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Abstract 

Objectives  To systematically review current research applications of radiomics in patients with cholangiocarcinoma 
and to assess the quality of CT and MRI radiomics studies.

Methods  A systematic search was conducted on PubMed/Medline, Web of Science, and Scopus databases to iden-
tify original studies assessing radiomics of cholangiocarcinoma on CT and/or MRI. Three readers with different experi-
ence levels independently assessed quality of the studies using the radiomics quality score (RQS). Subgroup analyses 
were performed according to journal type, year of publication, quartile and impact factor (from the Journal Citation 
Report database), type of cholangiocarcinoma, imaging modality, and number of patients.

Results  A total of 38 original studies including 6242 patients (median 134 patients) were selected. The median RQS 
was 9 (corresponding to 25.0% of the total RQS; IQR 1–13) for reader 1, 8 (22.2%, IQR 3–12) for reader 2, and 10 (27.8%; 
IQR 5–14) for reader 3. The inter-reader agreement was good with an ICC of 0.75 (95% CI 0.62–0.85) for the total RQS. 
All studies were retrospective and none of them had phantom assessment, imaging at multiple time points, nor 
performed cost-effectiveness analysis. The RQS was significantly higher in studies published in journals with impact 
factor > 4 (median 11 vs. 4, p = 0.048 for reader 1) and including more than 100 patients (median 11.5 vs. 0.5, p < 0.001 
for reader 1).

Conclusions  Quality of radiomics studies on cholangiocarcinoma is insufficient based on the radiomics quality score. 
Future research should consider prospective studies with a standardized methodology, validation in multi-institu-
tional external cohorts, and open science data.

Key points 

•	 The quality of current radiomics studies on cholangiocarcinoma is insufficient, with a median radiomics quality 
score of 8–10, corresponding to 22–28% of the ideal quality score.

•	 None of the current studies conducted phantom assessment, imaging at multiple time points, prospective regis-
tration in a trial database, nor cost-effectiveness analysis.

•	 The inter-reader agreement of the radiomics quality score is good (ICC of 0.75; 95% CI 0.62–0.85) among read-
ers with different levels of experience.
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Introduction
Radiomics is a rapidly expanding area of active research 
with promising results based on the extraction and 
analysis of a large number of quantitative features from 
biomedical images [1]. Recent radiomics studies aimed 
to construct predictive models that can be combined 
with qualitative radiological features, clinical charac-
teristics, and laboratory markers to develop decision 
support tools and improve patients’ care [1]. Several 
research studies proposed models based on computed 
tomography (CT) and magnetic resonance imaging 
(MRI) exams, with high performances for preopera-
tive lesion characterization, prediction of treatment 
response, and assessment of prognosis after surgical 
resection [2]. Despite the promising results in research 
setting, there is still very limited translation in clini-
cal practice due to the limitations of current radiom-
ics research. These include heterogeneity of imaging 
acquisition protocols, segmentation, type of extracted 
features, and lack of validation in multicenter setting [3, 
4]. Quality of radiomics studies represents a significant 
landmark for improvement of radiomics research and 
future clinical applications.

The radiomics quality score (RQS) has been proposed 
by Lambin et al. [5] for assessing the quality of radiom-
ics studies based on 16 items related to the main steps of 
radiomics workflow. In the setting of liver imaging, recent 
systematic reviews have applied the RQS for assess-
ment of quality of radiomics studies on hepatocellular 
carcinoma [6–9] and hepatic metastases [10] reporting 
an overall RQS of 8–14 (corresponding to 23–39% of 
the total score) and 10 (28%), respectively. Cholangio-
carcinoma is the most common malignancy originating 
from the bile ducts and the second most common pri-
mary intrahepatic carcinoma [11]. Cholangiocarcinoma 
can occur in various location with heterogeneous imag-
ing appearance on CT or MRI, and it is characterized by 
high biological aggressiveness and poor prognosis [11]. 
Recently, a  growing number of radiomics applications 
have been proposed in patients with cholangiocarcinoma 
imaged with either CT or MRI, including differential 
diagnosis with other hepatic malignancies, prediction 
of lymph node metastasis, and prediction of recurrence 
after curative resection. However, to date the quality of 
radiomics studies in cholangiocarcinoma has not been 
comprehensively investigated. Assessment of quality in 
radiomics research studies is a necessary and fundamen-
tal step for the improvement of radiomics research and 
future implementation in clinical practice.

This systematic review aims to provide an overview of 
the current research applications of radiomics in patients 
with cholangiocarcinoma and to assess the quality of CT 
and MRI radiomics studies.

Materials and methods
This study was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-anal-
yses (PRISMA) guidelines [12]. The review protocol was 
registered on the International Prospective Register of 
Systematic Reviews (CRD42022295218).

Literature search strategy
A systematic search was conducted to identify studies 
on PubMed/Medline, Web of Science, and Scopus data-
bases using the following terms: “texture,” “radiomics,” 
“machine learning,” “artificial intelligence,” “cholangiocar-
cinoma” and “biliary cancer.” Detailed search strings are 
reported in the Additional file 1. The literature search was 
performed for articles published between 01/01/2010 
and 30/11/2021.

Eligibility criteria
After removal of duplicate studies, three Authors (R.Ca., 
F.V., and L.U., radiologists, each with five years of expe-
rience in radiomics studies) independently evaluated 
the titles and abstracts of all studies to exclude ineligible 
papers according to the following criteria: (1) non-Eng-
lish studies; (2) animal studies; (3) abstracts of conference 
papers; (4) reviews, systematic reviews, and case reports. 
The full texts of the relevant articles were read to deter-
mine their inclusion. The following eligibility criteria 
were applied during full-text manuscript review for the 
inclusion of original papers: (1) radiomics studies based 
on the evaluation of quantitative features obtained from 
tumor segmentations of cholangiocarcinoma; (2) features 
extracted from CT or MRI exams. Studies assessing only 
semantic features, other lesions than cholangiocarci-
noma, or features on other diagnostic exams (i.e., ultra-
sound or PET/CT due to their limited applications in 
cholangiocarcinoma) were excluded. Any disagree-
ment between reviewers was resolved with consensus 
discussion.

Data extraction
The following data were collected from the included 
studies: authors, journal with its type, journal ranking 
according to quartile and impact factor, year of publica-
tion of the study and country based on the Institutions 



Page 3 of 15Cannella et al. Insights into Imaging           (2023) 14:21 	

in which the CT/MRI of the study population exams 
were acquired. The journals were classified into imag-
ing, clinical, and computer science according to the 
main journal category of Web of Science. The journal 
quartile, according to the main journal scientific sec-
tor, and impact factor were retrieved from the Journal 
Citation Report database, and the quartile and impact 
factor of the year of publication were registered. For 
articles published in 2021–2022, the 2020 reports were 
considered as this is the last available at the time of 
data analysis. The full manuscripts were assessed to 
collect the following data: type of the study (retrospec-
tive or prospective), number of involved Institutions, 
total number of included patients (divided into training 
and validation cohorts), type of cholangiocarcinoma 
(i.e., intrahepatic, perihilar, or extrahepatic), imaging 
modality (CT and/or MRI), sequences and/or phases in 
which the segmentation was performed, software used 
for segmentation and imaging analysis, and number of 
extracted radiomics features.

The studies were grouped according to the main pur-
pose of investigation: diagnostic (including radiom-
ics analysis for the differential diagnosis among hepatic 
lesions, prediction of tumor histopathological differen-
tiation and markers, or lymph node involvement), prog-
nostic (prediction of early recurrence and survival), and 
treatment response (response to locoregional or systemic 
treatments) studies.

Radiomics quality score assessment
Three different readers from distinct Institutions and 
with different levels of experience (Reader 1, R1, A.P., 
a radiologist with 4  years of experience in radiomics 
research and with experience on the RQS assessment, 
Reader 2, R2, M.E.K., a radiologist with 10 years of expe-
rience in radiological research and 4 years of experience 
in radiomics research, and Reader 3, R3, E.P., a radiolo-
gist with 9 years of experience in radiological research), 
not involved in manuscript screening, independently 
evaluated all the studies using the RQS [5]. Before the 
manuscript assessment, a training session was held 
to discuss the main items of the RQS and examples on 
manuscripts not included in this systematic review. 
Both full-text manuscripts and Supplementary Materi-
als were screened. The RQS consists of 16 items divided 
by three main checkpoints: the first checkpoint includes 
item 1, the second includes items from 2 to 4, and the 
third is composed by items from 5 to 16 [5]. The detailed 
description of the RQS is available in the Additional file 2: 
Table  S1. The total RQS (ranging from − 8 to + 36) and 
the percentage of the total score (0–100%) were recorded 
from all three readers [5].

Statistical analysis
Categorical variables were reported as numbers, pro-
portions, and percentages, while continuous variables 
were reported as medians and interquartile ranges 
(IQR), after testing for normal distribution by apply-
ing the Shapiro–Wilk normality test. Adherence rate 
to the reporting quality of the RQS was calculated for 
the most experience reader (R1), considering the pro-
portion of articles obtaining at least one point in each 
specific item. Differences in total RQS according to 
publication and study characteristics were evaluated 
by using the Kruskal–Wallis or the Mann–Whitney U 
test, as appropriate. The correlation between total RQS, 
journal impact factor, and number of included patients 
was calculated by using the Spearman’s rank correlation 
coefficient (Spearman’s ρ).

The intraclass correlation coefficient (ICC) with 95% 
confidence intervals (CI), based on an absolute-agree-
ment with 2-way mixed-effects model, was used to assess 
the inter-reader agreement in the total and percentage 
RQS among the three readers. Agreement was catego-
rized as poor (ICC < 0.50), moderate (ICC = 0.50–0.75), 
good (ICC = 0.75–0.90), or excellent (ICC > 0.90) [13].

A p value < 0.05 was considered to be statistically sig-
nificant. Statistical analyses were conducted by using the 
SPSS Software (v26.0. IBM, Armonk, NY, USA).

Results
Literature search
The systematic search initially identified 503 articles 
(Fig. 1). After removing 214 duplicated manuscripts, 289 
were screened by their title and abstracts, and 214 studies 
underwent full-text screening to assess their eligibility. 
Finally, 38 original articles on radiomics of cholangiocar-
cinoma were included for RQS assessment [14–51].

Characteristics of the included studies
The characteristics of included publications are summa-
rized in Table  1. Among the included original articles, 
18/38 (47.4%) were published in an imaging journal, 
15/38 (39.5%) in a clinical journal, and the remaining 
(5/38, 13.1%) in a computer science journal. Twenty-one 
(55.3%) articles were published in 2021, 9/38 (23.7%) 
in 2020, 5/38 (13.2%) in 2019, and 3/38 (7.8%) in 2018 
or earlier years. The 17/38 (44.7%) of included articles 
were published in first quartile journals, with an over-
all median impact factor of 4.43 (IQR, 3.50–5.31). The 
study population most frequently originated from China 
(27/38, 71.1%), followed by the USA (3/38, 7.8%). Thirty 
(79.0%) studies were performed at one Institution, 7/38 
(18.4%) were performed in two Institutions, and only one 
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(2.6%) involved six different Centers. All the included 
studies were conducted retrospectively.

Study purpose and methodology are detailed in 
Table 2. The most common study aims (Fig. 2) included 
differential diagnosis against other hepatic lesions 
(10/38, 26.3%), prediction of survival after surgical 
resection (10/38, 26.3%), and prediction of lymph node 
metastases (7/38, 18.4%). Only one article explored the 
potential of radiomics for the prediction of therapeutic 
response to radioembolization in intrahepatic cholangi-
ocarcinoma [23]. The total number of patients was 6242 
(median = 134 per study; IQR, 98–198). Intrahepatic, 

perihilar, and extrahepatic cholangiocarcinoma were 
assessed in 29/38 (76.3%), 4/38 (10.5%), and 5/38 (13.2%) 
papers, respectively. CT was the most commonly used 
imaging technique (20/38, 52.6%), while MRI was 
adopted in 16/38 (42.1%) studies. Only two (5.3%) used 
both techniques. Lesion segmentations for radiomics 
features extraction were more commonly performed in 
the hepatic arterial phase (27/38, 71.1%) and/or portal 
venous phase (25/38, 65.8%), almost always by manually 
drawing the region of interest (35/38, 92.1%). Segmenta-
tion of the peritumoral or adjacent hepatic parenchyma 
was performed in only 5/38 (13.1%) studies.

Fig. 1  Flow diagram of the study selection process
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Radiomics quality score
Results of the total RQS by the three independent readers 
are summarized in Table 3. Details on the items’ score by 
each reader are provided in the Additional file 2: Tables 
S2, S3, and S4. The median RQS was 9 (corresponding to 
the 25.0% of the total RQS; IQR 1–13) for R1, 8 (22.2%, 
IQR 3–12) for R2, and 10 (27.8%; IQR 5–14) for R3. The 

inter-reader agreement for was good with an ICC of 0.75 
(95% CI 0.62–0.85) for the total RQS and 0.77 (95% CI 
0.65–0.86) for the RQS percentage scores.

Adherence rate of each item (according to R1) is 
illustrated in Fig.  3. For the first checkpoint (item 1), 
33/38 (88.6%) studies provided a well-documented 
image protocol. In the second checkpoint (items 

Table 1  General characteristics of the included studies

Journal quartile and impact factor are based on the year of publication. For articles published in 2021–2022 the 2020 data were considered

NA not available

Articles Journal Journal type Publication year Quartile* Impact factor* Country Centers

Chu [14] Eur Radiol Imaging 2021 Q1 5,315 China Two

Duda [15] Studies in Logic, Grammar 
and Rhetoric

Computer science 2013 Q2 NA France Two

Hamn [16] Eur Radiol Imaging 2019 Q1 4,101 US Single

Huang [17] Eur J Cancer Clinical 2021 Q1 9,162 China Single

Ji [18] Eur Radiol Imaging 2019 Q1 4,101 China Single

Ji [19] Radiology Imaging 2019 Q1 7,931 China Single

King [20] Cancer Imaging Imaging 2020 Q2 3,909 US Single

Liang [21] Front Oncol Clinical 2018 Q2 4,137 China Single

Liu [22] Eur Radiol Imaging 2021 Q1 5,315 Canada Single

Mosconi [23] Eur Radiol Imaging 2020 Q1 5,315 Italy Two

Nakai [24] Jpn J Radiol Imaging 2021 Q3 2,374 Japan Single

Park [25] Eur Radiol Imaging 2021 Q1 5,315 Korea Six

Park [26] Korean J Radiol Imaging 2021 Q2 3,500 Korea Single

Ponnoprat [27] Med Biol Eng Comput Computer science 2020 Q3 2,602 Thailand Single

Qin [28] Liver Int Clinical 2020 Q2 5,828 China Two

Sadot [29] PLoS One Clinical 2015 Q1 3,057 US Single

Silva [30] Abdom Radiol Imaging 2021 Q2 3,039 Italy Single

Tang [31] BMC Cancer Clinical 2021 Q2 4,430 China Single

Tang [32] World J Surg Oncol Clinical 2021 Q2 2,754 China Single

Wang [33] Comput Biol Med Computer science 2021 Q1 4,598 China Single

Wang [34] Front Oncol Clinical 2021 Q2 6,244 China Two

Xu [35] Technol Cancer Res Treat Computer science 2021 Q3 3,399 China Single

Xu [36] Phys Med Biol Imaging 2021 Q2 3,609 China Single

Xu [37] Theranostics Clinical 2019 Q1 8,579 China Single

Xue [38] Front Oncol Clinical 2021 Q2 6,244 China Two

Xue [39] Abdom Radiol Imaging 2021 Q2 3,039 China Two

Yang [40] Cancer Lett Clinical 2020 Q1 8,679 China Single

Yao [41] JMIR Med Inform Computer science 2020 Q3 2,955 China Single

Zhang [42] ESMO Open Clinical 2020 Q1 6,540 China Single

Zhang [43] Ann Transl Med Clinical 2020 Q3 3,932 China Single

Zhang [44] Ann Transl Med Clinical 2020 Q3 3,932 China Single

Zhang [45] Eur Radiol Imaging 2021 Q1 5,315 China Single

Zhao [46] Eur J Radiol Imaging 2021 Q2 5,315 China Single

Zhao [47] J Magn Reson Imaging Imaging 2021 Q1 4,813 China Single

Zhao [48] Cancer Imaging Imaging 2019 Q3 2,193 China Single

Zhou [49] Eur Radiol Imaging 2021 Q1 5,315 China Single

Zhu [50] Sci Rep Clinical 2021 Q1 4,380 China Single

Zhu [51] Sci Rep Clinical 2021 Q2 4,380 China Single
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Table 2  Main purposes and methodology of the included studies

Articles Purpose CCA type Patients 
(training; 
validation)

Imaging 
modality

Sequences for 
analysis

Segmentation 
method

Software Number 
of 
features

Chu [14] Prediction of 
futile resection

Intrahepatic 203 (142; 61) CT PVP Manual ITK-SNAP; A.K. 
software v2.0.0

1044

Duda [15] Differential 
diagnosis 
between HCC 
and iCCA​

Intrahepatic 76 CT PRE-HAP-PVP Manual In-house 61

Hamn [16] Differential 
diagnosis 
among hepatic 
lesions

Intrahepatic 494 (434; 60) MRI HAP-PVP-DP Manual Python v3.5 NA

Huang [17] Prediction 
of stage, 
perineural, and 
microvascular 
invasion

Extrahepatic 101 MRI T1-T2-DWI-ADC Manual MadZa v4.6 1208

Ji [18] Prediction of 
lymph node 
metastasis and 
survival

Intrahepatic 155 (103; 52) CT HAP Manual 3D Slicer v4.9.0 105

Ji [19] Prediction of 
lymph node 
metastasis and 
survival

Extrahepatic 247 (177; 70) CT PVP Manual ITK-SNAP v3.6; 
Python

93

King [20] Prediction of 
tumor grade 
and survival

Intrahepatic 73 CT/MRI PRE-HAP-PVP Manual Osirix v5.5.2; 
MATLAB 
vR2016b

14

Liang [21] Prediction of 
early recurrence

Intrahepatic 209 (139; 70) MRI HAP Manual ITK-SNAP v3.6; 
MATLAB R2015a

467

Liu [22] Differential 
diagnosis 
between HCC, 
iCCA, and cHCC-
CCA​

Intrahepatic 85 CT/MRI PRE-HAP-PVP-
DP-HBP-DWI-
T2-In-Phase

Manual MintLe-
sion + Pyradi-
omics v2.1.2

1419

Mosconi [23] Prediction of 
response to 
radioemboliza-
tion

Intrahepatic 55 CT HAP-PVP-DP Manual LIFEx 8

Nakai [24] Differential 
diagnosis 
between HCC 
and iCCA​

Intrahepatic 617 (493; 
62 + 62)

CT PRE-HAP-DP Manual RectLabel 
v3.02.7; Python 
v3.6.4; PyTorch 
v1.5.0

NA

Park [25] Prediction of 
survival after 
surgical resec-
tion

Intrahepatic 354 (233; 112) CT HAP-PVP Manual In-house (Asan-
FEx); MATLAB 
R2015a

661

Park [26] Prediction of 
survival after 
surgical resec-
tion

Intrahepatic 89 CT HAP Automatic; 
semi-automatic

Syngo.via Fron-
tier, RADIOMCIS 
prototype

19

Ponnoprat [27] Differential 
diagnosis 
between HCC 
and iCCA​

Intrahepatic 257 CT PRE-HAP-PVP-
DP

Automatic NA NA

Qin [28] Prediction of 
early recurrence

Perihilar 274 (167; 
70 + 37)

CT HAP-PVP-DP Manual RadiAnt DICOM 
Viewer v4.6.5; 
MATLAB v9.2.0; 
Mazda v4.6

18,120



Page 7 of 15Cannella et al. Insights into Imaging           (2023) 14:21 	

Table 2  (continued)

Articles Purpose CCA type Patients 
(training; 
validation)

Imaging 
modality

Sequences for 
analysis

Segmentation 
method

Software Number 
of 
features

Sadot [29] Correlation 
with molecular 
profile

Intrahepatic 25 CT HAP-PVP Semi-automatic MATLAB 5

Silva [30] Prediction of 
survival after 
surgical resec-
tion

Intrahepatic 78 CT PVP Manual 3D Slicer v4.10.2 108

Tang [31] Prediction of 
lymph node 
metastasis and 
differentiation

Extrahepatic 100 MRI T1-T2-DWI-ADC Manual Madza v4.6 1200

Tang [32] Prediction of 
survival after 
surgical resec-
tion

Intrahepatic 101 CT PVP Manual LIFEx v3.74 42

Wang [33] Differential 
diagnosis 
between HCC, 
iCCA, and cHCC-
CCA​

Intrahepatic 196 MRI HAP-PVP-DP Manual ITK-SNAP v3.6; 
Pyradiomics

1316

Wang [34] Prediction of 
lymph node 
metastasis

Perihilar 179 CT HAP Manual ITK-SNAP 1067

Xu [35] Differential 
diagnosis 
between iCCA 
and lymphoma

Intrahepatic 129 CT DP Manual LIFEx v3.74,
Python v3.6.4

45

Xu [36] Prediction of 
early and late 
recurrence

Intrahepatic 209 (159; 50) MRI T2 Manual ITK-SNAP; 
MATLAB

2268

Xu [37] Prediction of 
lymph node 
metastasis

Intrahepatic 148 (106; 42) MRI HAP Manual ITK-SNAP;
MATLAB V2017b

491

Xue [38] Diagnosis of 
iCCA in patients 
with intrahe-
patic lithiasis

Intrahepatic 131 (96; 35) CT HAP Manual LIFEx 52

Xue [39] Differential 
diagnosis 
between iCCC 
and inflamma-
tory masses

Intrahepatic 145 (110; 35) CT HAP-PVP Manual LIFEx 52

Yang [40] Prediction of 
lymph node 
metastasis and 
differentiation

Extrahepatic 100 (80; 20) MRI T1-T2-DWI Manual MaZda v4.6 300

Yao [41] Prediction of 
lymph node 
metastasis and 
differentiation

Extrahepatic 110 (88; 22) MRI T1-T2-DWI-ADC Manual MaZda v4.6 300

Zhang [42] Prediction of 
PD-1/PD-L1 and 
survival

Intrahepatic 98 MRI HAP-PVP Manual ITK-SNAP;
AK software

NA

Zhang [43] Prediction of 
survival after 
surgical resec-
tion

Intrahepatic 136 MRI DP-DWI Manual AK software 384
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from 2 to 4), 26/38 (68.4%) studies had multiple seg-
mentations, but none performed phantom assess-
ment or imaging at multiple time points. In the third 

checkpoint (items from 5 to 16), feature reduction 
and adjustment for multiple tests was employed in 
30/38 (78.9%) cases, with non-radiomics features 

Table 2  (continued)

Articles Purpose CCA type Patients 
(training; 
validation)

Imaging 
modality

Sequences for 
analysis

Segmentation 
method

Software Number 
of 
features

Zhang [44] Differential 
diagnosis 
between iCCA 
and cHCC-CCA​

Intrahepatic 186 (132; 57) CT HAP-PVP Manual ITK-SNAP v3.6;
AK software

396

Zhang [45] Prediction of 
immunophe-
notyping and 
survival

Intrahepatic 78 MRI PRE-HAP-PVP-
DWI-T2

Manual ITK-SNAP v3.6; 
Pyradiomics

1037

Zhao [46] Prediction of 
survival after 
surgical resec-
tion

Perihilar 184 (110; 74) MRI HAP-PVP Manual ITK-SNAP v3.6;
AK software 
v3.2.2

396

Zhao [47] Prediction of 
early recurrence

Perihilar 184 (128; 56) MRI HAP-PVP Manual ITK-SNAP v3.6;
AK software 
v3.2.3

402

Zhao [48] Prediction of 
early recurrence

Intrahepatic 47 MRI HAP-PVP-DP-T2 Manual ITK-SNAP v2.2.0;
AK software

396

Zhou [49] Prediction of 
microvascular 
invasion

Intrahepatic 126 (88; 38) MRI HAP-PVP-DP Manual ITK-SNAP v3.6: 
Pyradiomics 
v2.12

2364

Zhu [50] Prediction of 
IDH mutation

Intrahepatic 138 CT PRE-HAP-PVP-
DP

Manual Pyradiomics 72

Zhu [51] Prediction of 
early recurrence

Intrahepatic 125 (92; 33) CT PRE-HAP-PVP-
DP

Manual Pyradiomics 87

ADC apparent diffusion coefficient; CCA​ cholangiocarcinoma; cHCC-CCA​ combined hepatocellular-cholangiocarcinoma; CT computed tomography; DP delayed phase; 
DWI diffusion weighted imaging; HAP hepatic arterial phase; HBP hepatobiliary phase; HCC hepatocellular carcinoma; iCCA​ intrahepatic cholangiocarcinoma; MRI 
magnetic resonance imaging; NA not available; PRE pre-contrast phase; PVP portal-venous phase

Fig. 2  Overview of radiomics research purposes. Notably each study could include multiple purposes
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included in 22/38 (57.9%) multivariate analyses. Only 
two (5.3%) articles discussed biological correlates 
related to the radiomics models. Cutoff analyses, dis-
crimination statistics, and calibration statistics were 
available in 9/38 (23.7%), 37/38 (97.4%), and 14/38 

(36.8%) investigations, respectively. Regarding the 
validation of the radiomics models, in most studies 
(23/38, 60.5%) it was based on an internal cohort, but 
validation was lacking in 13/38 (34.2%) investigations. 
Comparison with the gold standard and discussion 

Table 3  Total radiomics quality score (RQS) with percentage of the total score of the included studies assessed by three independent 
readers

Reader 1 Reader 2 Rader 3

Articles Total Percentage Total Percentage Total Percentage

Chu [14] 11 30.6% 11 30.6% 14 38.9%

Duda [15] 1 2.8% −1 0% −6 0%

Hamn [16] 3 8.3% 8 22.2% 7 19.4%

Huang [17] 8 22.2% 4 11.1% 5 13.9%

Ji [18] 16 44.4% 13 36.1% 15 41.7%

Ji [19] 14 38.9% 15 41.7% 14 38.9%

King [20] −4 0% −5 0% 2 5.6%

Liang [21] 12 33.3% 14 38.9% 6 16.7%

Liu [22] 1 2.8% 5 13.9% −2 0%

Mosconi [23] 0 0% 5 13.9% −2 0%

Nakai [24] 4 11.1% 6 16.7% 14 38.9%

Park [25] 18 50.0% 18 50.0% 17 47.2%

Park [26] −2 0% 3 8.3% −4 0%

Ponnoprat [27] 9 25.0% 2 5.6% 11 30.6%

Qin [28] 15 41.7% 11 30.6% 15 41.7%

Sadot [29] −5 0% −4 0% −1 0%

Silva [30] −1 0% 5 13.9% −3 0%

Tang [31] 8 22.2% 7 19.4% 13 36.1%

Tang [32] 13 36.1% 8 22.2% 15 41.7%

Wang [33] −1 0% −1 0% 2 5.6%

Wang [34] 12 33.3% 14 38.9% 13 36.1%

Xu [35] 9 25.0% 10 27.8% 12 33.3%

Xu [36] 10 27.8% 9 25.0% 7 19.4%

Xu [37] 16 44.4% 13 36.1% 13 36.1%

Xue [38] 13 36.1% 15 41.7% 13 36.1%

Xue [39] 11 30.6% 16 44.4% 14 38.9%

Yang [40] 8 22.2% 7 19.4% 9 25.0%

Yao [41] 9 25.0% 9 25.0% 11 30.6%

Zhang [42] 8 22.2% 2 5.6% 5 13.9%

Zhang [43] 2 5.6% 6 16.7% 4 11.1%

Zhang [44] 15 41.7% 12 33.3% 14 38.9%

Zhang [45] 3 8.3% −1 0% 9 25.0%

Zhao [46] 15 41.7% 12 33.3% 6 16.7%

Zhao [47] 15 41.7% 13 36.1% 15 41.7%

Zhao [48] −2 0% −2 0% 6 16.7%

Zhou [49] 9 25.0% 11 30.6% 12 33.3%

Zhu [50] −5 0% 3 8.3% 11 30.6%

Zhu [51] 13 36.1% 12 33.3% 9 25.0%

Median
(IQR)

9
(1–13)

25.0
(2.8–36.1)

8
(3–12)

22.1
(8.3–33.3)

10
(5–14)

27.8
(13.9–38.9)
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of potential clinical utility were addressed in 20/38 
(52.6%) and 11/38 (28.9%) studies, respectively. None 
of the assessed article was prospectively registered in 
a trial database or provided cost-effectiveness analysis, 
and only three (7.9%) made their code or data publicity 
available.

Subgroup analyses
Results of the subgroup analyses are reported in 
Table  4. No statistical differences were found accord-
ing to the type of journal, year of publication, journal 
quartile, type of included cholangiocarcinoma, and 
imaging modalities. None of the RQS items (according 
to R1) was significantly higher in first quartile journals 
(p ≥ 0.101). Journals with impact factors > 4 published 
studies with significantly higher RQS according to the 
R1 (p = 0.048) and R2 (p = 0.035). The RQS was sig-
nificantly higher in studies including more than 100 
patients (p < 0.001 for all the readers).

For all the three readers, there was a statistically sig-
nificant high correlation between the total RQS and 
number of included patients (p < 0.001 for all the read-
ers) (Table 5). No significant correlation was observed 
between the total RQS and other characteristics.

Discussion
Inadequate quality of radiomics studies is emerging 
as a major issue of current literature, contributing to 
the slow transition from research to clinical applica-
tion in this field [52]. This systematic review of 38 radi-
omics studies on cholangiocarcinoma demonstrates a 
suboptimal quality of the current publications assessed 
through the RQS, with an overall total score of 8–10, cor-
responding to about one quarter of the ideal quality for 
this type of study. This is in line with other systematic 
reviews based on the RQS assessing radiomics of hepatic 
lesions, reporting a median RQS of 8–14 correspond-
ing to 23–39% of the total score [6–10]. Importantly, in 
this review none of the included studies had phantom 
assessment, imaging at multiple time points, prospective 
registration in a trial database, nor performed cost-effec-
tiveness analysis. These items account for 10 points (28%) 
of the total RQS [5].

Radiomics has been applied as a diagnostic tool for 
the differential diagnosis between cholangiocarcinoma 
and other hepatic tumors, for preoperative identifi-
cation of histopathological and molecular markers 
associated with poor prognosis, and for predicting 
postoperative survival, while there is still a very lim-
ited experience on therapeutic response and advanced 

Fig. 3  Adherence rate to the reporting quality of each item included in the radiomics quality score according to the most experienced reader (R1)



Page 11 of 15Cannella et al. Insights into Imaging           (2023) 14:21 	

lesions that were not suitable for surgical resection [23]. 
To date, all studies on radiomics of cholangiocarcinoma 
are retrospective, mostly based on a single-center data-
set with lack of validation cohorts in 34% of them. This 
is a relevant issue, determining a loss of 5 points in the 
total RQS, as external validation is a key item prior 

to clinical implementation of classification models. 
Only the study by Park et  al. [25] validated a radiom-
ics model for the prediction of postoperative outcome 
in patients with intrahepatic cholangiocarcinoma in 
an external test dataset from five different institutions 
(obtaining the maximum score of + 5 points in item 12 
of the RQS). This means that even though most stud-
ies focused on radiomics of cholangiocarcinoma have 
a great potential, their results are still confined to the 
academic centers where the model originated. Further 
investigations should focus on the validation of existing 
models in a multicentric context rather than propos-
ing alternative models based on a single-center experi-
ences. Prospective validation of the radiomics models 
is also needed to evaluate their potential in clinical 
practice focusing on relevant patients’ outcomes such 
us evaluation of overall survival after treatment. In 
this setting, open science data providing the code and 
radiomics data is of utmost importance to facilitate the 
widespread application of radiomics and the reproduc-
ibility of the proposed models. Nevertheless, less than 

Table 4  Subgroup analyses of total radiomics quality score assessed by the three independent readers

Continuous variables are expressed as medians and interquartile range (25th to 75th  percentile) in parenthesis. Continuous variables were compared using the 
Kruskal–Wallis or the Mann–Whitney U test. Statistically significant values (p < 0.05) are highlighted in bold

 CT, Computed Tomography; MRI, Magnetic Resonance Imaging

Reader 1 Reader 2 Reader 3

Group N RQS total p value RQS total p value RQS total p value

Journal type 0.542 0.302 0.562

 Imaging 18 6.5 (0–14) 8.5 (4.5–13) 8 (1–14)

 Clinical 15 12 (8–13) 8 (4–13) 11 (5–13)

 Computer science 5 9 (1–9) 2 (−1 to 9.5) 11 (−2 to 11.5)

Publication year 0.772 0.322 0.352

 2021 21 9 (2–13) 9 (4.5–12.5) 12 (5.5–14)

 2013–2020 17 8 (0.5–14.5) 7 (0.5–12.5) 7 (3–13.5)

Journal quartile 0.787 0.510 0.814

 Q1 17 8 (0.5–14.5) 7 (2.5–13) 9 (3.5–14)

 Q2 14 11.5 (0.5–13) 10 (4.5–14) 8 (0.7–13.2)

 Q3 7 9 (2–9) 6 (2–10) 11 (6–14)

Impact factor 0.048 0.035 0.224

  ≤ 4 15 4 (−2 to 10) 6 (−1 to 9) 7 (−1 to 14)

  > 4 23 11 (3–15) 11 (5–13) 11 (6–14)

Cholangiocarcinoma 0.074 0.124 0.152

 Intrahepatic 29 8 (−0.5 to 12.5) 6 (2–12) 9 (2–13.5)

 Perihilar/extrahepatic 9 12 (8–15) 11 (7–13.5) 13 (7.5–14.5)

Imaging modality 0.361 0.206 0.067

 CT 20 11 (0.2–13.7) 10.5 (3.5–13.7) 13 (1.5–14)

 MRI/MRI and CT 18 8 (1.7–10.5) 7 (1.2–11.2) 6.5 (4.7–11.2)

Number of patients  < 0.001  < 0.001  < 0.001
 ≤ 100 12 0.5 (−2 to 6.7) 2.5 (−1.7 to 5) 0.5 (−2.7 to 8.2)

 > 100 26 11.5 (8.7–15) 11 (7.5–13.2) 12.5 (7–14)

Table 5  Correlation between total radiomics quality score 
assessed by three independent readers, journal impact factor, 
number of included patients, and number or radiomics features

 Numbers represent the Spearman’s rank correlation coefficient (ρ), unless 
otherwise specified. Statistically significant values (p < 0.05) are highlighted in 
bold

Reader 1 Reader 2 Reader 3

Journal impact factor
p value

0.315
0.057

0.288
0.083

0.089
0.602

Number of patients
p value

0.593
 < 0.001

0.587
 < 0.001

0.596
 < 0.001

Number of features
p value

0.265
0.130

0.160
0.368

0.200
0.256
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10% of studies included in this systematic review made 
their code or data publicity available.

Despite the need of well-conducted radiomics work-
flow has been emphasized over the last years, the qual-
ity of published radiomics papers on cholangiocarcinoma 
according to the RQS has not increased when compar-
ing 2021 versus 2013–2020. High-impact journals have 
provided guidance highlighting the need for robust data 
and accurate methodology for radiomics research [1, 
53, 54]. However, the analysis of current cholangiocar-
cinoma studies demonstrates no significant difference 
in the RQS based on the journal type or quartile, even 
though a tendency of higher RQS was observed in jour-
nals with impact factor greater than 4 in two out of three 
readers. In prior studies, no difference according to jour-
nal metrics were found by Spadarella et  al. [55] in RQS 
of nasopharyngeal cancer studies, while Ponsiglione et al. 
[56] and Chang et  al. [57] observed significantly higher 
RQS in journals with higher impact factor or quartile 
for cardiac imaging studies, respectively. Therefore, the 
explosion of research on radiomics, machine learning, 
and data-based science led to an increased number of 
published radiomics papers not followed by a significant 
increase in quality of those studies. This may be related to 
the overall tendency to perform and publish explorative 
radiomics studies based on the novelty of the topic rather 
than to improve the strict methodology and workflow of 
radiomics analysis [52, 58]. Standardization of the acqui-
sition protocols in liver imaging is a fundamental effort 
in order to minimize the variability of radiomics features 
across centers and scanners [59]. Furthermore, the Inter-
national Biomarker Standardization Initiative (IBSI) is 
working toward standardization of extraction of quan-
titative features extracted from medical images and it 
already provided reference values for radiomics features 
on CT [60].

The RQS provides a detailed description of each item’s 
score [5]. However, its application can be affected by 
the reader’s experience and interpretation of each item 
according to the data available in the papers. All the 
studies included in this review were evaluated by three 
independent readers with different levels of research 
experience and RQS assessment, which resulted in a 
good inter-observer agreement. Few studies evaluated 
the reproducibility of the RQS with discordant results 
(reported ICC between 0.57 and 0.99) and, to our knowl-
edge, none of these studies evaluated the inter-observed 
agreement in readers from different Institutions [55, 61–
63]. It should be noted that the RQS is based on expert 
opinion and currently not endorsed by scientific socie-
ties and it is limited by strong dependence on the meth-
odological quality of the ideal radiomics workflow with 
low relevance to the potential clinical impact. Some of 

the items, such as phantom assessment and imaging at 
multiple time points, remain difficult to be investigated 
when considering real-word data based on retrospective 
observational studies. Nevertheless, the application of 
this score could be encouraged for the quality assessment 
of the papers submitted to peer-review journals in order 
to facilitate manuscript decisions and improve the overall 
quality of radiomics studies.

Some limitations pertain to this study. First, a meta-
analysis was not performed due to the heterogeneity 
of the included studies, with a relatively small number 
of papers assessing the radiomics models for a specific 
aim, which makes challenging to pool data for a strong 
meta-analysis. Secondly, cholangiocarcinomas are rarer 
tumors compared to hepatocellular carcinoma and 
hepatic metastasis, and the applications of the radiom-
ics in this field is relatively new. This is demonstrated 
by the fact that 55% of the included studies were pub-
lished in 2021. Finally, papers with radiomics applied to 
cholangiocarcinoma on ultrasound and PET/CT were 
not included due to the limited clinical applicability in 
patients with cholangiocarcinoma and highly explora-
tory nature of radiomics analyses with these imaging 
modalities.

In conclusion, radiomics studies on cholangiocarci-
noma demonstrated an insufficient quality with a low 
total radiomics quality score. Further prospective stud-
ies are needed with a standardized methodology, vali-
dation in multi-imitational external cohorts, and open 
science data in order to translate the promising research 
results in the field of radiomics into useful applications 
to improved patients’ management in many clinical 
scenarios.
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