Skip to main content
. 2023 Jan 18;13:1075929. doi: 10.3389/fpls.2022.1075929

Table 9.

Prediction results of PSO-LSSVM based on hyperspectral data .

Feature extraction method Number of feature variables Rc2 RMSEC Rp2 RMSEP RPD
Boss 19 0.8403 0.7085 0.8056 0.6227 2.02
CARS 35 0.8126 0.7676 0.7710 0.6758 2.03
IVSO 44 0.8231 0.7456 0.8532 0.5411 2.54
IVISSA 70 0.8964 0.5710 0.7576 0.6953 1.94
MASS 53 0.8817 0.6098 0.7698 0.6775 1.93
CARS-Boss 27 0.8273 0.7367 0.7805 0.6616 2.10
MASS-Boss 21 0.8265 0.7385 0.8169 0.6042 2.28
IVISSA-Boss 17 0.8651 0.6512 0.7435 0.7152 2.01

The bold values represent the best performer in each table.