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Abstract

Summary: Spatially resolved transcriptomics promises to increase our understanding of the tumor microenviron-
ment and improve cancer prognosis and therapies. Nonetheless, analytical methods to explore associations be-
tween the spatial heterogeneity of the tumor and clinical data are not available. Hence, we have developed
spatialGE, a software that provides visualizations and quantification of the tumor microenvironment heterogeneity
through gene expression surfaces, spatial heterogeneity statistics that can be compared against clinical information,
spot-level cell deconvolution and spatially informed clustering, all using a new data object to store data and resulting
analyses simultaneously.

Availability and implementation: The R package and tutorial/vignette are available at https:/github.com/FridleyLab/
spatialGE. A script to reproduce the analyses in this manuscript is available in Supplementary information. The
Thrane study data included in spatial GE was made available from the public available from the website https://www.

spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/.

Contact: brooke.fridley@moffitt.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Spatially resolved transcriptomics (ST) has allowed a better under-
standing of the tumor microenvironment (TME), immune infiltra-
tion and its relationship with immunotherapy response (Tang et al.,
2016), as well as promising to improve the development of cancer
prognoses and therapies (Nederlof ez al., 2021). Many ST methods
involve mRNA probe hybridization in immobilized tissues on surfa-
ces (Zhang et al., 2021). Hence, gene expression localization within
the tissue architecture is preserved as opposed to other transcrip-
tomic approaches, such as bulk RNA (RNA-seq) or single-cell RNA
sequencing (scRNAseq) (Maniatis et al., 2021; Yu et al., 2021).
Given the high-dimensional nature of ST experiments, data struc-
tures are needed to accommodate the gene expression abundance,
spatial locations and clinical information for samples taken from
multiple subjects. Similarly, methods for ST visualization and ana-
lysis are needed, with existing tools varying in flexibility and
approaches (Bergenstrahle et al., 2020; Dries et al., 2021; Hao et al.,
2021; Hu et al., 2021; Navarro et al., 2017; Sun et al., 2020; Tan
etal., 2020; Zhao et al., 2021).
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To meet these unmet computational needs, we have developed a
pipeline for the processing and analysis of probe-based sequencing
ST experiments and exploration of the TME, which we call
spatial GE. Novel features of the software include the generation of
transcriptomic surfaces; quantification of spatial heterogeneity
and the association with clinical information; gene expression de-
convolution; spatially informed clustering (STclust); and a new
data structure to store multi-sample spatial data, subject-level
metadata and analytical results.

2 Implementation

Our new software takes gene expression and spatial location data as
input, and optionally, associated metadata (i.e. clinical informa-
tion), and stores it in a new R object class referred to as ‘STList’.
Other existing data structures can store metadata; however, the
STList takes a single table with just one row of information for each
sample. This approach makes inputting data easier for users and
allows spatialGE to complete downstream analyses with a few lines

2645


https://orcid.org/0000-0001-5986-4207
https://orcid.org/0000-0001-7739-7956
https://github.com/FridleyLab/spatialGE
https://github.com/FridleyLab/spatialGE
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac145#supplementary-data
https://www.spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/
https://www.spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac145#supplementary-data
https://academic.oup.com/

2646

O.E.Ospina et al.

of code. Users also have the possibility to provide Visium outputs
directly from space ranger or Seurat objects, as well as .dcc/.pke files
from GeoMx experiments. In addition, results from spatial GE anal-
yses are saved in the STList making downstream statistical analysis
and visualization of results seamless. The software allows users to
perform gene- or spot-wise filtering and generate quality control vis-
ualizations, followed by library size normalization and logarithmic
or voom transformation (Law et al., 2014). The relative gene expres-
sion at each spot can be visualized using ‘quilt plots’ (Fig. 1A). If the
STList is created from space ranger outputs or Seurat objects, histo-
logical images are imported automatically, allowing to plot gene ex-
pression and these images side by side for comparative analysis.
Higher resolution plots are achieved with transcriptomic surfaces
produced by spatial interpolation (‘kriging’; Fig. 1B, Supplementary
Fig. S1) (Diggle and Ribeiro, 2007). Surfaces can also be generated
for deconvoluted cell type scores (Fig. 1C), with cell type composi-
tions at each spot inferred via gene expression deconvolution in
xCell (Aran et al., 2017). Lastly, tumor purity scores are generated
using ESTIMATE (Yoshihara et al., 2013), followed by tumor/
stroma classification using model-based clustering (Fig 1A-C)
(Scrucca et al., 2016). See Supplementary Methods for additional
details.

spatial GE also provides users with spatial statistics to quantify
TME heterogeneity (Supplementary Table S1 and Fig. S2). The
Moran’s I (Moran, 1950) and Geary’s C (Geary, 1954) allow users
to ascertain whether gene expression is uniform throughout the

tissue. The Getis-Ord Gi statistic measures the tendency of a gene to
produce expression hot- or cold-spots (Getis and Ord, 2010). Users
can associate per-sample spatial heterogeneity statistics with other
measurable clinical outcomes present in the sample metadata [spa-
tial heterogeneity statistics (SThet); Fig. 1D]. Finally, spatialGE
includes a computationally efficient spatially informed unsupervised
clustering method, referred to as STclust, to detect TME compart-
ments or ‘niches’ (Fig. 1E, Supplementary Figs S3-S5). In this ap-
proach, we begin by detecting genes with the highest spot-spot
variation as calculated from standardized expression values (see
Supplementary Methods for additional details). Then, a distance
matrix is computed based on two scaled distance matrices: (i) tran-
scriptomic autocorrelation between spots using the top variable genes
(D_1) and (ii) spatial distances between spots (D_2). Next, the autocor-
relation matrix (D1) is ‘shrunk’ toward the spatial distances matrix
(D2) by calculating its weighted average as D=[(1-w)*D_1]+(w*D_2).
The user specifies the weight (w) to apply. Based on our experience, a
weight smaller weights seem to best capture tissue heterogeneity
(Supplementary Figs S3-S5).

3 Discussion

The spatial GE package is a comprehensive analytical R package for
the simultaneous analysis of multiple tissues assayed with probe-
based ST technologies (i.e. Visium, GeoMx) using the new STList R
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Fig. 1. Results from spatial GE analysis of a melanoma stage Illc using spatial transcriptomics [Patient 1, Sample 2 (Thrane et al., 2018)]. (A) Quilt plot showing log-expression
at each spot for immune gene CD74, with squares and crosses indicating tumor and stromal spot classifications respectively. (B) Transcriptomic surface of CD74 expression
allows for a clearer visualization of the tissue heterogeneity, with squares indicating tumor compartment. (C) The inferred abundance of B cells in the tissue can be visualized
by the predicted surface. (D) Scatter plots showing the relationships between spatial statistics calculated for CD74 and the survival of patients in months from Thrane et al.
(2018). The colored arrows provide a guide for the interpretation of the spatial statistics. The dot with a border indicates the tissue section from Patient 1 featured in the other
panels in Figure 1. (E) Tumor/stroma assignments and spatially informed clusters with STclust (using a spatial weight of 0.025) are shown. Cluster 1 and cluster 2 represent
tumor and stroma regions of the tissue, respectively. Cluster 3 likely correspond to spots showing immune activity given the topological match with CD74 (B) and B cell

scores (C)
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object class. spatial GE is unique in implementing kriging to generate
gene expression surfaces at high resolution for multiple ST tissue
sections simultaneously (for an alternative method see (Zhao et al.,
2021)). Several ST clustering approaches are already available
(Supplementary Table S2) (Bergenstrahle et al., 2020; Dries et al.,
20213 Hu et al., 20215 Tan et al., 2020; Zhao et al., 2021); however,
our spatially informed clustering approach, STclust, is computation-
ally efficient (Supplementary Fig. S6) and resembles tissue features
by only weighting transcriptomic similarities by their distances be-
tween spots. A comparison between STclust and Louvain clustering
(as implemented in the widely used software Seurat), showed a
Rand similarity index of 0.91 for k=4 (Patient 1, Sample 2;
Supplementary Fig. S5), indicating good agreement of spot assign-
ments between the two methods. Nonetheless, STclust yielded clus-
ters that appeared more spatially contiguous than Louvain. Another
innovation of spatialGE is the estimation of quantifiable metrics
(SThet) to capture transcriptomic complexity and the ability to com-
pare them against clinical outcomes (Fig. 1D).

Applying spatialGE to the Thrane et al. (2018) melanoma ST
data, we observed agreement between the transcriptomic surfaces
(Supplementary Fig. S1) and tumor and stroma regions observed in
pathology images. STclust provided TME compartments (i.e. clus-
ters; Fig. 1E; Supplementary Figs S3 and S4) that resembled the fea-
tures annotated in pathology images (Thrane et al., 2018). Finally,
we observed an association between spatial heterogeneity and pa-
tient survival (Fig. 1D), providing support to the hypothesis that het-
erogeneity is a predictor of patient outcomes (Nederlof et al., 2021).

In future versions, spatial GE will include analysis tools for differ-
ent ST technologies (e.g. Slide-seq). We are currently developing
additional analytical methods and visualizations that use histologic-
al annotation tools for non-gridded technologies (e.g. GeoMx), as
well as a web-based implementation of spatial GE. Another develop-
ing area is the integration of scRNA-seq data with ST for spot-level
cell.
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