Skip to main content
. 2023 Jan 31;6(1):e2253820. doi: 10.1001/jamanetworkopen.2022.53820

Table 2. Nodule-Detection Performance of Bone-Suppressed DCNN Model in the Internal and External Validation Tests.

Variables Original model DLBS model P value
Institute 1 (n = 100)
Sensitivity, % (No./total No.) 86.7 (52/60) 96.7 (58/60) .008
95% CI 78.1-95.3 92.1-100
FPPI 0.06 (6/100) 0.05 (5/100) .71
95% CI 0.02-0.15 0.02-0.12
Institute 2 (n = 246)
Sensitivity, % (No./total No.) 79.8 (95/119) 91.5 (109/119) <.001
95% CI 72.7–87.1 87.6-97.2
FPPI 0.09 (23/246) 0.07 (17/246) <.001
95% CI 0.06-0.14 0.04-0.11
Institute 3 (n = 205)
Sensitivity, % (No./total No.) 80.4 (74/92) 92.4 (85/92) <.001
95% CI 74.1-90.3 87.0-97.8
FPPI 0.16 (32/205) 0.09 (19/205) <.001
95% CI 0.101-0.215 0.05-0.15

Abbreviations: DCNN, deep convolutional neural network; DLBS, deep learning–based synthetic bone-suppressed; FPPI, false-positive findings per image.