to maternal immune
activation by directly affecting their neuronal activity108. Immunity is
also linked to reproductive behavior and thus indirectly affects the
fitness of an individual109. A recent study has shown that male mice
avoid mating when a female mouse is unhealthy110. Research has also
shown that age-related changes in immunity, such as inflammatory
markers interleukin-6 (IL-6) and TNF-alpha, increase with age in
humans111 whereas the proportion of naive CD4 T cells in the blood
declines with age in wild Soay sheep (Ovis aries)112.

We assumed that solitary species are generally less social than
pair-living species, and both are less social than group-living species.
However, mammal societies vary enormously in individual composi-
tion, size, patterns of parental care, cooperation, social relationships,
and spatiotemporal dynamics of group members. Although some
studies have provided conceptual frameworks and indices to quantify
sociality or social complexity31,113, a consensus and more accurate
measurements that could be used in large-scale comparative studies
areneeded. The accumulation of long-termfield data on variables such
as relatedness, affiliative relationships, social network cohesion,
cooperation, and agonistic relationships among individuals will soli-
dify our understanding of the evolutionary interplay between sociality
and longevity. In summary, our study provides insights into the cor-
related evolution of social organization and longevity and serves as a
basis for experimental validation and follow-up studies on the
mechanistic drivers of this correlated evolution.

Methods
Data collection and compilation
All animal care and research protocols of this study were approved by
the Institute of Zoology, Chinese Academy of Sciences (No. IOZ-
IACUC-2021-129). We compiled data on various mammalian traits,
including life history, social system, behavior, and habitat. These data
wereobtained from the literature114–118, reviews25,26, anddatabases, such
as PanTHERIA119, PHYLACINE120, and AnAge4. The last search date was
August 5, 2022. The sources of each data are listed in Supplementary
Data 1, Supplementary Data 3 and Supplementary References. A
complete dataset comprising data on adult body mass, maximum
lifespan, and social organization, activity, lifestyle, fossoriality for 974
mammal species was used for subsequent analyses (Supplementary
Data 1). To identify the candidate genes associated with social orga-
nization or longevity, we further generated brain transcriptomes for
94 mammal species. To control for possible effects of confounding
variables on gene expression in the regression analyses, data on six
traits (i.e., adult body mass, maximum lifespan, social organization,
activity, diet, and lifestyle) for these 94 species were included in the
models (Supplementary Data 3). Adult body mass and maximum life-
span were log10 transformed prior to analysis.

Moreover, we measured the adult body mass of 7 bat species in
the wild for which no data were available in the existing literature and
databases. We used imputation methods121 to estimate the maximum

lifespan of 35 species that were missing from the database. In this
estimation, adult body mass and female time to maturity were used
since they are strongly correlated withmaximum lifespan. The dataset
included 1250 species with information on adult body mass and
816 species with information on adult body mass, female time to
maturity, and maximum lifespan. In brief, we first used the finalfit
package in R122 to evaluate the missing data pattern of the maximum
lifespan (6% of NAs) and female time to maturity (30% of NAs) in the
dataset with 1250 species: (a) missing completely at random (MCAR),
assuming that data values do not relate to any other variables; (b)
missing at random depending on adult body mass (MAR-BM), assum-
ing that data values relate to adult body mass; and (c)MAR depending
on phylogeny (MAR-Phy), assuming that data values relate to phylo-
geny. Then, to find the best imputation approach for our dataset, we
employed three popular imputation methods: mice123, missForest124,
and Phylopars125, following the process of Penone et al.121. The com-
plete datasetwith three traits for 816 specieswas set as the test dataset.
We introducedmissing data (5%, 10%, 20%, 25%, 30%, 40%, and 50%) in
the test dataset and repeated the analyses at least ten times. Five
approaches were then used to impute eachmissing dataset: mice with
and without phylogeny, missForest with and without phylogeny, and
Phylopars. With mice and missForest, we also obtained ten imputed
datasets per imputation. The Phylopars approach used the phyloge-
netic trees directly, whereas themice andmissForest approaches used
the phylogenetic eigenvectors from principal coordinate analysis in
the R package PVR126. The normalized root mean squared error and
Bias (see Penone et al.121 for equations) were calculated to compare the
imputation methods121. Finally, we selected the best-performed
method, Phylopars, to impute missing values in the dataset with
1250 species.

Classification of social organization, longevity, and other traits
Social organization, i.e., the size, composition, and kinship structure of
a basic social unit, varies acrossmammal species31.We used the criteria
developed by Kappeler and van Schaik1 to classify the social organi-
zation of mammals into three states: solitary, pair-living and group-
living. These definitions focus on adultmales and adult females and do
not consider subadults, juveniles, and infants. Solitary species were
defined as individuals who live alone and rarely synchronize their
general activity (e.g., forage, rest) andmove with others other than for
mating and raising their young. A species whose members spend the
majority of their life in a solitary state but occasionally forage,migrate,
travel, or rest in temporary groups, was categorized as solitary, e.g.,
Cervus nippon, Enhydra lutris, and some of Balaena spp.114–116. Species
were classified as pair-living when an adult male and an adult female
associate for more than one year within a common home range; this
definition considers behavioral evidence of living together but not
genetic evidence. Species were categorized as group-living if at least
three adults live together, synchronizing their daily activities and
interacting with each other25. Cooperatively breeding species were
categorized as pair living if a group contains one breeding pair and
their non-adult offspring; if there are more than two adults per group,
they were classified as group living.We also consideredmultiple states
of social organization for a particular species. We classified activity as
one of three states: nocturnal, diurnal, and other (nocturnal/crepus-
cular, cathemeral, crepuscular, or diurnal/crepuscular) using the defi-
nitions and classification of Jones et al.119. Following the approach used
by Kissling et al.127, we divided diet into three categories: carnivore,
herbivore, or omnivore. In addition, we categorized lifestyle into ter-
restrial, aerial, arboreal, semi-arboreal, freshwater, marine, or terres-
trial-marine, according to Faurby et al.120 and Thorley et al.15. The
fossoriality of species included non-fossorial and subterranean15.

Longevity was defined by the maximum lifespan of a given spe-
cies. This definition is widely used in comparative longevity
studies29,128,129. The maximum lifespan of a species was referred to as
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absolute longevity. Given a strong positive correlation between adult
body mass and maximum lifespan, we also measured “relative long-
evity” to control for the confounding effects of body mass. The “rela-
tive longevity”, or the residuals of longevity, were calculated using the
body mass adjusted residuals with the equation from the AnAge
database: residuals of longevity = maximum lifespan/(4.88 × adult
body mass0.153)29. For analyses requiring categorical variables, mam-
mals were divided into long-lived species and short-lived species. We
used the 3rd quartile of longevity (26 years) as the cut-off value for the
long-lived state. This value is consistent with a previous study that
labeled species whose maximum lifespan was more than 26 years as
mediumor long-lived130. Thus,wedivided 974mammalian species into
absolute long-lived species (longevity > 26 years,n = 246) and absolute
short-lived species (longevity ≤ 26 years, n = 728). To explore the
effects of the classification of long-lived species on the phylogenetic
comparative analyses, we also used two different cut-off values for
longevity: 17 years (median of longevity) and 35 years (same range
frommedian to the thirdquartile) (see section “Taxonomic sampling”).
In addition, considering the influence of adult bodymass on longevity,
we used the 3rd quartile of the residuals of longevity as an index to
divide mammals into relative long-lived species (n = 244) and relative
short-lived species (n = 730). The residuals of longevity were calcu-
lated using the equation from the AnAge database as described above.
Mammalswere classified as relatively long-lived species if the residuals
of longevity were greater than the value of the 3rd quartile (1.38),
whereas species not meeting this criterion were classified as relatively
short-lived species. Similarly, we also used two different cut-off values
for relative longevity: 0.93 (median of the residuals of longevity) and
1.83 (same range frommedian to the third quartile). Long-lived species
that were frequently identified in previous studies (e.g., Balaena mys-
ticetus, Heterocephalus glaber, Myotis brandtii, Homo sapiens) were
included as long-lived species, demonstrating the accuracy of the two
classification approaches.

Mammal phylogeny and phylogenetic signal
We used the mammalian phylogeny tree from TimeTree131 in our ana-
lyses. The name.check function of the package Geiger in R was used to
check the concordance of species names between a trait dataset and a
phylogenetic tree132. Extra tree tips were removed using the drop.tip
function of the R package ape133. For the analyses that required binary
trees, we randomly converted multifurcating trees to binary trees
using the multi2di function of the R package ape. In addition, con-
sidering the uncertainty of phylogenetic relationships among species,
we also re-analyzed data using a different phylogenetic tree from
Upham et al.33.

We calculated Pagel’s lambda using the fitDiscrete function in the
RpackageGeiger for categorical variables (social organization) and the
phylosig function in the phytools for continuous variables (longevity).
The phylogenetic signals of both absolute and relative longevity were
calculated. There is no phylogenetic signal when Pagel’s λ =0, whereas
Pagel’s λ = 1 indicates that a strong phylogenetic signal is detected and
the trait has evolved consistently with a Brownian motion model (i.e.,
that close relatives are more similar than expected).

Evolutionary modeling of social organization and longevity
Evolutionary model of social organization. To evaluate the evolu-
tionary pathway among solitary, pair-living and group-living, we
assessed four alternative models in 974 mammalian species using a
Bayesian framework, which was implemented in BayesTraits V3134,135.
The transition rates between any of the two states of social organiza-
tion were allowed to vary differently in these four alternative models.
First, the equal rates model (ER) is the simplest model in which all
transition rates were the same. That is, the transition rates were equal
among solitary, pair-living and group-living (Supplementary Fig. 1).
Second, the increasing complexity model (IC) posits that transitions

are only permitted between solitary and pair-living, and pair-living and
group-living, but not between solitary and group-living; transition
rates can vary. Third, the all-rates-different model (ARD) dictates that
all transition rates are different; this is also known as a parameter-rich
model24. Fourth, the reversible-jump Markov chain Monte Carlo-
derived model (RJ-MCMC) is derived from the data by the reversible-
jump procedure in BayesTraits; this model structure is generated by
the highest posterior support from the reversible-jump analysis (see
details below).

To generate the best-supported RJ-MCMC model, we used the
reversible-jump MCMC procedure with the hyper-prior approach,
seeding themean of the exponential prior from a uniformdistribution
on the interval of 0 to 224. To prevent the rates from being too small to
estimate, we scaled the branch lengths of the tree to have a mean of
0.0132. We ran each Markov chain Monte Carlo simulation for 100
million iterations. The sample frequency of theMCMC chainwas set as
100 iterations. We set the first 50 million iterations as the burn-in
period. The model was identified as convergent when the posterior
distribution was approximately normal and the trance of harmonic
mean log-likelihoods remained stable across runs. We also plotted the
transition rates across the MCMC chain in Tracer136 and verified that
the effective sample size for the parameters of interest was above 200
(i.e., ESS > 200)26. We repeated the run of the MCMC chain ten times
and ranked models that were visited by the MCMC chain according to
their posterior probability for each run. Ten independent reversible-
jump analyses were conducted to generate the highest posterior
support RJ-MCMC models, which accounted for 31.79%, 34.74%,
32.01%, 32.96%, 35.54%, 33.54%, 33.36%, 32.99%, 32.28%, and 33.61% of
500,000 visits, respectively; these analyses consistently showed that
transitions occurred between any two states of social organization,
except from solitary to pair-living. Moreover, group-living was an
intermediate step toward pair-living from solitary living.

We initially generated the RJ-MCMC model with the highest pos-
terior support as described above. We subsequently compared four
alternative evolutionary models of social organization: ER model, IC
model, ARD model, and RJ-MCMC model. Each model was run using
the hyper-prior approach (which seeds the mean of the exponential
prior from a uniform distribution of 0-2) for 100 million iterations.
Every 100 iterations were sampled and the first 50 million iterations
were used as the burn-in. We set the stepping-stone sampler to
1000 stones and 10,000 iterations per stone to estimate the marginal
likelihood. We conducted ten runs independently for each model. We
calculated the variance of the log marginal likelihood values over the
ten iterations to represent the stability of themodels. The variances of
all models were less than 0.03. We compared the four models using
Log Bayes Factors (Log BF), calculated using the following equation:
Log BF = 2 × (log marginal likelihood complex model − log marginal
likelihood simple model). The simple model is favored when Log BF is
less than 2, while there is positive evidence to support the complex
model when Log BF is greater than 2 (strong evidence, 5–10; very
strong evidence, >10)32.

Evolutionary model of longevity. To determine the evolutionary
direction between long-lived and short-lived species, longevity was
treated as a categorical variable. Both absolute longevity (i.e., absolute
short/long-lived species) and relative longevity (i.e., relative short/
long-lived species) were used in the following analyses. Three alter-
native models were constructed to estimate the evolutionary pathway
of longevity: (a) ERmodel, inwhich the transition rate froma long-lived
to a short-lived state and back is equal; (b) ARD model, in which the
transition rate from a long-lived to a short-lived state and back is
unequal; (c) RJ-MCMC model (as described above), which is derived
from the data by the reversible-jump procedure. The priors, total
iterations, burn-in periods, and sampled generations were the same as
those used in the social organization models above (hyper-prior
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approach: the mean of the exponential prior from a uniform dis-
tribution of 0-2; iterations: 100million; sample: 100 iterations; burn-in:
thefirst 50million iterations; stepping-stone sampler: 1000 stones and
10,000 iterations per stone). Similarly, the same model selection
procedure as described for social organization was used to compare
the three alternative evolutionarymodels for longevity. In addition, we
repeated ten independent runs for absolute and relative longevity. All
models were stable (variances <0.01).

Correlated evolution of social organization and longevity. To test
whether social organization influences absolute longevity or relative
longevity, wefirst used phylogenetic ANOVA (phyloAVOVA function) in
the R package phytools137 for 974 mammalian species. P-values were
adjusted using the Hommel method138, and two-sided p-values were
reported. To control for factors related to external mortality, we also
constructed a regression of theMarkov chainMonte Carlo sampler for
multivariate generalized linear mixed models (MCMCglmm), incor-
porating the phylogenetic relationship as the covariance structure139.
In the MCMCglmmmodel, longevity was fitted as a Gaussian response
variable and social organization, adult body mass, activity, lifestyle,
and fossoriality as predictor variables. We then tested whether social
organization is associated with longevity by analyzing the correlated
evolution between the two characteristics using the Discrete package
in BayesTraits140. Discrete package tests if two binary traits are corre-
lated over a phylogeny by comparing the likelihoods of an indepen-
dent and dependent model. All possible jumps between the states of
each trait are allowed, but in an independent model, the two traits are
assumed to evolve independently by placing some restrictions on the
transition rate parameters; in a dependent model, which assumes the
transitions in one trait depend on the state of the other, the rate
parameters are not restricted140. To fit the “Discrete” test require-
ments, we divided social organization into three categories: non-
solitary (0) and solitary (1); non-pair-living (0) and pair-living (1); non-
group-living (0) and group-living (1); we also divided lifespan into two
categories: absolute short-lived (0) and absolute long-lived (1); relative
short-lived (0) and long-lived (1). We ran the “Discrete” analysis with a
pairwise combination of the three categories of social organization
and two categories of lifespan. That is, six “Discrete” analyses: non-
solitary/solitary and absolute short-lived/long-lived; non-pair-living/
pair-living and absolute short-lived/long-lived; non-group-living/
group-living and absolute short-lived/long-lived; non-solitary/solitary
and relative short-lived/long-lived; non-pair-living/pair-living and
relative short-lived/long-lived; non-group-living/group-living and
relative short-lived/long-lived). For each “Discrete” test, RJ-MCMC
chains with an independent and dependent model were tested. We
used the same procedure as described above to set the model para-
meters (hyper-prior approach: the mean of the exponential prior from
a uniform distribution of 0-2; iterations: 100 million; sample: 100
iterations; burn-in: the first 50 million iterations; stepping-stone sam-
pler: 1000 stones and 10,000 iterations per stone), check model
convergence, and comparemodel performance. RJ-MCMC chains with
an independent and dependent model were compared using Log BF.
Ten independent runs indicated that all models were stable (var-
iance <0.5).

Taxonomic sampling. To evaluate the impact of sample size on the
phylogenetic analyses, we followed the taxonomic sampling methods
of Kappeler and Pozzi26 to subsample the original dataset. We ran-
domly selected species from the original dataset and generated sub-
sets including 95%, 90%,85%, 80%, 75%, 70%, 65%, 60%, 55%, and 50%of
the 974 species; we repeated this step 10 times. A total of 100 subsets
were created. Each subset was used to run an RJ-MCMC independent
and dependent model of six combinations: non-solitary/solitary and
absolute short-lived/long-lived, non-pair-living/pair-living and abso-
lute short-lived/long-lived, non-group-living/group-living and absolute

short-lived/long-lived, non-solitary/solitary and relative short-lived/
long-lived, non-pair-living/pair-living and relative short-lived/long-
lived, non-group-living/group-living and relative short-lived/
long-lived.

In addition, to explore the influence of the classification of long-
lived species on the phylogenetic analyses, we did not only use 26
years (absolute longevity) and 1.38 (relative longevity) as cut-off
values, but also two different cut-off values for absolute longevity (17
years and 35 years) and for relative longevity (0.93 and 1.83). If the
longevity of a species was higher than the cut-off value, it was con-
sidered to be a long-lived species. For each classification, we randomly
sampled the taxa similar to the procedure described above and gen-
erated 100 subsets, including 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%,
55%, and 50% of the original species. Then, we used each subset and
compared the RJ-MCMC independent model and the RJ-MCMC
dependent model for six combinations: solitary (0/1) and absolute
longevity (0/1), pair-living (0/1) and absolute longevity (0/1), and
group-living (0/1) and absolute longevity (0/1); solitary (0/1) and rela-
tive longevity (0/1), pair-living (0/1) and relative longevity (0/1), and
group-living (0/1) and relative longevity (0/1).

Sample collection and RNA extraction
Comparative transcriptomics is a powerful approach to infer mole-
cular changes underlying complex traits141–143. The brain is a central
organ that mediates social behavior and social systems, including
partner preference144, parental care145, social hierarchy146,
eusociality141,142, and mating system28. Brain transcriptomics has also
been used to identify significant genes and pathways that are asso-
ciated with longevity trait30,147. Therefore, we performed comparative
transcriptomics of the brain to test whether there are overlapping
pathways and genes underlying the correlated evolution between
longevity and social organization. We collected 267 fresh brain sam-
ples from 94 mammals that encompassed three types of social orga-
nization (solitary, pair-living, and group-living) and various longevities
(3–122 years). The brain transcriptomes of 101 samples of 42 species
were obtained from the published literature30,148–159. 57% of species and
62%of samples (166 samples of 54 species) were newly collected in this
study. 96% of sampled individuals were adults and 73% of individuals
weremales (SupplementaryData 2). 71%of94 specieswereprepared in
more than two biological repeats or technical repeats; the number of
repeats for each species are shown in Supplementary Data 2. Since we
aimed to characterize the conserved genes and pathways that are
related to social organization and longevity among species, the
mammal species were chosen based on the availability of brain tran-
scriptome and life-history data, and also the representation of mam-
mal diversity and taxa distribution in the phylogenetic tree. These 94
mammal species are belonging to 14 orders (Artiodactyla, Carnivora,
Chiroptera, Cingulata, Didelphimorphia, Diprotodontia, Eulipotyphla,
Hyracoidea, Lagomorpha, Monotremata, Perissodactyla, Primates,
Rodentia, and Scandentia). We calculated the ratio of species of each
order to 974 mammals with longevity available (Ratiom), and the ratio
of RNA-seq sampled species of each order to 94 species (Ratios). There
was no significant difference between Ratiom and Ratios (Ratiom:
Median = 2.09%, IQR = 0.38% ~ 7.57%; Ratios: Median = 1.06%, IQR =
1.06% ~ 10.37%; Wilcoxon signed rank test: n = 14, V = 38, P =0.38),
indicating that sampled species in the transcriptomic analyses have a
good taxa representation in general. The mean longevity of the 974
mammals and 94 species was 19.55 ± 15.96 and 20.87 ± 16.53, respec-
tively. The medians were 17.15 (IQR = 8.30 ~ 26.18) and 17.40 (IQR =
11.40 ~ 23.55). A summary of the social organization and other life-
history traits is shown in Supplementary Table 9.

For the newly collected samples in this study, species identifica-
tion was performed based on their morphological characteristics and
the sequences of the mitochondrial DNA cytochrome oxidase I gene
(COI) or cytochrome b gene (cytb). We sampled the forebrain or
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frontal lobe of the brain of large mammals (e.g., Carnivora) or the
entire brain other than the olfactory bulb, cerebellum, pituitary and
brain stem for small species (e.g., Chiroptera).We dissected the brains,
rapidly froze them in liquid nitrogen, and stored them at −80 °C. Fol-
lowing homogenization of brain tissue, we used the TRIzol protocol to
extract total RNA from all samples, according to the user guide (Invi-
trogen). We assessed the RNA quality and concentration using the
Agilent 2100 Bioanalyzer (Lexington, MA, USA) prior to library
construction.

RNA sequencing and gene expression
For each brain RNA sample, a library size of 150bp was constructed
using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA) and
paired-end sequencing was performed on the Illumina NovaSeq 6000
platform (Novogene Co. Ltd), generating approximately 2.7 billion
reads.Weused IllQC_PRLL.pl in the packageNGSQCToolkit to remove
low-quality reads of raw data160. Draft transcriptomes for 51 without-
reference genomes were assembled using Trinity (parameters: k-mer =
25,minimumcontig length = 200 bp, paired fragment length = 500 bp,
maximummemory = 25 G)161. We then ran cd-hit-est (90% similarity) to
reduce redundancy in the assembly by retaining the longest transcript
in each cluster162,163. We applied AUGUSTUS164 to predict protein cod-
ing genes in non-redundant transcripts using the default parameters,
except for –species = human and produced annotation GTF files.
Reference genomes for 43 species were publicly available from the
NCBI and Ensembl databases.

To generate the species-specific ortholog sets and calculate
expression values, we first generated a human reference.We extracted
the human CDS sequences using the gffread function of the Cufflinks
package165. The longest transcript for each gene was extracted after
filtering for incomplete and pseudogene transcripts.We used BLAST166

to remove highly repetitive or similar genes (cut-offs: e-value
<1.0 × 10−6 and identity > 90%). We then extracted the longest tran-
script of each gene for other species and conducted mutual BLAST
between each of those species and humans as a reference (cut-offs:
e-value <1.0 × 10−6 and identity >30%)167. Geneswith reciprocal best hits
were identified as orthologous genes. Given that differences were
generated when mapping the transcriptome to whole-genome and de
novo genome, we set the CDS of orthologous genes as the reference
genome for each species and produced annotation files (GTF format).
We used STAR to create an index for each species based on the total
sequence size of all orthologous genes and the read length168, then
aligned the RNA-seq reads to the reference genome using the default
parameters in STAR. We counted reads using the featureCounts
function of the Subread package169 without including multi-mapping
reads. Orthologous genes were discarded when the raw counts of
genes were low (<10 counts in >3 samples; 2564 genes were removed)
or high (read counts >5% of the total counts; 1 gene was removed).
Batch effects (Bioproject and sequencing platform)were detected and
removed with the comBat_seq function of the R package sva170. We
kept orthologs thatwere detected in 70%of the total species (i.e., 66 of
94 species). The number of orthologous genes for different cut-off
valueswas 14,730 (50%of species), 14,152 (60%of species), 13,402 (70%
of species), 12,476 (80% of species), 10,138 (90% of species), and 0
(100% of species). 70% was chosen as it was a trade-off between the
number of orthologous genes and the number of species that could be
used in the sequencing analyses. The gene expression of missing
orthologs in a specieswas treated asmissingdata. The average number
of species used in a model differed for each gene, with a mean of
87.96 ± 6.27 in 13,402 genes. To normalize the raw counts, we scaled
the library size (i.e., the number of total reads for each sample) by the
TMM(trimmedmean ofM-values), and used RPKM (reads per kilobase
per million mapped reads) to normalize gene length in the R package
edgeR171. One was added to the value generated from the RPKM-TMM

method before log2 transforming to avoid an infinite value. We used
these log-transformed gene expressions for all downstream analyses.

Modeling gene expression and traits
To identify the candidate genes associated with a specific social
organization or longevity trait across the 94 species, we conducted
MCMCglmm model, incorporating the phylogenetic relationship as
the covariance structure in the model139. For each of the 13,042
orthologous genes, we constructed four MCMCglmm models; in all
fourmodels, the expression value of one gene from the 94 species was
fitted as a Gaussian response variable and adult body mass, longevity,
activity, diet, lifestyle, and social organization as predictor variables.
Since for somegenes the species did not include all levels of lifestyle as
defined above, we categorized lifestyle into aerial and non-aerial (i.e.,
terrestrial, arboreal, semi-arboreal, freshwater, marine, and terrestrial-
marine) in the gene expressionmodels. The differences between these
four models were the different categories of the variable social orga-
nization: (a) to identify the solitary-associated genes, all species were
classified as solitary and non-solitary in the first MCMCglmm model;
(b) to identify the pair-living-associated genes, all species were classi-
fied as pair-living and non-pair-living in the second MCMCglmm
model; (c) to identify the group-living-associated genes, all species
were classified as group-living and non-group-living in the third
MCMCglmmmodel; and (d) all species were classified as solitary, pair-
living and group-living in the fourth MCMCglmm model. We used a
prior of covariance V of 1.00 and a degree of belief parameter (nu) of
0.002. We ran twoMCMC chains for 1 million iterations, with 100,000
burn-in and a thinning of 500 iterations for each mode using the
MCMCglmm function in the R package MCMCglmm172. Model con-
vergence was declared when Gelman-Rubin’s convergence diagnostic
was less than 1.1 using the gelman.diag function in coda package173. All
effective sample sizes were set at >1000. Genes were considered sta-
tistically significant if pMCMC was less than 0.05 and the absolute
value of the posterior mean was greater than the cut score. The
pMCMC values were used directly because MCMCglmm implements
MCMC methods for Bayesian generalized linear mixed models172,174.
Within a Bayesian framework, in which parameters are estimated
based on priors, multiple comparison corrections are not required.
Hence, from a Bayesian viewpoint, there is no need to adjust
pMCMC175–179. The cut score of the posteriormeanwas calculated using
the following steps. Given that the MCMCglmm estimates a value for
the posterior mean (similar to the coefficient in linear regression) for
eachpredictor variable in themodel,wefirst plotted ahistogramof the
posterior mean and fit a high probability distribution (normal or
logistic distribution) to the data using the fitdist function in R package
fitdistrplus180. The possible distributions were compared to obtain the
best fit by computing goodness-of-fit statistics using the gofstat
function of fitdistrplus. Parameters were estimated when the best fit
distribution was chosen. We computed the statistics (e.g., Z-score) of
the best fit distribution as the cut score, where each side of the dis-
tribution was cut at 0.025 (i.e., a significance level of 0.05 for a two-
tailed test). For example, if the data fit a standard normal distribution,
the cut score (Z-score) was approximately 1.96. Thus, genes whose
pMCMC <0.05 and |posterior mean| > 1.96 were identified as sig-
nificant genes. A gene with a positive or negative posterior mean had
an up- or downregulated expression, respectively. If a significant gene
was detected inmore than onemodel, the value of the posteriormean
and pMCMC were displayed using the mean and standard deviation
(SD) value of these models.

Tests for relaxed and intensified selection
Multiple sequence alignment of each ortholog gene was performed
using the Perl script translatorX.pl181, which calls MAFFT for
alignment182 and GBlock183 for filtering unreliable regions (GBlock
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parameters: b1 = 0.75, b2 =0.85, b3 = 3, b4= 5). To test whether genes
were under relaxed or intensified selection in solitary, pair-living,
group-living, and long-lived species (four hypotheses tests), we ran a
likelihood ratio test (LRT) on the 13,402 orthologous genes in RELAX
(implemented inHYPHY65 using species tree as an input). In tests of the
four hypotheses, the 94 species were divided into: (a) solitary, set as
test branches, or non-solitary, set as reference branches; (b) pair-living
(test) or non-pair-living (reference); (c) group-living (test) or non-
group-living (reference); and (d) long-lived (>26 years, test) or short-
lived (reference). We compared the model (K = 1) and the alternative
model allowing K to be estimated for each hypothesis test. RELAX
estimated three dN/dS rate categories and inferred the selection
intensity parameter K. K < 1 indicates relaxed selection in the test
branches, whereas K > 1 indicates intensified selection.

Pathway enrichment analysis
We used the pipeline of the detection of polygenic selection in gene-
sets (polysel), which has the power to detect several genes with small
effect mutations that can have a large influence on a biological path-
way (see Daub et al., 2013 and 2017 for details)50. In addition to the
gene sets from Daub et al.51, we also generated the gene set of the
behavior (GO:0007610) and social behavior (GO:0035176) pathways
from GO184,185. To detect the pathways associated with social organi-
zation or longevity, we used the posterior means (i.e., post mean) of
each gene, which were generated from the MCMCglmm models as
gene scores. The SUMSTAT score was calculated by summing the gene
scores of genes in the set of interesting pathways. In the analysis of
upregulated or positive gene sets, the gene score of downregulated or
negative genes was set as 0 and vice versa. We used the cor.test
function in R to run a correlation between gene score and gene length
or species number; if they were significantly correlated (P < 0.05), we
used RescaleBins to adjust the gene score. Overlapping genes between
gene sets were removed in the pruning process. In addition, we used
the same procedure of polysel to detect gene sets that were under
selection. In pathwayenrichment analyses of selection, the gene scores
were set using the K value of each gene, which was generated from
RELAX. The pathwaywas significant if the P-value was less than0.05 or
the absolute of the log10 of P-value was greater than 1.30.

Two-sided tests were used in all statistical analyses. We used
general R packages for plotting, such as ggplot2186, dplyr187,
RColorBrewer188, EnvStats189, and ggthemes190, but also some specific
packages. For example, the R packages ggtreeExtra191, ggtree192,
ggstar193, tibble194, and ggnewscale195 were used for the phylogenetic
tree plots (Fig. 1a and Fig. 2a). The package vioplot196 wasused in Fig. 1b
and Fig. 1c. Venn diagrams (e.g., Fig. 2b) were plotted with the Venn-
Diagram package197. The packages ggpmisc198, cowplot199, and
ggpubr200 were used in Fig. 2d and Fig. 2e. The packages pheatmap201

and scales202 were used to plot the pathway heat maps (e.g., Fig. 2f
and Fig. 3e).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA sequencing data generated in this study have been deposited
in the Genome Sequence Archive203 in National Genomics Data
Center204, China National Center for Bioinformation/Beijing Institute
of Genomics, Chinese Academyof Sciences under accession codeGSA:
CRA008468. The species traits data are provided in the Supplemen-
tary Data file. Databases used in the data collection of mammalian
traits include PanTHERIA [https://esapubs.org/archive/ecol/E090/184/
metadata.htm], PHYLACINE [https://zenodo.org/record/1250504#.
Y5VZfnZBxnI], Animal Diversity Web [https://animaldiversity.org],
GBIF [https://www.gbif.org/], ASM’s Mammal Diversity Database

[https://www.mammaldiversity.org/], the Encyclopedia of Life [https://
eol.org/docs/what-is-eol], AnAge [https://genomics.senescence.info/
species/index.html]. The phylogenetic tree is from TimeTree [https://
timetree.org/]. In the comparative transcriptome analyses, we used
databases NCBI [https://www.ncbi.nlm.nih.gov/], Ensembl [https://
ensemblgenomes.org/], Gene Ontology (GO) [http://geneontology.
org/], and Reactome [https://reactome.org/]. Silhouette images of
animals used in the figures are from PhyloPic database [http://
phylopic.org/]. The SRA accession number and hyperlink of RNA-seq
data that were not generated from this study were shown in Supple-
mentary Data 2. Source data are provided with this paper.
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