Table 9.
Prediction results of PSO-LSSVM based on hyperspectral data .
Feature extraction method | Number of feature variables | RMSEC | RMSEP | RPD | ||
---|---|---|---|---|---|---|
Boss | 19 | 0.8403 | 0.7085 | 0.8056 | 0.6227 | 2.02 |
CARS | 35 | 0.8126 | 0.7676 | 0.7710 | 0.6758 | 2.03 |
IVSO | 44 | 0.8231 | 0.7456 | 0.8532 | 0.5411 | 2.54 |
IVISSA | 70 | 0.8964 | 0.5710 | 0.7576 | 0.6953 | 1.94 |
MASS | 53 | 0.8817 | 0.6098 | 0.7698 | 0.6775 | 1.93 |
CARS-Boss | 27 | 0.8273 | 0.7367 | 0.7805 | 0.6616 | 2.10 |
MASS-Boss | 21 | 0.8265 | 0.7385 | 0.8169 | 0.6042 | 2.28 |
IVISSA-Boss | 17 | 0.8651 | 0.6512 | 0.7435 | 0.7152 | 2.01 |
The bold values represent the best performer in each table.