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Abstract
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/
BiP) dependent on their location, have immunoregulatory or anti-inflammatory func-
tions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) matu-
ration and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces 
anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell 
responses. These latter functions rebalance immune homeostasis in inflammatory 
diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant 
agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on can-
cer cell surfaces acts as an ‘eat-me’ signal and facilitates improved elimination of 
stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endog-
enous CRT translocation to the cell surface can improve the removal of cancer cells. 
However, infused recombinant CRT dampens this cancer cell eradication by binding 
directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of 
endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells 
undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb 
ER homeostasis triggering the unfolded protein response, leading to increased expres-
sion of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue 
of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration 
of immune homeostasis. The therapeutic potential of both chaperones relies on them 
being relocated from their intracellular ER environment. Ongoing clinical trials are 
employing therapeutic interventions to either enhance endogenous cell surface CRT 
or infuse IRL201805, thereby triggering several disease-relevant immune responses 
leading to a beneficial clinical outcome.
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1  |  INTRODUC TION

All organisms require a quality control system to assist in protein 
holding, folding, modification, degradation and for transportation 
of mature proteins to other organelles or secretion from the cell. 
The chaperones are a group of proteins that fulfil these roles and 
ultimately prevent nonspecific aggregation of unfolded proteins. 
Many molecular chaperones are also termed heat shock proteins 
(HSPs); they were first discovered in Drosophila and bacteria1 and 
become abundant under some environmentally stressful condi-
tions, such as higher than normal temperature, pH or glucose fluc-
tuation and hypoxic conditions. These conditions are prevalent in 
many diseases where there is infection, chronic inflammation, solid 
tumour growth or metabolic imbalance. In such harsh conditions, 
it is important that essential proteins are produced and correctly 
folded for the survival of the organism. In humans, most chaper-
ones are believed to be located at some time in the ER and more 
infrequently in the cytosol, nucleus, lysosomes and mitochondria,2 
where they have numerous and distinct functions. Chaperones 
have historically been allotted into HSP families based on their mo-
lecular weight, for example HSP10, HSP27, HSP40, HSP60, HSP70, 
HSP90, HSP110 and chaperonins.2 In the ER, GRP78/BiP (a HSP70 
family member) is an ATP-dependent chaperone, while calreticulin 
(gene name: CALR or protein name: CRT) is a Ca2+ dependent lec-
tin chaperone (Figure 1). Common dogmas imply that chaperones 
are located and exclusively function solely within cells. But we and 
others have found that some chaperones including GRP78/BiP3–7 
and CRT have immune-modulating functions outside of the cell.8–10 
Moreover, whereas CRT protein expression changes in response to 

raised cell temperature, GRP78/BiP is not particularly responsive 
to heat shock.

Eventual release of chaperones into the extracellular environ-
ment can occur either in a highly regulated manner or simply during 
cell necrosis. Individually, extracellular CRT11–16 and GRP78/BiP17–19 
have been monitored as biomarkers on the cell surface or in the 
serum/plasma, or other fluids of the body of patients with various 
diseases (see Table 1). Once outside the cell, CRT11 and GRP78/BiP20 
have both been detected in healthy human plasma/serum at low 
nanogram/ml levels and often at higher concentrations in plasma/
serum concentrations in various diseases. However, central to un-
derstanding of these chaperones is that their increased expression 
occurs because of disease pathology and not the cause. What is ev-
ident is that CRT and GRP78/BiP appear to provoke or restrain im-
mune responses to diseases, once in the extracellular environment.21

1.1  |  Chaperone dogma and diversity of function

Chaperones function to aid protein folding and homeostasis in their 
intracellular environment. Once certain chaperones are released 
from cells, they take on ‘moonlighting’ functions, different from their 
normal intracellular role. For example, both extracellular CRT and 
GRP78/BiP appear to trigger several innate and adaptive immune 
responses. The effects are diverse and include the up-, or downregu-
lation of metabolic and immune mediators, that alter development or 
maturation of immune cells, such as monocytes and dendritic cells 
(DCs). However, there is mounting experimental data to suggest 
extracellular chaperones, for example CRT can behave as pattern 

F I G U R E  1  Schematic representations of calreticulin and GRP78/BiP (A) The amino acid sequence of CRT comprises of 417 amino acids, 
with leader sequence (aa 1–17), N-domain (aa 18–197), a hair-pin looped P-domain (aa 198–308) and C-domain (aa 309–417). The protein 
structure prediction of CRT presented is the AlphaFold2 model for CRT (AF-P27797-F1) (http://marrv​el.org/human/​gene/811). (B) The 
GRP78/BiP protein structure was prepared by PyMOL software V2.5.1 (PDB 5E84), the nucleotide-binding domain is in the lower region of 
the protein model, while the substrate-binding domain is situated towards the upper part of the molecule.

http://marrvel.org/human/gene/811
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TA B L E  1  Cell surface/extracellular CRT or GRP78/BiP associated with human disease

Tumour type Observations References

Calreticulin—cell surface

Colorectal cancer CRT expression in colon cancer promoted infiltration of CD45RO+ memory T cells and 
enhanced 5-year survival rates in patients

127

Nonsmall cell lung cell carcinoma Loss of CRT mRNA expression negatively affects T-cell immunosurveillance reducing 
patient survival

128

Acute myeloid leukaemia Surface CRT on malignant blasts associated with increased CD4+/CD8+ Teffs and NK 
cells

129

Ovarian cancer High CRT levels are associated with a TH1-polarized, cytotoxic CD8+ T-cell response 130

Calreticulin—plasma/serum

Rheumatoid arthritis Serum mean 4.87 ng/ml (n = 70)
Mean controls 3.72 ng/ml (n = 35)

16

SLE Serum mean 4.74 ng/ml (n = 80)
Mean controls 3.70 ng/ml (n = 60)

53

MPN Plasma median, MPN 5.2 ng/ml (n = 30)
Plasma median controls 1.8 ng/ml (n = 10)

12

GRP78/BIP—Cell surface

Tamoxifen-resistant
Breast cancer cell

The proline-rich region—638AGPPPT643 of CD44v3 in SBD binds to GRP78/BiP in ER 
and is essential for translocation of GRP78/BiP to the cell surface MCF7-LR cells

91

Human EndoC-βH1 cells and primary 
islets

GRP78 is shuttled via the anterograde secretory pathway, through the Golgi complex 
and secretory granules, and identify the DNAJ homologue subfamily C member 
3 (DNAJC3) as a GRP78-interacting protein that facilitates its membrane 
translocation

131

GRP78/BIP—plasma/serum/saliva

Healthy controls Serum mean 18.4 ng/ml (n = 10)
Age range 21–28; 7 females, 3 males

132

Healthy controls Serum mean 14.4 ng/ml (n = 50)
Age 53.9 ± 19.1; 21 females, 29 males

133

Healthy controls Mean 42.64 ng/ml (n = 32) 134

Healthy controls Mean 0.035 ng/ml (n = 20)
Age 48.9 ± 11.4: 8 females, 12 males

135

Chronic hepatitis B
HBV-DNA 80 and 1.7 × 108 IU/ml

Serum mean 9.2–15.0 ng/ml (n = 60)
Age 42.1 ± 16.0 years; 28 females, 32 males

133

New diagnosed TB Serum mean 40.88 ng/ml (n = 29) 134

Sepsis Serum mean 70 ng/ml (n = 14) 136

Sepsis + infected Serum mean 208 ng/ml (n = 52) 137

RA (immunoblot) Saliva 5.5-fold more versus HC (n = 20) 138

RA (immunoblot) Synovial fluid positive for GRP78/BiP 13/18 (72%) RA subjects versus 5/13 (38%) of 
other joint diseases

116

72.8% type 2 diabetes, 52.5% obese 
and 78.6% metabolic syndrome

Plasma median 743 ng/ml (IQR—606 ng/ml) (n = 405)
206 females, 199 males
Mean age 60 (range 50–67)

20

Multiple myeloma Bone marrow aspirates, mean ~4 ng/ml (n – 44) 139

Type II diabetes Mean 0.21 ng/ml 140

Chronic kidney disease (stage 3) Mean 0.078 ng/ml (n = 22)
Age 58.9 ± 19.0: 10 females, 12 males

135

Note: General conclusions: Cell surface CRT and GRP78/BiP are prevalent on some types of tumours. Cell surface CRT on pre-apoptotic cells acts as 
an ‘eat-me signal’, cell surface GRP78/BiP acts as a stress indicator. Release of extracellular CRT is marginally raised in some cancer and autoimmune 
pathologies that may impact the ‘eat-me’ capacity of DCs to clear apoptotic cells. By contrast, there are higher ng/ml extracellular GRP78/BiP levels 
reported in healthy control subjects that become elevated in numerous pathologies.
Abbreviations: DC, dendritic cell; MPN, myeloproliferative neoplasm; SBD: substrate-binding domain; SLE, systemic lupus erythematosus.
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recognition molecule that can promote pro-inflammatory immune 
changes, whereas GRP78/BiP does not fit this paradigm and has 
been defined as ‘regulatory-associated molecular pattern (RAMP)’ 
that in the extracellular environment can act to promote immediate 
anti-inflammatory and pro-resolution signals, and thus both chaper-
ones can be exploited for therapeutic use.

1.2  |  Chaperone versatility

1.2.1  |  Chaperone history and evolution

Interestingly, chaperone function spawned from a dogma that pro-
teins folded spontaneously requiring little help from other proteins. 
In 1962, Anfinsen describing his ‘thermodynamic hypothesis’ con-
cluded that the native form of a protein is its most thermodynamically 
stable configuration and side-chain functional groups influenced the 
correct folding of proteins by the formation of intramolecular disul-
phide linkages.22 Later, it became apparent that a group of highly 
conserved chaperones were shown to be involved in the assembly 
and disassembly of intracellular proteins and were located in the ER, 
nucleus and cytoplasm of cells.23

From primitive single-cell organisms to sophisticated human im-
mune cells dealing with inflammation, chaperones are essential for 
protein folding. In humans, there are ~194 chaperones expressed 
and in whole blood 122 chaperones have been detected at ≥10 tran-
scripts per million. Some core chaperones are ubiquitous, while oth-
ers are associated with tissue-specific functional networks. Many 
chaperones interact with other chaperones, which allows them to 
alter their function24 and as neurologists are acutely aware, when 
some chaperones in brain cells decline with age, cellular protein 
aggregates increase.25 Chaperones have evolved to be more versa-
tile as they evolve from unicellular to multicellular organisms. The 
Escherichia coli chaperones are all constitutive but can be induced 
further upon environmental stress conditions. By contrast, human 
cells retain constitutive inducible chaperones; core chaperones con-
served in all tissues (‘essential house-keeping functions, e.g. UPR’), 
but others that can be differentially expressed across tissues (e.g. 
brain, lung, or muscle), giving chaperone a greater dynamic func-
tionality in certain organs and cell types.24 CRT is a very ancient 
protein present in all flora and fauna except, yeasts or bacteria, 
suggesting it has evolved its biological functions over 350 million 
years.26 GRP78/BiP may be 400 million years old, as a homologue of 
this gene is present in yeast as KAR2 (Saccharomyces cerevisiae) and 
DnaK in bacteria, where its suppression leads to the inhibition of 
translocation of secretory proteins.27 Currently, ER chaperones (e.g. 
CRT, calnexin, protein disulphide isomerase [PDI] and GRP78/BiP) 
are known to have pivotal roles in protein folding, cell survival and 
development. Often, these functions require that chaperones be re-
tained within the ER. To facilitate, retention, the C-terminal KDEL 
amino acid sequence on chaperones, ensures that they are retained 
or recycled back into the ER.28 It is becoming apparent that the lo-
cation of various chaperones influences their function. For example, 

intracellular CRT is essential for glycoprotein folding,29 but when 
transported to the surface of tumour cells can act as an ‘eat-me’ 
signal on pre-apoptotic cells,30 or inhibit complement activation.31 
Once in the extracellular environment, it influences cellular apopto-
sis of immune cells32 and phagocytosis33,34 or binds to stimulatory 
co-factors such as LPS, which can influence immune regulation and 
inflammatory pathways as well as innate immunity, in multiple spe-
cies.35–37 Similarly, GRP78/BiP has an essential role to play in the 
quality assurance of protein assembly and transport from the ER but 
can also translocate to the cell membrane of stressed cells where it 
can engage in anti- and pro-survival functions. However, in an extra-
cellular environment, it selectively binds and is rapidly internalized 
by myeloid cells—monocytes, macrophages and DCs where it can 
trigger a series of signalling pathways that dampen inflammation and 
restore immune homeostasis.3–7,38

1.3  |  How chaperones are naturally released 
from cells

Proteins destined for secretion are synthesized by ribosomes and 
translocate to the ER. The newly synthesized proteins interact with 
ER chaperones; GRP78/BiP, calnexin, CRT and PDI. These chap-
erones aid the assembly of polypeptides into mature proteins and 
assist their transport initially to the ER-Golgi intermediate compart-
ment (IC). This processing and transportation of proteins are aided 
by chaperones such as CRT and GRP78/BiP, before the chaperones 
are returned to the ER via COPI vesicles, while the mature protein 
continues to the cell surface for insertion into the plasma membrane 
or secretion via the COPII vesicles (see Figure 2A). Although CRT 
and GRP78/BiP are chaperones with C-terminal KDEL sequences, 
their mode of release from cells differs (see below). Upon certain 
types of cellular stress, some chaperones actively get released from 
the cells along with some of their binding partners (see below). Once 
released from cells, we know much less about how specific chaper-
ones function outside of cells. We are interested in how ER chaper-
ones influence the innate and adaptive immune system once in the 
extracellular environment.

2  |  E X TR ACELLUL AR C ALRETICULIN

2.1  |  Release of CRT from human immune cells—
First observations

Interest in the release of endogenous CRT has gained momentum 
given its recent identified roles in immunogenic cell death of tu-
mours39 and myeloproliferative neoplasms (MNPs)40 Numerous 
studies have investigated how CRT is released from cells during 
cell stress, pharmacological intervention or due to somatic muta-
tions.41 In 1994, Eggleton and colleagues observed CRT on the 
surface of neutrophils; stimulation with the bacterial tri-peptide 
FMLP led to the release of CRT into the extracellular medium 
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where it is was shown to bind to innate immune molecules C1q 
and collectins.42 Concurrently, a molecule on the surface of 
the monocytic cell line U937 which also bound to C1q and was 
named a ‘C1q receptor’ having the same sequence as CRT was 
identified.43 These unexpected observations of an apparent ER 
chaperone interacting with a complement protein were intrigu-
ing. Further work showed that CRT could bind to C1q and block 
‘classical’ complement activation.31 Meanwhile, Pritchard and co-
workers also observed CRT-like molecule on the surface of a per-
sistent hookworm parasite—Necator americanus collected from 
Papua New Guinea.44 They hypothesized and later confirmed 
that the presence of CRT on the surface of the parasite evolved 
as a mechanism by which hookworms avoid attack by the host's 
complement system.45 More recently, work by Arturo Ferreira 
and his team have demonstrated that other parasites, particularly 
Tryanosoma cruzi, also present CRT on their cell surface to evade 
attack by the complement system.46 This early work provoked an 
interest to study CRT—immune interactions further but did not 

explain how CRT cell surface expression was regulated either in 
humans or more primitive species.

2.2  |  Extracellular CRT release is associated with 
autoimmunity

A link between immune cells, surface CRT and complement at-
tracted interest when it became evident that dead and dying cells 
in the circulation were being cleared in a noninflammatory manner 
by a process of apoptosis and that changes in CRT expression were 
associated with this process.47 It was shown that complement pro-
teins were important in clearing apoptotic cells from the circulation, 
because a rare deficiency in which individuals lacked C1q led to the 
development of a severe autoimmune disease, systemic lupus ery-
thematosus (SLE). Meanwhile, Walport and colleagues showed that 
C1q deficiency led to defective apoptosis in these patients.48 It was 
proposed that extracellular CRT acted as an intermediary, binding 

F I G U R E  2  Exit of GRP78/BiP and entry of IRL201805 influences different cell signalling and functional pathways. (A) Under physiological 
conditions, the pH and Ca2+-regulated endoplasmic reticulum (ER) serves as a location for nascent peptides to interact with various KDEL-
retaining chaperones where they undergo folding and insertion into COPII vesicles for transportation to the Golgi and secreted or inserted 
within the plasma membrane. During ER/oxidative stress, GRP78/BiP and KDEL-containing chaperones (e.g. BiP or CRT) can aid protein 
transport to the Golgi as part of the integrated stress response (ISR) and are retained by the KDEL receptors in the acidic conditions and then 
returned to the ER in COPI vesicles by retrograde translocation. (B) Under severe stress, the KDEL-containing chaperones bind to accumulated 
protein aggregates and travel with them from the ER to the Golgi. Here, the KDEL receptors become saturated and via this anterograde 
process, chaperones including BiP or CRT and aggregated proteins, are either retained in cytosolic inclusion bodies, or translocated to the cell 
surface where they bind to cell surface proteins/receptors or are secreted. (C) By contrast, the therapeutic exposure of cells to extracellular 
IRL201805 does not signal through the ER-Golgi KDEL-receptor pathways. It is rapidly internalized <2 h possibly by receptor-mediated 
endocytosis. Once in APCs, IRL201805 has direct tolerogenic effects on the cells, such as increase IDO, decrease pro-inflammatory cytokines, 
while increasing anti-inflammatory cytokines. There is also evidence that endogenous GRP78/BiP self-peptides are loaded in HLADR-II 
molecules and presented on the cell surface, where they may activate tolerogenic Tregs against self-peptides (see Section 3.5).
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to C1q on the surface of apoptotic cells, while also docking with 
CD91 on professional phagocytes, thereby promoting uptake of cell 
debris by micropinocytosis.49 Some former clues as to how CRT is 
released from cells came from the observations of Sontheimer, who 
observed that CRT transcriptional activity increased when dermal 
epithelial cells were stressed by a calcium ionophore, heat shock 
or heavy metals such as zinc and cadmium.50 Sontheimer proposed 
that CRT was a HSP and, like GRP78/BiP, was overexpressed under 
certain cell stress conditions. Similarly to GRP/BiP, extracellular CRT 
could influence a number of immune pathways, for example inhibit 
complement activation and,31 alter DC recognition and uptake of tu-
mour cell antigens.51 More recently, mutant forms of extracellular 
CRT have been shown to bind to a thrombopoietin (TPO) receptor, 
precipitating the induction of rare blood cancers called MPNs, in 
which stem cells in the bone marrow make excessive numbers of 
various blood cells.52 In SLE, anti-CRT antibodies are detected and 
serum CRT protein levels are associated with disease activity, par-
ticularly nephritis damage53 and RA.16 In addition, citrullinated CRT, 
which is overabundant in the RA synovium, potentiates HLA-DRB1 
share epitope signalling leading to increase bone erosion, PAD ac-
tivation and raised TNF-alpha serum levels in experimental models 
of RA.54,55

2.3  |  Somatic mutant CRT is associated with 
myeloproliferative disorders

CRT, like GRP78/BiP, normally has a negatively charged C-terminal 
KDEL sequence (see Section 3.2), which aids CRT docking into the 
positively charged binding cavity of the KDEL receptor.56 These 
biophysical features of CRT are an important aspect of the KDELR 
chaperone retention system to retain chaperones internally. This 
has been underscored in the last decade or so with human MPNs, 
where the frameshift in mutant CRT's produced, results in mutant 
proteins with positively charged C-termini. The MPNs are a rare 
group of blood cancers originating in the bone marrow in which the 
body makes too many of a particular type of blood cells. Somatic 
changes in CRT were originally observed in patients with essential 
thrombocythemia (ET) and primary myelofibrosis (PMF), which are 
both MPNs.41,57 In these neoplasms, ~30–50 mutations have been 
found in CRT. Two common mutations consist of a 52 amino acid 
deletion (type I mutation) or a five amino acid insertion (type II muta-
tion) in the C-terminus. In all cases, the ER retrieval signal (KDEL) is 
lost in the C-terminus region of the protein allowing these mutants 
to escape ER retention.40 In a study of MPN patients (n = 113) carry-
ing the mutant CRT, the KDEL-lacking mutant CRT was secreted into 
their plasma, with a mean concentration of ~24.6 ng/ml (range 0–
156.5 ng/ml).58 The mutations can lead to structural changes of the 
protein within the ER. Two positively charged C-domains have been 
shown to form a homodimer and a hypothetical model proposed, in 
which the homodimers may intertwine to form a dimeric complex, 
which facilitates the N-domains to bind to N-glycans on the throm-
bopoietin (TPO/MPL) receptor.58,59 Normally, the P-domain of the 

protein can prevent this interaction.60 The mutant CRT–MPL com-
plex moves to the cell surface via the secretory pathway. Once em-
bedded in the plasma membrane, the mutant CRT lodges within the 
thrombopoietin receptor causing constitutive activation of Janus 
kinase 2 (JAK2)/STAT5 signalling pathway, which is pathogenic and 
promotes oncogenesis. Recent work has revealed cells presenting 
with both the TPO receptor and mutant CRT complex are hyper-
sensitive to additional exposure to exogenously released mutant 
CRT. Indeed, the exogenous mutant CRT found at levels observed in 
MPN patients, acts as a ‘rogue’ cytokine, capable of activating TPO 
receptor/JAK–STAT signalling in patient primary cells, by binding to 
the immature N-glycosylated TPO receptor complexed with mutant 
endogenous mutant CRT.61

2.4  |  Cell surface CRT and Immunogenic cell  
death (ICD)

The work of the Kroemer group, studying murine and human tumour 
cells, identified several ways to explain how CRT translocates onto 
the cell surface and emphasized the importance of the timing of CRT 
release. Cancer cells successfully form and sustain tumours because 
they are host cells and avoid scrutiny by central thymic tolerance by 
keeping certain damage-associated molecular patterns (DAMPs) to a 
minimum on their cell surface. However, it has been proposed that 
some DAMPs promote tumour progression, while others can pro-
mote immune-mediated inhibition of cancer and this can add to the 
complexity of DAMPs in tumorgenesis.62 DAMPs associated with 
cancers can arise from numerous cell sites, including the nucleus 
(e.g. high-mobility group box 1 protein: HMGN1), mitochondria (e.g. 
ATP and DNA), cytoplasm (e.g. F-actin) and endoplasmic reticulum 
(ER; e.g. CRT).

Kroemer and his team focused on the translocation of CRT to 
the cell surface on tumour cells during ER cell stress and apopto-
sis. But, it became clear that the translocation of CRT to the cell 
surface is not straight forward and it appears that several different 
stimuli-dependent signalling pathways can be elicited in which CRT 
can reach the cell surface under pre-apoptotic conditions63–66; thus, 
it was proposed for surface CRT to provoke an immune response 
on tumour cells; it had to be released on pre-apoptotic cells. Not 
surprisingly, human cells in a necrotic state or in the early stages of 
apoptosis due to ER-Ca2+-dysregulation also present CRT on their 
cell surface or release CRT into the extracellular milieu.33,67 To this 
end, the term immunogenic cell death (ICD) is used to distinguish 
the immune recognition function of surface CRT on pre-apoptotic 
cells versus CRT was found on the surface or released from necrotic 
or apoptotic cells. It is fortuitous that chemotherapeutic drugs such 
as anthracycline antibiotics and platinum-based platins act on many 
metabolic pathways in cells, including ER stress. Like many chemo-
therapeutic drugs, they are relatively toxic as such, they trigger ER 
cell stress particularly in rapidly proliferating tumour cells. This leads 
to ER stress proteins being activated, including CRT. A series of sig-
nalling events occur, resulting in phosphorylation of the eukaryotic 



328  |    EGGLETON et al.

translation initiation factor eIF2-α by the PKR-like ER kinase (PERK), 
followed by proteolytic cleavage of ER-sessile protein BAP31 by 
caspase-8, and activation of proapoptotic proteins BAX and BAK. 
This leads to an anterograde release of CRT from the ER to the Golgi 
apparatus and exocytosis of CRT-containing vesicles to the plasma 
membrane.66 Vesicle-bound SNARE proteins that facilitate vesicle 
fusion aid this translocation. The notion that CRT translocates to the 
plasma membrane on its own is unlikely, as it is often associated with 
other proteins, for example ERp57.64,68 Interestingly, other more 
physical cancer cell therapies, such as photodynamic treatments 
(PDT), can similarly lead to CRT appearing on the cell surface but 
do so independently of eIF2-α phosphorylation or association of 
ERp57. This suggests there are numerous heterogenous vesicular 
transport pathways that may aid CRT presentation on the surface 
of pre-apoptotic cells.

Cell surface-bound CRT as opposed to extracellular CRT is con-
sidered the dominant ICD signalling molecule on tumour cells. Cell 
surface CRT is believed to disturb the balance between the CD47 
(‘don't eat me’) signals with SIRPα on phagocytes, especially DCs. 
The exon-9 mutated CRT can be released via the anterograde 
‘Golgi-secretory pathway’.69 Alternatively, CRT can be released 
from necrotic cells in various pathological conditions (Table  1) or 
after chemotherapy. In addition, professional phagocytes such as 
monocyte/macrophages, that scrutinize and eliminate tumour cells, 
are known to release CRT via activation of Bruton's tyrosine kinase 
(BKT/TLRs) pathway.70 CRT phosphorylation by BKT in macrophages 
is important for CRT trafficking to the cell surface to function as a 
bridging molecule as part of the CRT/CD91/C1q complex, which ini-
tiates phagocytosis of apoptotic cells.71 Some patients with tumours 
are nonresponders to chemotherapeutic treatments that normally 
induce transport of CRT onto their tumour cell surface. Lin et al.72 
have studied cancer patients who do not respond to checkpoint in-
hibitors and revealed that they possess high expression of the gene 
coding for stanniocalcin-1 (STC1) that is associated with poor sur-
vival. They demonstrated that intracellular STC1 binds cytosolic CRT 
keeping it near to mitochondria and preventing CRT translocation to 
the cell surface.

3  |  E X TR ACELLUL AR GRP78/BIP/1805

Endoplasmic reticulum chaperones such as CRT and BiP are both 
capable of inducing adaptive immune responses once they are re-
leased from cells. There are, however, notable differences in how 
these two chaperones function. CRT promotes maturation of APCs, 
cross-presentation of tumour antigens and facilitates recruitment of 
Teffs, primarily CD8 cytotoxic T cells, that provide a robust immune 
response to tumours (Figure  4B). For CRT, to drive this anticancer 
immunity, it requires release and membrane binding of endogenous 
CRT from pre-apoptotic cancer cells. By contrast, pharmacologically 
manufactured homologues of BiP, for example IRL201805 (Table S1) 
but, not release of endogenous BiP, promotes induction of tolero-
genic APCs and promotes suppressive features of T-regulatory cells 

(Figure 4A). The pharmacokinetics (PK) and pharmacodynamics (PD) 
also differ. Cell surface CRT is retained on the surface of tumour cells 
for days, until recognized by antitumour cells, and then, the cells are 
eliminated, representing a long PK, short PD. When IRL201805 is 
administered in vivo, it has a short serum half-life (1–4 h), but long 
PD > 12 weeks. Consequently, while cancer immunologists have fo-
cused on ways to manipulate release of endogenous CRT from cells, 
immunologists interested in preventing autoimmunity and resolving 
inflammation have focused on delivering extracellular IRL201805 to 
immune cells, for internalization and activation of immunosuppressive 
features of myeloid and T cells. For both these proteins, a compre-
hensive knowledge of how they respond with cells under resting and 
stress conditions is important, as this will aid our understanding of 
how long-term immune responses are triggered during stress condi-
tions (e.g. tumour production or autoimmunity) before re-establishing 
a homeostatic rebalance upon alleviation of pathological conditions.

3.1  |  Extracellular GRP78/BiP interaction with 
immune cells—First observations

In the 1990s, the discovery of elusive initiating autoantigens in RA 
was a focus for research. In a proteomics approach, denaturing po-
lyacrylamide gel electrophoresis and immunoblotted were used to 
separate soluble proteins from human chondrocyte lysates. These 
blots were screened with RA or healthy/disease control sera and 
the antigen–antibody bands visualized with enhanced chemilumi-
nescence. Those of interest were then subject mass spectrometry, 
which identified a 72 kD protein, GRP78/BiP.38 After preparation of 
a recombinant human BiP (RhuBiP), we investigated whether there 
was any possibility that the antigen was arthritogenic. Even when 
co-administered with Freund's complete adjuvant, there was no sign 
of increased joint inflammation in different animal species. However, 
when administered intravenously either before induction of murine 
collagen-induced arthritis (CIA) or, at the point of disease onset, ani-
mals were protected from development and progression of disease. 
Latterly, it was discovered BiP/1805 was protective in adjuvant ar-
thritis in rats38 and a human TNF transgenic mouse model.5 In RA, 
GRP78/BiP is found in serum and synovial fluid, and it is possible 
that the high concentration of GRP78/BiP in synovial fluid breaks 
tolerance. Synovial fluid T cells show a recall antigen response to 
GRP78/BiP.38 Confirmation of this immune activation comes from 
the presence of autoantibodies to GRP78/BiP in the sera and syno-
vial fluid, indicating the cells have been activated by self-antigen.73

The release of GRP78/BiP from cells in a number of diseases 
(Table 1) may be taken up by APCs, presented to T cells, allowing 
autoreactive T-regulatory cells (Tregs) and T-effector cells (Teffs) to 
be exposed to this self-antigen.74 This might explain the antibody 
generation against GRP78/BiP observed too (Table 2).38 However, 
in chronic diseases, low-dose exposure of self-antigens such as 
GRP78/BiP is a mechanism by which peripheral tolerance is estab-
lished by downregulating the pro-inflammatory cells followed by au-
toreactive Treg production.3 Therefore, identifying diseases where 
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endogenous GRP78/BiP is secreted above a certain threshold might 
provide an opportunity where a single or series of high therapeutic 
doses of IRL201805 could accelerate a sustained immune tolerance 

response. Interestingly, several diseases have been recorded in 
which extracellular GRP78/BiP is present in plasma at higher levels 
than age–sex match control subjects (Table 1).

3.2  |  GRP78/BiP release from cells via stress

GRP78/BiP, like several ER chaperone proteins, has a KDEL se-
quence that can engage with KDEL receptors. KDEL receptor 1 
(KDELR) was originally found to be responsible for the return of sol-
uble ER-resident proteins to the ER from the IC of the cis-Golgi. This 
retrograde transport requires soluble ER-resident proteins to either 
have a KDEL-like motif at their C-terminus or to form a complex 
with ER-resident proteins that do.75 In the epithelial HeLa cell line, 
it has been reported that KDELR modulates ER stress responses.76 
More recent studies have suggested that KDELR function goes 
beyond motif recognition by demonstrating that the chaperone-
bound KDELR triggers the activation of Src family kinases at the 
Golgi complex, a phenomenon that may be critical for intracellular 
signalling cascades.77,78 Integrated stress responses (ISR) are stress-
response programmes that coordinate activation of four stress ki-
nases (double-stranded RNA-dependent protein kinase R [PKR], 
RNA-dependent protein kinase-like ER kinase [PERK] and eukary-
otic initiation factor 2 [eIF2a] kinase general control nonrepressed 
2 [GCN2]) to adjust cellular homeostasis by responding to various 
types of stress signals, including ER stress, amino acid deprivation, 
infection with double-stranded RNA viruses, haem-deficiency and 
oxidative stress (see Ref. [79]). As shown in Figure 2A, under physi-
ological homeostatic conditions, the ribosome-enriched ER is at 
neutral pH and in a calcium-regulated environment, in which nas-
cent peptides interact with various KDEL-containing chaperones 
to enable correct folding and insertion into coat protein complex II 
(COPII) vesicles and transported to the Golgi for secretion or plasma 
membrane insertion. During moderate ER stress, GRP78/BiP and 
other soluble KDEL-containing chaperones can accompany the pro-
teins to the Golgi as part of the integrated stress response (ISR) and 
are retained by the KDEL receptors in the acidic conditions, which 
favours KDEL and receptor interactions, before returning to the ER 
in coat protein complex I (COPI) vesicles by retrograde translocation. 
Under pathological conditions during dysfunctional proteostasis, 
the KDEL-containing chaperones bound to excessive protein aggre-
gates, possibly binding to the KDEL region of the chaperone, are no 
longer retained in the ER and travel to the Golgi. Here, the KDEL 
receptors either become saturated or are unable to detect the KDEL-
containing chaperone–protein complexes and via an anterograde 
process, chaperones including GRP78/BiP and aggregated proteins 
are either retained in cytosolic inclusion bodies or translocates to 
the cell surface in COP II vesicles where they bind to cell surface pro-
teins/receptors or are possibly secreted (Figure  2B). Alternatively, 
it is possible that the entry of extracellular soluble GRP78/BiP or, 
pharmacologically prepared IRL201805, into cells occurs by an en-
tirely different endocytic pathway (Figure  2C) but not exclusively 
targeting myeloid cells and appears to target entry into and some 

TA B L E  2  CRT and GRP78/BiP elicit autoantibody productiona

Calreticulin

Autoimmune disease Antibody isotype References

Refractory coeliac disease IgA 141

Primary biliary cirrhosis IgA 142

Inflammatory bowel 
disease

IgG 143

Cancers Antibody isotype References

Pancreatic cancer IgG 144

Rheumatoid Arthritis/
Bronchiectasis

IgG against citrullinated 
CRT

145

GRP78/BIP

Autoimmune disease Antibody isotype References

Rheumatoid arthritis IgG against 68 kDa 
fragment of 
107/167—64%) 
subjects

146

Rheumatoid arthritis IgG (252/400—63%+ve) 147

Rheumatoid arthritis/SLE IgG 148

Rheumatoid arthritis IgG 38

Rheumatoid arthritis IgG against only 
carbamylated 
GRP78

149

Rheumatoid arthritis IgG against GRP78/
BiP295–314 
R305citrulline and 
GRP78/BiP500–519 
R510citrulline

150

SLE IgG 151

Multiple sclerosis IgG 152

COPD/atherosclerosis IgG GRP78/
BiP-aa246–260

153

Type 1 diabetes IgG against citrullinated 
GRP78/BiP503 
DVNGILR510VTAE514

154

Type 1 diabetes IgG (20/61—33%+ve) 108

Cancers Antibody isotype References

Colorectal carcinoma IgG 155

Hepatocellular carcinoma IgG 156

Gastric cancer IgG 157

Prostate cancer IgG against LIGRT​
WND​PSV​QQD​IKFL 
(Leu98-Leu115)

93

Abbreviations: COPD, chronic obstructive pulmonry disease; SLE, 
systemic lupus erythematosus.
aAnti-CRT and anti-GRP78/BiP are also found in healthy controls but 
at lower titres and in less frequency in most of the studies cited in this 
table. Studies of control subjects cells induced by stress also generate 
GRP78/BiP autoantibodies.158
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specific subsets of immune cells thereby promoting a completely dif-
ferent set of functional consequences,80 which are detailed below 
(see Section 3.4).

3.3  |  GRP78/BiP is a biomarker of cell stress 
presented on the surface of some cancer cells

Resting cells do not generally present with cell surface GRP78/
BiP, unless stressed. However, cells such as synovial cells from RA 
patients, tumour cells and most virally transformed cells can show 
surface expression and secrete GRP78/BiP into the local environs. 
Rapidly dividing cells, as occur in infection, inflammation or can-
cer, quickly exhaust the glucose, oxygen and other metabolites 
required for growth. This stress causes an imbalance of ER homeo-
stasis resulting in the unfolded protein response as discussed above. 
Therefore, as a consequence of abnormal cell growth, GRP78/BiP 
can ultimately present on the cell surface of numerous cell types 
(Table  1) including, lymphoma, neuroblastoma, lymphoblastic leu-
kaemia, ovarian tumour, lung and colon adenocarcinoma.81–85 One 
notable feature of GRP78/BiP that is required for its translocation to 
the cell surface is the substrate-binding domain (SBD). This suggests 
GRP78/BiP translocates to the cell surface accompanied by partner 
proteins particularly on cancer cells. Prostate apoptosis response-4 
(PAR-4) is a tumour suppressor molecule that can cause apoptosis 
in some cancer cells but not normal or transformed immortalized 
cells.86 GRP78/BiP and Par-4 translocate to the cell surface together 
but how they do so is not clear. Par-4 and GRP78/BiP may co-localize 
within the ER prior to translocating to the plasma membrane.87 It is 
believed GRP78/BiP binds to the SAC (selective for apoptosis in can-
cer cells) domain of Par-4.88 When Par-4 is silenced by siRNA, less 
GRP78/BiP is seen on the surface of tumour cells.89 Other cancer 
cell types may rely on different GRP78/BiP binding partners to relay 
it to the cell surface, suggesting there is a degree of cell selectiv-
ity that influence GRP78/BiP translocation that needs further work. 
Other proteins have shown to be important in aiding translocation of 
endogenous GRP78/BiP to the surface of some tumour cells, such as 
MTJ-1, which binds to GRP78/BiP in the ER and assists GRP78/BiP 
function as a chaperone. Silencing of the MTJ-1 gene greatly reduces 
MTJ-1 mRNA and protein levels subsequently abolishing cell surface 
localization of GRP78/BiP.90 CD44v as a transmembrane protein, 
involved in cell–cell interaction, adhesion and migration is synthe-
sized in the ER and is translocated to the cell surface associated with 
GRP78/BiP under specific conditions.91 Finally, G alpha-interacting 
vesicle-associated protein (GIV) interacts with GRP78/BiP through 
its carboxyl-terminal substrate-binding domain (aa 341–654) dur-
ing ER stress to promote its cell surface translocation. GIV-depleted 
(GIV-shRNA) HeLa cells demonstrated impaired GRP78 on the cell 
surface, indicating GIV plays a role in GRP78 transport to the cell 
surface.92 Once on the cell surface, GRP78/BiP has been reported 
to bind to numerous self-antigens and microbial proteins and con-
sequently has been proposed as a nonspecific ‘receptor’ for a mul-
titude of proteins.93 Collectively, these independent studies reveal 

that GRP78/BiP can shuttle out of the cell with binding partners 
and relocate to the cell surface, where it becomes embedded in the 
plasma membrane.

3.4  |  Entry of extracellular GRP78/
BiP/1805 and other HSPs into APCs by receptor-
mediated endocytosis

Evidence of HSP entry into murine monocytic (P388D1) and DC 
lines (D2SC/1) via receptor-mediated endocytosis (RME) was 
demonstrated in the late 1990s. Arnold-Schild et al. showed 
that immune-modulating HSPs gp96 and heat shock cognate 70 
(HSC70) were taken up myeloid APCs via clatherin-coated pits 
that cluster receptors, bending the plasma membrane in discrete 
regions to become endosomal structures.94 Interestingly, in the 
same study, unlabelled HSPs in excess were unable to compete 
for endocytosis of a specific labelled HSP, suggesting each pro-
tein has its own specific receptor, although these were not identi-
fied. Proteins entering cells by RME use specific receptors and/
or docking proteins to regulate specificity of entry into cells. A 
number of surface receptors have been identified that internal-
ize HSPs, including scavenger receptors/CD91 (HSP70/90/110), 
toll-like receptors (HSP27/60/70), which allow internalization of 
the HSPs, prior to peptide processing and presentation as anti-
gen in surface MHC molecules to T cells, via their T-cell receptors 
(TCR).95 However, there is no evidence that extracellular GRP78/
BiP or IRL201805 binds to the above receptors, suggestive that 
IRL201805 may enter cells and engage with novel receptor(s), 
which is currently being investigated.

3.5  |  Internalization of GRP78/BiP 
immunomodulates both APC/B/T-cell 
immune responses

Myeloid cells (monocytes and DCs) predominantly bind and inter-
nalize BiP or IRL201805. There are subsets of B cells and T cells 
that IRL201805 has been demonstrated to bind to directly.96 In the 
peripheral blood, IRL201805 is rapidly internalized by monocytes 
(Figure  2C), where IRL201805 has been shown to have a direct ef-
fect on various phenotypical and metabolic functions of myeloid 
cells. Osteoclast generation by cultured human monocytes is inhib-
ited by BiP (Figure 3A) and bone resorption decreased as measured 
by lacunar formation on dentine slices.5 Corrigall et al. have shown 
that IRL201805 uptake leads to immunosuppressive characteristics 
in myeloid cells, such as lower surface expression of co-stimulatory 
molecules CD83/86, lower HLA-DR expression, increased IDO ex-
pression,3 increased secretion of IL-10 and suppression of TNF-α and 
IL-1β release.4 The change in cytokines in part appears to be through 
regulated inhibition of NF-κB, a regulator of cytokine production.7 
These anti-inflammatory features of extracellular IRL201805 help to 
regulated and resolve chronic inflammation.
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We have consistently observed IRL201805 binding preferen-
tially to classical, intermediate and nonclassical peripheral mono-
cytes, but we have also observed that IRL201805 binds to distinct 
subsets of human-derived DCs. This is important, as different DC 
subsets have distinctive functions in local immunosurveillance, 
migration and antigen presentation. This can influence their ca-
pacity to induce immune tolerance via their ability to express 
IDO and ultimately activate suppressive features of Tregs (see 
Figure 3B).

Corrigall et al. observed antibodies against GRP78/BiP in 30% 
of RA patient sera (n  =  54) compared with 10% of control sera 
(n = 10).38 Detection of antibodies that react with self-proteins in-
dicates that despite normal mechanisms to reduce these cells, such 
as via physiological elimination (negative selection), functional inac-
tivation (anergy) of high affinity and self-reactive T/B lymphocytes 
in the thymus, some autoreactive cells with lower affinity are spared 
and persist in the peripheral immune system. Such antibodies are 
not necessarily pathogenic and may in fact be protective,97–99 cir-
culating as low titre IgG autoantibodies in both control and disease 
subjects (Table 2). Some subsets of B cells appear to have regula-
tory properties such as CD38+ B cells. For example, CD38+ subset 
of B cells are capable of generating autoantibodies, but interestingly, 
CD19highIgDCD38highCD24highCD5high are also known to produce IL-
10100 and are associated with the generation of Tregs.101 We have 
observed that IRL201805 can bind differentially to subsets of B cells 
that are currently being characterized.

Antigens, including self-antigens (e.g. GRP78/BiP), can enter 
the APC receptor-mediated endocytic pathway by accumulat-
ing in early endosomes.102 These vesicles then fuse with late 

endosomal–lysosomal antigen processing compartments. Within 
these compartments, proteins are proteolytically cleaved and some 
of the generated peptides complex with the HLA class II molecules 
and can migrate in these multi-vesicles to the plasma membrane 
where they are recognized by CD4+ T cells.103 In autoimmune dis-
eases, several HLA class II molecules are high-risk biomarkers for 
autoimmunity. In RA, the dominant HLA class II locus that leads to 
disease susceptibility is the HLA-DRB1 gene. This locus is highly 
polymorphic and has 2690 allele variants, encoding 1899 proteins104 
and is encoded by six exons. Exon 2 is an extracellular domain of 
particular interest, as it is the hyper-variable region 3 (HVR3) that 
contains the ‘shared epitope’ (SE) motifs thought to confer risk for 
developing RA. Approximately 62%–80% of RA patients have SE 
alleles compared with healthy controls (39%–52%).105 Shared epi-
tope sequences allow the presentation of self-antigens to T cells 
and thus play a key role in the development of RA.106 Therefore, 
SE-containing alleles generating HLA proteins that are potential self-
binders to extracellular GRP78/BiP or IRL201805 are of interest.

Shoda and colleagues investigated the ability of full-length 
GRP78/BiP or 20 mer peptides overlapping by five amino acids 
(10  μg/ml) to be taken up human APCs in PBMC cultures over 
4 days and monitored peptide uptake T-cell activation.107 In some 
experiments, they removed the CD25+ cells (to deplete Tregs) and 
found some of the suppressive properties diminished, for example 
IL-10 production. They also examined the direct binding of GRP78/
BiP peptides to solid-phase bound extracellular 94 mer peptides of 
HLA–DRB1*0401, DRB1*0405 and HLA–DRA1*0101 molecules 
containing the SE sequences. They identified several GRP78/BiP 
peptides that caused varying degrees of T-cell proliferation. The 

F I G U R E  3  IRL201805 exposure to myeloid/lymphoid cells affects key immune-regulatory pathways. (A) IRL201805 directly suppresses 
key cell surface receptors CD115/c-FMS and RANK and nuclear translocation of NF-κB by canonical and noncanonical pathways in response 
to both TNF-α and RANKL, leading to suppression of human osteoclast formation5. (B) T-regulator cells express CTLA-4 on their cell surface; 
this is reduced in RA patients possibly by epigenetic factors120; however, treatment of Tregs with IRL201805 increases both cell surface and 
release of soluble CTLA-4 into the circulation (Corrigall et al., paper in preparation).
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strongest binder of HLA-DRB1 binding was GRP78/BiP336–355 with 
an IC50 of ~50 nM. GRP78/BiP336–355 (RSTMK​PVQ​KVL​EDS​DLKKSD) 
induced the strongest proliferation in a SE-dose-dependent man-
ner; SE+/+ > SE+/− > SE−/−. Ten additional peptides produced a 
very weak proliferative response and the GRP78/BiP456–475 peptide 
(DNQPT​VTI​KVY​EGE​RPLTKD) was identified as an IL-10-inducing 
epitope in RA patients and healthy donors, that could be blocked 
by anti-HLA blocking antibodies, suggesting T-cell receptor interac-
tion with the BiP peptide containing HLA molecule was essential for 
IL-10 production. However, the IRL201805 protein is a potent anti-
inflammatory mediator.

In a separate study focused on Type 1 diabetes, citrullinated 
GRP78/BiPR510 containing peptides have been shown by Buitinga 
and co-workers108 to bind to the shared epitope HLA-DRB1*04:01 
molecules in postcytokine-treated human islets from type 1 dia-
betes patients, which were associated with the identification of 
higher CD4+ T-cell frequencies directed against citrullinated GRP78 
(citGRP78) epitopes. In this study, several native and citrullinated 
GRP78/BiP peptides were identified as binding to the DRB1*0401. 
In addition, autoantibodies against citCRP78/BiP were identified in 

a subset of patients, providing further evidence that APC-processed 
GRP78/BiP peptides evoked CD4+ T-cell and B-cell responses.

4  |  THER APEUTIC APPLIC ATIONS

4.1  |  Importance of chaperone location and 
concentration

For both IRL201805 and CRT to work therapeutically, it appears 
their interaction with immune cells is quite different. For IRL201805, 
extracellular delivery of the protein to immune cells can lead to toler-
ogenic changes in myeloid cells (monocytes/macrophages, DCs), 
which can also promote regulatory T-cell responses in inflamma-
tory environments. By contrast, endogenous translocation of CRT 
to the cell surface of tumour cells promotes a DC inflammatory re-
sponse that can promote a cytotoxic T-cell response against tumours 
(Figure 4B). For both these chaperones, the natural levels of plasma 
endogenous GRP78/BiP or the surface expression of CRT on cells 
is most likely suboptimal to provoke an optimal immune response. 

F I G U R E  4  In human therapeutic trials, the way IRL201805 or calreticulin is presented to dendritic cells governs their downstream 
immune cell signalling. (A) With infusion of IRL201805, it is rapidly taken up mainly by myeloid cells, including dendritic cells (DCs), 
leading to sustained tolerogenic changes in the DCs and possibly presentation of IRL201805 peptides to ‘primed’ Tregs which can direct 
immunosuppressive responses against autoimmune effector cells. (B) Calreticulin is not infused directly, but endoplasmic reticulum 
(ER) stress-inducing drugs such as anthracyclines in combination with chemotherapeutics target tumour cells leading to anterograde 
translocation of wildtype CRT to the surface of ER stress cancer cells, which acts as an ‘eat-me signal to immature DCs, which rapidly mature 
and signal to cytotoxic T cells to destroy the cancer cells.
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Therapeutic interventions have shown that increased concentration 
of these proteins can have clinical benefit.

4.2  |  Therapeutic evidence for extracellular 
for CRT

The therapeutic potential of CRT has been examined in a number of 
ways: (a) cancer chemotherapeutics and PDT can induce ER stress 
leading the anterograde translocation of CRT to the cell surface of 
some tumours where it can affect both innate and adaptive immu-
nity, (b) recombinant CRT has been shown to have a beneficial role in 
wound healing109 and (c) the chaperone properties of CRT have been 
exploited to enhance antigen therapeutic vaccine development.110

The biggest challenge is being able to manipulate CRT expres-
sion on the surface of pre-apoptotic cells. Can for instance ICD be 
regulated in a controlled manner to act as an effective therapeutic 
intervention? The concern arising from inducing ‘secreted’ CRT is 
that it can act as a decoy and bind to DCs directly, preventing or 
competing with the CRT-coated tumour cells from being recognized 
and phagocytosed.69 There is conflicting evidence as to the benefit 
of soluble CRT as an adjuvant to aid cancer treatments. In a pho-
todynamic therapy (PDT)-treated squamous cell carcinoma murine 
immune-competent model, recombinant calreticulin (400 μg/mouse) 
injected peritumourally immediately after PDT was found to bind 
to mouse SCCVII tumour cells treated by PDT and rendered a sig-
nificant improvement in tumour response to PDT from marginally 
curative to the solid levels of about 40% cure rates.111 In a C57BL/6 
mouse model, intravenous injection of 200 μg rCRT +/− MCA-205 
fibrosarcoma-derived cells treated with 300 μM oxaliplatin, or MTX 
(4  μM) inhibited selective phagocytosis of CRT-exposing tumour 
cells both in vitro and in vivo, but not bacteria, demonstrating the 
phagocytic pathway in general is not inhibited by soluble CRT, but 
the uptake of tumour cells by DCs is inhibited.69 Evidently different 
cancer treatments influence the recognition and removal of tumour 
cells by DCs in the presence of extracellular CRT.

As a cancer treatment, pre-apoptotic surface expression of 
CRT is not a treatment but might promote immunogenic recogni-
tion and targeting of some tumour cells. Chemotherapeutic agents 
with different modes of action, for example anthracyclines (inser-
tion of drug into nucleic acid) and taxanes (microtubule disruption) 
produce ER stress as a downstream effect and promote cell sur-
face display of CRT. As part of the toxic stress pathways induced 
by chemotherapeutics, other ICD inducers are also released such 
as adenosine triphosphate, annexin A1, high-mobility group B1 and 
type-1 interferons. Which of these plays the most significant role 
in ICD is difficult to measure in patients who respond to such treat-
ments. The quantification of how much tumour cell surface CRT 
is required, or requirement of other ICD inducers to aid tumour 
eradication is difficult to gauge. Too much or too little of an ICD 
inducer may influence the efficacy of tumour therapeutics. A clas-
sic example of this is the concentration of extracellular ATP during 
cancer therapy.112

ATP can be an ICD inducer that can be released from cells ac-
tively by cell stress or pharmacological treatment. Extracellular ATP is 
hydrolysed to adenosine by ectoenzymes CD73 and CD39,113 where 
its biological activity can promote Treg-mediated immunosuppres-
sion. While an extracellular concentration of ATP ≤250 nM does not 
modulate Treg function, a 4000-fold increase in extracellular ATP 
concentration (1 mM) triggers Treg immunoregulatory capabilities.114 
This suggests involvement of a relatively insensitive receptor with 
low affinity for ATP metabolites thus requiring higher concentrations 
of ATP before it can signal via its receptor. The importance of an 
ATP-ATP receptor interaction is illustrated in a murine acute myeloid 
leukaemia (AML) model. When AML cells are treated with the chemo-
therapeutic anthracycline–daunorubicin, they released ATP, upon co-
cultured with DCs; the DCs upregulate IDO production that in turn 
induced antileukaemic Tregs. However, the action of daunorubicin 
failed to induce antitumour Tregs in mice lacking the ATP receptor 
P2RX7.112 The presence of ATP in extracellular space acts as ‘find 
me’ signal, being a chemoattractant for DCs precursors. ATP binds 
to the P2RX7 receptor on DCs triggering IDO-mediated tolerance 
to Tumour cells. In this regard, ATP and its metabolites are immune 
checkpoint regulators in cancer. Several therapeutic strategies are 
being proposed to impede extracellular adenosine metabolism.115

Similarly, if soluble CRT is released from tumour cells, it can in-
hibit phagocytosis of CRT-coated cells both in vitro and in vivo. 
Increased exposure of CRT on malignant cells is associated with 
therapy-relevant adaptive immune responses and superior thera-
peutic outcome in solid tumours and haemato-oncological diseases 
because surface-exposed CRT acts as an ‘eat-me’ signal facilitating 
the phagocytosis of stressed and dying cancer cells by immature DCs, 
thus favouring antitumour immune responses. Soluble mutant CRT 
has been detected in the plasma51,58,69 (Table 1); Liu and co-workers 
have shown that soluble CRT inhibits the phagocytosis of cancer cells 
by DCs, thus dampening anticancer immune responses. Furthermore, 
systemic elevations of soluble CRT secreted from tumours or that is 
artificially supplied by injection of the recombinant protein decreased 
the efficacy of immunotherapy. Thus, depending on its location, CRT 
can have immunostimulatory or immunosuppressive functions.

4.3  |  Therapeutic evidence for extracellular 
BiP/1805

Work from a number independent laboratories provides evidence 
that GRP78/BiP is a self-antigen that is rapidly taken up by APCs, 
binds to specific HLA class II molecules and can trigger GRP78/
BiP-reactive Treg responses,7,107,108 that suppress Teff inflammatory 
responses against self-antigens. We have identified several potent 
anti-inflammatory changes in immune cells in response to IRL201805 
that may allow a better understanding of regulation of inflammation 
pathway in RA patients and models of autoimmunity.3–7,38,96,116,117 
Upon infusion of IRL201804 in RA patients, those individuals respon-
sive to IRL201805 in terms of sustained reduction in DAS28-ESR 
score and significant reductions in IL-8 and VEGF reveal changes in 
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myeloid cell functions. Preclinical work using a xenogeneic model, 
where human RA synovial tissue was transplanted into severe com-
bined immunodeficient mice, demonstrated that mice treated with 
BiP/1805 showed reduced tissue expression of HLA-DR, CD86 and 
production of IL-6 and TNF-α.118 Despite an increase in IL-10 not been 
detected, the application of a neutralizing anti-IL-10 antibody negated 
the anti-inflammatory properties of BiP/1805.

Previously using the CIA murine model, we had shown that 
adoptive transfer of BiP/1805-treated splenocytes and lymph 
node cells, in the absence of additional protein, transferred the 
prophylactic and/or therapeutic properties of BiP/1805.119 This 
suggested a novel dissociation between the pharmacokinetics and 
pharmacodynamics, which was replicated in the RAGULA clinical 
trial, where a single infusion of IRL201805, led to a sustained re-
duction in inflammatory mediators and prolonged low disease ac-
tivity in some patients.117

In the preclinical studies, there was evidence of direct immuno-
modulatory effect on myeloid cells with the upregulation of IDO and 
inhibition of NFκB activation and downstream inflammatory cytokine 
production such as TNF-⍺, which in turn supported a Treg response, 
including increases in IL-10 and CTLA-4 and release of soluble CTLA-4 
(Corrigall et al., paper in preparation; Figure 3B). This is of interest be-
cause it has been previously shown that RA Tregs have an inability to 
induce the activation of the tryptophan-degrading enzyme IDO and 
CTLA-4 production is reduced, possibly by increased methylation of the 
CTLA-4 promoter in RA Tregs.120 These multiple changes in regulatory 
molecules in both myeloid and lymphocytic cells provide compelling ev-
idence that IRL201805 acts to fundamentally reset immune responses. 
In the RAGULA clinical trial, the responsiveness to IRL201805 treat-
ment was most striking in patients who had higher levels of basal natu-
ral GRP78/BiP (Data not shown) in their circulation prior to IRL201805 
infusion. Within 2 weeks of infusion, patients in this responsive group 
had significantly lower serum levels of C-reactive protein, vascular en-
dothelial growth factor and interleukin (IL)-8 serum levels than those of 
the placebo group.117 We hypothesize that administrating pharmaco-
logical levels of IRL201805 can promote a greater immunosuppressive 
activity in APCs (monocyte/macrophage, DCs), which, in turn, activate 
Tregs that are primed to respond to self-antigen (GRP78/BiP) aiding 
resolution of inflammation during autoimmunity (Corrrigall et al., paper 
in preparation). Once the inflammatory processes are resolved, the im-
mune system would be expected to return to immune homeostasis via 
changes in stress, redox and metabolic signals, maintaining a balance 
between tolerance and immunogenicity. This approach differs from 
current therapeutics that tend to be immunosuppressive in nature (e.g. 
NSAIDs, steroids, biologics and JAK inhibitors).

4.4  |  Release of endogenous GRP78/BiP and CRT: 
Evidence of autoantibody generation

With the development of any therapeutic, natural or synthetic, the 
presence of antidrug antibodies and possible complications that may 
arise from their generation have to be assessed.

In relation to GRP78/BiP and CRT as naturally occurring intracel-
lular proteins, they are somewhat protected from immune surveil-
lance under normal physiological conditions. However, under certain 
pathological/stress conditions, autoantibodies against endogenous 
GRP78/BiP and CRT have been detected in several disease states 
compared with control subjects (see Table 2). The generation of anti-
GRP78/BiP or anti-CRT antibodies may act as a biomarker of pro-
tein release from stress cells, but it should be remembered that the 
presence of autoantibodies is generally quite benign. Very few are 
disease-specific or even pathologic and the majority play more of a 
part in diagnosis than therapy. As people age, the presence of auto-
antibodies in serum increases in variety and quantity without much 
harm to the healthy person. This occurs because proteins are con-
tinually being encountered by the immune system. However, if they 
cross-react with part of an endogenous protein, it is possible that 
they will generate autoantibodies. Such antibodies would only be of 
concern if they neutralized the effects of cell surface CRT in tumour 
resolution or altered extracellular IRL201805 efficacy in resetting 
autoimmune diseases. This conjecture requires further examination. 
In some cases, presentation of antigens to generate autoreactive 
immunosuppressive Tregs and generation of B cells that recognize 
self-antigens can be beneficial in preventing autoimmunity.121 There 
is a fine balance between activating some lymphocyte subsets and 
inhibiting others. What is clear is that both membrane-bound CRT 
and the extracellular manufactured modified homologue of GRP78/
BiP - IRL201805 can provoke physiologically relevant immune-
modulating effects in selected diseases.

5  |  CONCLUDING REMARKS

It has become clear over a number of decades that the ~20,000 
protein-encoding genes in the human body, depending on how 
they are transcribed and the splice variants produced and post-
translationally modifications that arise can ultimately generate 
~70,000 proteins.122 Not surprisingly, many proteins have been 
revealed to have more than one function.123 Then, each cell could 
contain up to 42 million individual protein molecules.124 Chaperones 
more than most proteins have to be adaptable; they must be able 
to function in different redox conditions and have effective ion 
buffering capacity, bind to and disengage from peptides, folded and 
unfolded protein, help glycosylate secretory proteins with other 
specialist quality control proteins and then shuttle between orga-
nelles and occasionally to the cell surface and beyond.125,126 In each 
location, they appear to have a different function. Once outside 
cells, chaperones switch from protein folding proteins to DAMPs 
(e.g. CRT) or regulatory-associated molecular patterns—RAMPs (e.g. 
GRP78/BiP).

As new generations of high-tech ‘omics-driven’ therapeutics are 
developing, Biotech and Pharma industries strive to generate en-
gineered cells as bespoke therapies for a multitude of diseases. By 
contrast, these resolution-promoting chaperones, for example CRT 
and IRL201805, may herald a new generation of biologics affecting 
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multiple pathways common to inflammatory diseases and thereby 
unlock some of the multifaceted immune-regulatory qualities of 
these highly conserved proteins.
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