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Abstract

Background.—Aiir pollution and noise exposures individually associate with major adverse
cardiovascular events (MACE) via a mechanism involving arterial inflammation (Artl); however,
their combined impact on Artl and MACE remains unknown. We tested whether dual (vs. one or
neither) exposure associates with greater Artl and MACE risk and whether MACE risk is mediated
via Artl.

Methods.—Individuals (N = 474) without active cancer or known cardiovascular disease with
clinical 8F-FDG-PET/CT imaging were followed for 5 years for MACE. Artl was measured.
Average air pollution (particulate matter < 2.5 um, PM> 5) and transportation noise exposure were
determined at individual residences. Higher exposures were defined as noise > 55 dBA (World
Health Organization cutoff) and PM, 5 = sample median.

Results.—At baseline, 46%, 46%, and 8% were exposed to high levels of neither, one, or both
pollutants; 39 experienced MACE over a median 4.1 years. Exposure to an increasing number of
pollutants associated with higher Artl (standardized £ [95% CI: .195 [.052, .339], A= .008) and
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MACE (HR [95% CI]: 2.897 [1.818-4.615], A< .001). In path analysis, Artl partially mediated
the relationship between pollutant exposures and MACE (P < .05).

Conclusion.—Air pollution and transportation noise exposures contribute incrementally to Artl
and MACE. The mechanism linking dual exposure to MACE involves Artl. (J Nucl Cardiol 2022)
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INTRODUCTION

There is growing evidence that environmental factors such as noise and air pollution

are important in the development of chronic non-communicable diseases.!2 Exposure to
either pollutant independently increases cardiovascular disease (CVD) risk.3-6 Although
significant progress has been made in clarifying the individual pathobiological mechanisms
by which each of these pollutants contribute to CVD,”13 it is not known if there

are shared pathways.*14-16 There are reasons to believe that there could be common
mechanisms despite the distinct routes by which these pollutants enter the body and

initiate pathologic changes. Air pollution enters through the lungs and triggers oxidative
stress that leads to downstream leukopoietic tissues and systemic inflammation that

result in endothelial dysfunction, pro-thrombotic activity, and atherosclerotic inflammation
(Artl).5:15.16 Exposure to unhealthy noise levels triggers stress-associated neural activity
and promotes downstream systemic inflammation, endothelial dysfunction, and Artl due

to neurohormonal activation.#13.14 Thus, several downstream processes (e.g., Artl and
systemic inflammation) are relevant to both types of pollution exposure that often coexist.*
Although the individual impacts of each pollutant on Artl and major adverse cardiovascular
events (MACE) have been shown,*16 their joint contribution to Artl and MACE has been
challenging to disentangle.

18F_fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-
PET/CT) imaging provides a well-validated imaging marker of Artl.17 Importantly, whole
body 18F-FDG-PET/CT imaging also allows simultaneous assessment of the metabolic
activities of stress-associated neural tissues (e.g., amygdalar activity or AmygA) and
leukopoietic tissues (e.g., bone marrow) to derive insights about the interplay between
these organs.*16.18 Since heightened Artl results from exposure to either pollutant, Artl
may provide a useful measurement at the node of integration for the adverse cardiovascular
effects of both pollutants.416-18

Accordingly, we evaluated a cohort of individuals who underwent clinically indicated 18F-
FDG-PET/CT imaging to test whether combined chronic exposure to both higher levels of
air and transportation noise pollution (vs. one or neither pollutant) independently associates
with higher Artl. Furthermore, we evaluated whether combined exposure associated with
greater MACE risk after multivariable adjustments for potential confounders and whether
Artl was an important participant in the mechanism underlying this relationship.
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METHODS

Study sample

The retrospective study sample (N = 474) was derived from 6088 patients who underwent
clinically indicated 18F-FDG-PET/CT imaging from 2005 to 2008, predominantly for cancer
surveillance or screening, at Massachusetts General Hospital (Boston, MA, USA, Figure 1).
The final cohort was identified from the sample of 1,777 patients without active cancer (no
prior cancer or remission for = one year before imaging and throughout follow-up) or known
CVD (assessed by medical record review).1® Additional pre-defined inclusion criteria are
provided (Supplement). All individuals provided 18F-FDG-PET/CT imaging that allowed
assessment of Artl. A subgroup (N = 265) provided brain images that allowed measurement
of AmygA. A separate group (N = 424) provided imaging that allowed measurement of bone
marrow activity. The Mass General Brigham Institutional Review Board approved the study
protocol. Informed consent was not required.

18F_.FDG-PET/CT imaging protocol

18F_FDG-PET/CT was performed on an integrated scanner (e.g., Biograph 64, Siemens
Healthcare, Erlangen, Germany). 18F-FDG was injected intravenously (after fasting
overnight), and imaging was performed approximately 60 minutes thereafter. A low-dose,
ungated CT was obtained for attenuation correction.

Assessment of tissue activities and coronary calcification

Analyses of 18F-FDG-PET/CT images were performed while blinded to all clinical data.

To assess Artl, the 18F-FDG signal in the ascending aorta was measured with CT guidance
at 3 mm intervals from 1 cm above the aortic annulus to the aortic arch. Maximum tracer
uptake intensity was measured in each slice as a standardized uptake value (SUV). The mean
SUV for all slices was corrected for background blood activity from the superior vena cava,
yielding a target-to-background ratio.1® Leukopoietic activity (as bone marrow activity) was
measured using validated methods.18 AmygA was defined as the ratio of the mean bilateral
amygdalar SUV corrected for mean temporal lobe SUV.18 Coronary artery calcification
(CAC) was measured using the attenuation correction CT. Further description is provided
(Supplement).

Assessment of air pollution and transportation noise exposure

Individual home addresses were derived from medical records. Annual air pollution
exposure at each address was quantified as the mean concentration of particulate matter with
a diameter < 2.5 um (PM, 5) for the year 2017 using the United States (US) Environmental
Protection Agency Air Quality System Data Mart.1519.20 Because air pollution exposure
associates with cardiovascular outcomes at levels well below National Ambient Air Quality
Standards of < 12 mg/m?3, higher air pollution exposure was defined as exposure to PM 5
concentrations that were > median for the study sample (approximately 9 pg/m3).15.21.22
Average 24-hour transportation noise exposure was determined at each individual’s home
using the US Department of Transportation’s Road and Aviation Noise Map, which provides
a combined model of traffic and aircraft noise using 2014 data.23 Noise exposure was
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provided in 5 dBA increments, and high exposure was defined as >55 dBA, a threshold
established by the World Health Organization (WHO) that associates with adverse health
consequences.?* Additional details are provided (Supplement).

Assessment of clinical, socioeconomic, geographic, and demographic covariables

CVD risk factors (i.e., hypertension, hyperlipidemia, smoking, and diabetes), medical
history, and healthcare access factors (i.e., baseline health insurance and in-state residence)
were assessed from the medical records.* Using zip code level data from the US

Census Bureau’s 2015 American Community Survey 5-year estimates, median income was
derived.25 Straight-line distance between individual home residences and the closest major
roadway (i.e., a primary or secondary road according to the US Census Bureau designated
2016 Master Address File/Topologically Integrated Geographic Encoding and Referencing
Feature Class Code) was assessed.26:27 Urban/rural status was evaluated using Rural-Urban
Commuting Area Codes (RUCAs, version 2.0) and each subject’s zip code at the census
tract level.28:29

Assessment of MACE

Two cardiologists, blinded to imaging and pollutant exposure data, reviewed clinical

records to identify MACE within five years of index imaging.16:18 Qualifying events were

cardiovascular death, unstable angina, myocardial infarction, cerebrovascular accident, heart
failure, and coronary or peripheral artery revascularization.30:31 Further details are provided

(Supplement).

Statistical analyses

Analyses were performed using SPSS (Version 26, IBM Corporation, Armonk, NY, USA).
Continuous variables were presented as mean and standard deviation (SD) when normally
distributed, or as median and interquartile range (IQR) when not. Correlations between
continuous variables were evaluated using Pearson and Spearman coefficients. Independent
sample t-tests were performed to evaluate differences in groups for continuous variables,
and Chi-squared tests were used to assess differences in binary variables. Individuals were
grouped by number of heightened pollutant exposures as: (1) neither, (2) one, or (3) both
pollutants. They were also grouped by type of heightened pollutant exposures: (1) <median
air pollution and <55 dBA, (2) =median air pollution and <55 dBA, (3) <median air
pollution and >55 dBA, and (4) =median air pollution and >55 dBA. Relationships between
the number of heightened pollutant exposures and tissue measurements were assessed with
linear regression, as S and 95% confidence intervals (Cls). Cox proportional-hazard models
and Kaplan—Meier survival were used to evaluate hazard ratios (HRs) for MACE and
MACE-free survival, respectively, within five years of index imaging. Cox models were
also performed for each separate pollutant using continuous measurements. Patients were
censored by the first date of MACE, death, or last available follow-up within five years.
We evaluated for multiplicative interactions between noise and air pollution exposure with
Artl and MACE. Covariables were selected a priori, and all multivariable models included
age and sex. Additional models adjusted further for CVD risk factors (i.e., hypertension,
hyperlipidemia, diabetes, current smoking), baseline CAC score, statin use, healthcare
access factors (i.e., health insurance, in-state residence), malignancy and treatment history,
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median neighborhood income, and geographic area factors (i.e., distance from nearest
roadway, urban/rural status) in other analyses. For survival models with more than two
covariables, backwards selection was implemented. Mediation analysis was evaluated using
the SPSS PROCESS Macro version 3.4 Model 4 to evaluate the prespecified path of

greater number of pollutant exposures — higher Artl — increased MACE risk using a
logistic regression framework to approximate direct and indirect effects with 5000 bootstrap
samples. For the indirect pathway, an exact P-value was not available; thus, a 95% CI that
did not include zero was considered significant. For all other analyses, a two-sided ~-value
<.05 indicated significance. Additional details are provided (Supplement).

Baseline characteristics

Among 474 subjects, the median age was 55 (IQR 44-66) years and 42.8% were male.
Totals of 218 (46%), 217 (46%), and 39 (8%) individuals were chronically exposed to
increased levels of neither, one, or both pollutants, respectively. Those exposed to both
pollutants (vs. one or neither) were less likely to have prior cancer (£=.008) or cancer
treatment (P =.012); however, they were more likely to have hypertension (P=.004).

Additional details are provided (Table 1).

Relationship between heightened pollutant exposures and baseline characteristics

Air pollution exposure (continuous, pg/m3) and transportation noise exposure (per 5 dBA
increase) were significantly correlated (/= .344, £<.001, Supplemental Tables 1A and
1B). Higher air pollution exposure additionally associated with lower median income (R =
-.143, P=.002). Further, individuals exposed to higher levels of air pollution were more
likely to have health insurance (P=.015). Transportation noise exposure similarly correlated
with neighborhood median income (R =-.129, £=.002). Higher noise exposure also
associated with distance from the nearest roadway (/R = —.273, £=.003), hypertension (P=
.007), urban residence (P=.024), and in-state residence (£ < .001)

Relationship between pollutant exposures and tissue activities

The number of pollutants to which individuals were exposed (i.e., 0 vs. 1 vs. 2)
incrementally associated with Artl in univariable (standardized 8 [95% CI] = .195 [.052,
.339], p (trend) = .008) and multivariable models (Figures 2 and 3, Table 2). This
relationship remained significant after multivariable adjustment (.247 [.103, .392], p (trend)
=.001). There was no multiplicative interaction between air and noise pollution exposure
with Artl (P=.540). Further, the number of pollutant exposures did not significantly
associate with increased amygdalar (.177 [-.016, .370], p (trend)=.072) or bone marrow
(.143 [-.011, .298], p (trend)=.068) activities (Supplemental Figures 1A and 1B).

Risk for MACE by number of pollutant exposures

Thirty-nine subjects experienced MACE over a median 4.1 (IQR 3.0-5.0) years. Air
pollution exposure as a continuous variable in ug/m3 (HR [95% CI] = 1.258 [1.053-1.502],
P=.011) and transportation noise exposure (per 5 dBA) associated with MACE (1.358
[1.157-1.595], P< .001) in models adjusted for age and sex. Histograms showing MACE
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by number and type of pollutant exposures are shown (Figure 4, Supplemental Figure 2) in
addition to a three-dimensional plot of MACE by type of pollutant exposure (Supplemental
Figure 3). CVD risk factors and neighborhood income associated with MACE (Table 1).
Exposure to a greater number of pollutants (i.e., 0 vs. 1 vs. 2) associated with greater MACE
risk in univariable (2.897 [1.818-4.615], p (trend) < .001) and multivariable models (Table
3, Figures 4 and 5). Notably, individuals exposed to both pollutants had a >10-fold increased
risk of MACE (relative to pollutant unexposed) in fully adjusted models (11.844 [3.154—
44.475], P<.001). A similar relationship was seen when MACE risk was assessed by

type of pollutant exposure (Supplemental Figure 2). Further, among subgroups with lower
presumed CVD risk (Supplemental Table 2), the number of pollutants remained associated
with MACE risk through multivariable adjustments. There was no multiplicative interaction
between heightened air and noise pollution exposure in Cox regression with MACE (P =
.738).

Role of heightened arterial inflammation in the link between pollutant exposures and

MACE

To evaluate the role of Artl in linking heightened pollutant exposures to MACE, the single
mediator path of greater number of pollutant exposures to higher Artl to increased MACE
risk was assessed. This path was significant (indirect path: log odds [95% CI]: .132 [.035,
.284], P< .05, adjusted for age and sex, Figure 6) and accounted for 11.4% of the total
effect. Importantly, the direct path (i.e., the path linking pollutant exposures to MACE after
removing the role of Artl) also remained significant (1.030 [.475, 1.584], < .001).

DISCUSSION

Chronic air pollution and transportation noise exposure have each consistently been shown
to independently associate with atherosclerotic CVD.32:33 Recent work has shown that

each pollutant increases arterial inflammation and that increased arterial inflammation
participates in the separate mechanisms linking each exposure to CVD events; however, data
regarding the impact of combined pollutant exposure on arterial inflammation and adverse
CVD events are limited.414.16.33.34 Fyrthermore, whether heightened arterial inflammation
partially mediates the relationship between combined pollution exposure and adverse CVD
events is unknown. Herein, we addressed these knowledge gaps. Through a retrospective
18F_FDG-PET/CT imaging study, we observed that combined exposure to both noise and air
pollution associates with incrementally increased arterial inflammation and MACE risk after
robust adjustments for potential confounders. Moreover, the relationship between number of
pollutant exposures and MACE is in part mediated by increased arterial inflammation.

Mechanistic insights

Air and noise pollution both lead to pathophysiologic adaptations such as sympathetic and
hypothalamic-pituitary-adrenal axis activation, inflammation, endothelial dysfunction, and
altered biochemical profiles that eventually result in increased cardiovascular risk factors
and CVD.13.14 Although many of these mechanisms are common between air and noise
pollution, the distinct nature of these exposures has prompted the hypothesis that combined
exposure to both pollutants may be synergistic, or at least additive. Given the frequency
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of chronic exposure to both pollutants, a greater understanding of the pathobiological
consequences of the co-exposures is needed.35-37

The entry portals through which these two pollutants initiate their respective pathologic
cascades appear to be distinct. Air pollution enters the body through the lungs and
subsequently increases bone marrow (i.e., leukopoietic) activity. This in turn augments
systemic inflammation and oxidative stress and potentiates downstream CVD.1%.16 Chronic
noise exposure initiates a pathobiological cascade that begins with activation of brain centers
involved in stress perception, such as the amygdala. This triggers a chronic stress reaction
that increases vascular inflammation.#:38 Notably, Artl is a potent marker for CVD risk

that is a downstream consequence of both air pollution and noise exposure when studied
separately (via their respective impacts on leukopoietic activity and stress-associated neural
centers).»16.17 The current study demonstrates that Artl serves as a node of confluence

for both pollutant exposures, in spite of their different routes for entering the body

(Figure 7). Moreover, the study provides novel insights by demonstrating that the link
between combined pollution exposure and heightened MACE risk is partially mediated via
a mechanism that includes increased Artl. Additional contributions to this mechanistic link
likely include adverse health behaviors (e.g., diet, exercise), impaired vascular reactivity,
oxidative stress, and greater risk for typical cardiovascular risk factors among others.14:15.37

Heightened risk for MACE with combined pollutant exposure

While it is clearly demonstrated that air and noise pollution both increase CVD risk
independently of one another, studies to date have yielded inconsistent results regarding
whether combined exposure leads to a higher risk of CVD.35:6:10.39 Several studies have
shown an increased risk for individual adverse CVVD events (e.g., myocardial infarction,
cerebrovascular accident, heart failure) with combined exposure to both air (as nitrogen
dioxide) and noise pollution. However, others have failed to show such a relationship.”-9:11
Such conflicting findings may have resulted from inconsistent measurement of important
confounders, including socioeconomic status, geographic status, and healthcare access.
Additionally, not all prior studies have measured the component of air pollution most
associated with CVD (i.e., PM> 5). The current study overcomes many of these relative
limitations. Notably, the current results show that combined exposure to air (as PM> 5) and
noise pollution substantially increases the risk for MACE (vs. 0 or 1 pollutant exposures)
in a graded and incremental fashion, even after adjustment for confounders including CVD
risk factors, prior cancer or cancer treatment, baseline atherosclerosis, healthcare access
factors, and neighborhood income. As such, individuals with combined exposure to higher
levels of environmental pollutants may merit additional attention to limit the impact of
pollution-associated CVD.

Future directions

These findings underscore the need to attend to the increasing levels of environmental
pollutants to limit their impact on health. In addition to efforts to reduce exposure on

both population and individual scales, these results suggest the possibility of therapeutically
targeting Artl with drugs (e.g., statins) to biologically reduce the impact of combined
pollutant exposure on CVD in those who cannot avoid it. These results support a
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hypothesized model linking increased pollution to MACE via arterial inflammation and
underscore the need for an experimental study with controlled pollutant exposures and a
prospective study with direct measurement of exposures and confounders to confirm these
findings.

The current study has several limitations. The sample was derived from a retrospective
cohort of predominantly white individuals who underwent clinically indicated 18F-FDG-
PET/CT imaging at a single academic medical center and, therefore, may not reflect the
entire population exposed to pollutants. Air and noise pollution exposure were modeled
using each individual’s home address. Exposure misclassification thus is a potential concern,
since pollutant concentrations were not measured at other locations where exposure may
have occurred (e.g., work) and may not reflect a comprehensive picture of individual
exposures. The possibility that some individuals may have relocated during the follow-up
period was not assessed. Further, relatively small numbers of individuals had exposure to
heightened noise in isolation (N = 23) or to both pollutants in combination (N = 39), and
there was a low number of adverse events (N = 39) in the study sample. Additionally,

while we assessed exposure to PM> 5 (the principle component air pollution that is known to
primarily contribute to CVD risk),6 other components of pollution that may also contribute
to CVD were not evaluated. Air pollution data was evaluated from 2017, as this was the
earliest year that provided the most inclusive data for our population, while noise pollution
was evaluated from 2014, the only year data was available from the measurement tool for
noise at the time of the study. As a result, temporal differences in pollutant profiles exist.
Nevertheless, the relationship between air pollution and Artl and MACE has previously been
shown to be consistent across other date ranges of air pollution measurement.1® Further,
health behavior data and additional serological measures of inflammation and oxidative
stress were not available for this retrospective cohort. Lastly, despite the relationships
observed, causality cannot be determined from this retrospective study. Despite these relative
limitations, many of which would theoretically weaken the observed associations, we found
substantial gradients between the number of pollution exposures and measured outcomes
after multivariable adjustments.

CONCLUSIONS

Combined exposure to both air and transportation noise pollution incrementally increases
arterial inflammation and CVD event risk compared to exposure to one or neither pollutant.
Further, combined pollutant exposure may synergistically potentiate CVD via a biological
pathway involving increased arterial inflammation. Prospective studies are required to
confirm these relationships and determine the impact of therapies targeting atherosclerotic
inflammation on pollution-associated CVD.

NEW KNOWLEDGE GAINED

. Combined exposure to air and transportation noise pollution significantly
increases Artl and MACE risk compared to exposure to neither or one pollutant
in isolation.
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. Increased MACE risk consequent to combined pollutant exposure is partially
mediated by a pathway that involves heightened Artl.

. Our study identifies a potential pathologic link that could be targeted by
therapies to attenuate pollution-associated CVD risk
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Study subject selection.
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Relationship between number of heightened pollutant exposures and arterial inflammation.

Error bars represent 95% CI.
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Relationships between types of heightened pollutant exposures and arterial inflammation.
Error bars represent 95% ClI, and the unadjusted P-value for the relationship between the
number of pollutant exposures and arterial inflammation is shown.
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(A) Histogram showing the distribution of MACE by number of pollutant exposures. Error

bars represent 95% CI, and P-values are unadjusted. (B) Point estimates of hazard ratios are
represented by black squares with 95% CI depicted by horizontal lines. * P-values are fully
adjusted with backwards selection.
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Single mediator model adjusted for age and sex for the role of increased arterial
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