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Background: Understanding and accurately predicting the environmental limits, population at risk and burden 
of podoconiosis are critical for delivering targeted and equitable prevention and treatment services, planning 
control and elimination programs and implementing tailored case finding and surveillance activities. 

Methods: This is secondary analysis of a nationwide podoconiosis mapping survey in Kenya. We combined 
national representative prevalence survey data of podoconiosis with climate and environmental data, overlayed 
with population figures in a geostatistical modelling framework, to predict the environmental suitability, popu- 
lation living in at-risk areas and number of cases of podoconiosis in Kenya. 

Results: In 2020, the number of people living with podoconiosis in Kenya was estimated to be 9344 (95% 

uncertainty interval 4222 to 17 962). The distribution of podoconiosis varies by geography and three regions 
(Eastern, Nyanza and Western) represent > 90% of the absolute number of cases. High environmental suitabil- 
ity for podoconiosis was predicted in four regions of Kenya (Coastal, Eastern, Nyanza and Western). In total, 
2.2 million people live in at-risk areas and 4.2% of the total landmass of Kenya is environmentally predisposed 
for podoconiosis. 

Conclusions: The burden of podoconiosis is relatively low in Kenya and is mostly restricted to certain small geo- 
graphical areas. Our results will help guide targeted prevention and treatment approaches through local plan- 
ning, spatial targeting and tailored surveillance activities. 
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the necessary environmental conditions is not sufficient. There is 
strong evidence for a genetic association with class II human leu- 
cocyte antigen (HLA) genes. Even then, podoconiosis only devel- 
ops in vulnerable individuals due to socio-economic deprivation 
and poor access to foot hygiene and shoes. 1–3 It is one of the 
leading causes of lymphoedema in Africa. 4 The disease signifi- 
cantly reduces quality of life 5 and productivity through decreased 
mobility and associated morbidity. People with podoconiosis suf- 
fer from mental distress and depression, driven by stigma and 

6 , 7 
Introduction 

The World Health Organization (WHO) defines podoconiosis as
a non-infectious tropical disease characterised by steadily pro-
gressive lymphoedema, often misdiagnosed as lymphatic filaria-
sis (LF). 1 Podoconiosis is believed to result from inflammatory pro-
cesses triggered by barefoot exposure to irritant particles found in
specific soil types derived from volcanic rock at high altitude that
has been weathered in particular ways. This limits its occurrence
to regions where these parameters exist. However, exposure to
 discrimination. 
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Podoconiosis is amenable to prevention through simple public 
ealth interventions 3 , 8 such as consistent use of footwear from 

n early age, regular foot hygiene and covering housing floors. 9 
or those with the disease, the WHO recommends hygiene-based 
ymphoedema management, which includes foot hygiene, foot 
are, wound care, compression, exercises and foot elevation, 
reatment of ‘acute attacks’ (painful episodes of an inflamma- 
ory condition known as acute dermatolymphangioadenitis) and 
se of shoes and socks to reduce further exposure to the irritant 
oil. 8 
Global figures indicate that 4 million people live with podoco- 

iosis in 27 countries, mainly in the highland areas of tropical 
frica, Latin America and South East Asia. 10 Only three coun- 
ries (Cameroon, Ethiopia and Rwanda) have mapped the distri- 
ution of podoconiosis through nationwide surveys, which have 
evealed a widespread distribution of podoconiosis and a subse- 
uent higher burden of disease than initially expected. 11–13 These 
tudies have also increased our knowledge of the environmental, 
limatic and soil composition–related factors associated with the 
ccurrence of podoconiosis. 
Accurate characterisation of the environmental conditions 

ssociated with the occurrence of podoconiosis (which we refer 
o as environmental limits) combined with an understanding of 
he population at risk and the burden of disease are critical for 
elivering targeted and equitable prevention and treatment ser- 
ices. This information also allows planning of control and elim- 
nation programs, tailored case finding and disease surveillance. 
pidemiological data are typically obtained through conduct- 
ng house-to-house case searches or large-scale surveys. Kenya 
as recently conducted a countrywide survey to determine the 
eographical distribution of podoconiosis and identify individ- 
al and village-level risk factors associated with its occurrence. 14 
lthough such data are important, they do not include environ- 
ental data that could provide high spatial resolution or reliable 
easures of uncertainty to support effective decision making and 
lanning. Therefore, using national data and building on previous 
odelling work, we undertook a secondary analysis to predict 
he environmental limits and estimate the prevalence and num- 
er of cases of podoconiosis in Kenya. The current analysis results 
ill contribute to national efforts to eliminate this public health 
ssue by informing targeted and equitable access to prevention 
nd care. 

ethods 
odoconiosis prevalence data 
n 2019, a nationwide population-based cross-sectional survey 
n 48 villages in 24 subcounties across 15 counties covering the 
estern, Nyanza, Eastern, North Eastern, Rift Valley and Coast 
egions of Kenya was conducted. Two villages in each subcounty 
ere included in the study and the target population was resi- 
ents of the selected villages. In each selected village, 50 house- 
olds were selected using a systematic random sampling tech- 
ique, the details of which are published elsewhere. 14 

xplanatory environmental variables 
 collection of > 50 remotely sensed environmental datasets 
ncluding climate, soil-related, topographic, vegetation density 
nd urbanicity level data previously identified as potential risk 
actors for the occurrence of podoconiosis were assembled and 
sed to ascertain the environmental limits of the disease in 
enya. 15 , 16 Using principal component analysis to reduce dimen- 
ionality and eliminate correlated variables, we selected envi- 
onmental datasets that best characterise the environment at 
ocations where podoconiosis cases had been diagnosed dur- 
ng the nationwide cross-sectional survey: mean temperature of 
he wettest quarter, precipitation of the coldest quarter, con- 
entration of extractable iron content (mg/kg soil), percentage 
f orthent soils, distance to water bodies, flow accumulation 
nd night-light (NL) emissivity are available in the appendix. 
eographic coordinates of each surveyed villages were used 
o extract pixel values from gridded maps of the selected 
datasets. 
Information on precipitation and temperature were extracted 

rom a synoptic gridded map of annual precipitation calculated 
rom monthly total precipitation gridded datasets obtained from 

he WorldClim database (version 2.1). 17 This database provides a 
et of global climate layers obtained by interpolation of precipita- 
ion data for the period 1970–2000 collected in weather stations 
istributed across the world. 18 , 19 We obtained a raster elevation 
ataset at 1 km from the Consortium for Spatial Information. 2 , 20 
his elevation layer resulted from processing and resampling the 
ridded digital elevation models (DEMs) derived from the origi- 
al 30-arcsecond DEM produced by the Shuttle Radar Topography 
ission. Flow accumulation was derived from the elevation raster 
ataset. The flow accumulation surface represents each cell’s 
otential to accumulate water. This was generated via a flow 

irection raster that identifies the direction of flow as the steep- 
st descent from each cell in the elevation dataset, calculated as 
hange in elevation/distance*100. The flow accumulation raster 
as derived by summing the flow direction value weights of all 
ells predicted to flow into each cell. We also generated continu- 
us surfaces of straight-line distance (Euclidean distance) in kilo- 
etres to the nearest water body based on updated maps of 
aterbodies and waterways from Kenya downloaded from the 
penStreetMap project 21 through the platform Geofabrik. 22 
Soil data including the concentration of extractable iron 

mg/kg of topsoil) and predicted distribution for the orthent soil 
lass were obtained from the International Soil Reference and 
nformation Centre World Soil Information project 23 , 24 and the 
penGeoHub project, 25 respectively. These projects provide grid- 
ed maps of soil composition at 250 m resolution worldwide. 
rthent soils are a suborder of the entisol soil type character- 
zed by their extreme shallowness, steepness and consequent 
igh erosion hazard. They are poor soils and therefore not suit- 
ble for farming. In Africa, orthents occur in flat terrain because 
he parent rock contains no weatherable mineral except short- 
ived additions from rainfall. 
Finally, we obtained a raster of stable NL emissivity in 2010 

the median year of detection of the included cases) from the 
ational Oceanic and Atmospheric Administration. 26 The Oper- 
tional Linescan System instrument, on board a satellite of 
he Defence Meteorological Satellite Programme, measures vis- 
ble and infrared radiation emitted at night, resulting in remote 
magery of lights on the ground. This information has been 
orrelated with gross domestic product in developed coun- 
ries 27 , 28 and, although far from being precise, provides an indi- 
ect measure of poverty in developing countries. 29 NL emissivity is 
73 
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Figure 1. Distribution of surveyed villages and number of cases of podoconiosis recorded. 

 

 

 

 

 

 

 

 

 

provided as gridded maps of 1 km 

2 resolution, with values rang-
ing from 0 (undetectable NL emissivity) to 60 (maximum NL
emissivity). 
Input grids were resampled to a common spatial resolu-

tion of 1 km 

2 using the nearest neighbour approach, clipped to
match the geographic extent of the map of Kenya and eventu-
ally aligned to it. Raster manipulation and processing was under-
taken using the raster package in R version 3.6.3 (R Foundation
 

74 
for Statistical Computing, Vienna, Austria) and final map layouts
created with ArcGIS 10.7 software (ESRI, Redlands, CA, USA). 

Environmental modelling using regression-based and 
machine learning algorithms 
Villages surveyed in the nationwide mapping were reclassified
as endemic (1) or non-endemic (0) for podoconiosis based on
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95% credible intervals. 
ecords of confirmed podoconiosis cases. This reported occur- 
ence of podoconiosis in the surveyed villages and the selected 
nvironmental factors described above were used to model the 
istribution of podoconiosis in relation to the environmental vari- 
bles using various algorithms that were developed previously 
o predict the distribution of species across geographical spaces 
e.g. for animal or plant conservation studies). We used seven 
ypes of algorithms, of which three were linear regression based 
lgorithms and four were machine learning algorithms, avail- 
ble within the BIOMOD (BIOdiversity MODelling) framework, an 
stablished analytical framework developed to model species 
istribution. 30 , 31 These algorithms were generalized linear mod- 
ls (GLMs), generalized additive models, generalized boosted 
egression trees models (BRTs), artificial neural networks, multi- 
le adaptive regression splines, maximum entropy (MaxEnt) and 
andom forest (RF). All the algorithms except the BRTs were run 
sing the parameters set by default in the biomod2 R package. 30 
or the BRT algorithm, the learning rate (lr) and tree complex- 
ty (tc) were set, enabling the model to account for up to four 
otential interactions and slowing it down enough (lr = 0.005) to 
et the model converged without overfitting the data. This tun- 
ng was undertaken using the gbm package in R version 3.6.3. 
ifferent combinations (technically known as ensembles) of the 
lgorithms were used to explore which model gave the best fit to 
he data. 
All these models were intended to discriminate the suitability 

f the environment for the presence of podoconiosis (i.e. environ- 
ental suitability). For this, they needed to be trained with pres- 
nce and absence records. In addition to the recorded presences 
nd absences, we generated a set of pseudoabsence points 
epresenting areas presumably unsuitable for podoconiosis. The 
se of pseudoabsence points to represent areas presumed to 
e unsuitable for a species is a well-established approach in 
pecies distribution modelling. 32 , 33 We implemented pseudoab- 
ence selection using the ‘surface range envelope’ approach to 
efine the area of assumed unsuitability. The envelope is esti- 
ated through a presence-only suitability model 34 that iden- 
ifies the range of locations at which the values of the cho- 
en environmental covariates are within a specified range (here 
etween the 5th and 95th percentiles) of the covariate values at 
he occurrence locations. 3 0 Five sets of 500 pseudoabsence sam- 
les were randomly extracted from outside this envelope. Every 
et of pseudoabsence was pulled together with the presence and 
bsence records and used with each algorithm to construct a sin- 
le model. Models (50 models per algorithm totalling 350 ensem- 
les) were calibrated using an 80% random sample of the initial 
ata and evaluated against the remaining 20% of data using the 
rea under the curve (AUC) of the receiver operating character- 
stics (ROC) curve, the true skill statistic (TSS) 35 and the propor- 
ion correctly classified (PCC). The evaluation statistics (AUC and 
SS) were used to select the models to be assembled based on 
he matching between predictions and observations. Here, mod- 
ls with an AUC < 0.8 were disregarded when assembling the final 
odel. 
The final ensemble model was obtained by estimating the 
eighted mean of probabilities across the selected models per 
rid cell. This algorithm returned the predicted mean weighted 
y the selected evaluation method scores, in our case the AUC 
tatistic score. The range of uncertainties was also calculated by 
stimating the uncertainty intervals around the mean of prob- 
bilities across the ensemble per grid cell. The resulting predic- 
ive map quantified the environmental suitability for podoconio- 
is. In order to convert this continuous metric into a binary map 
utlining the distribution limits, a threshold value of suitability 
as determined, above which occurrence of podoconiosis was 
ssumed to be possible. The ROC curve determined the thresh- 
ld value that represents a better trade-off between sensitivity, 
pecificity and PCC. 
In addition, partial dependence functions were performed 

eparately for BRT-based models to visualise dependencies 
etween the probability of podoconiosis occurrence and covari- 
tes. The partial dependence function shows the marginal effect 
f each covariate on the response after averaging the effects of 
ll other covariates. 

eostatistical modelling to estimate disease burden 
illage-level prevalence data and resulting environmental suit- 
bility values were then used within a geostatistical framework. 
e developed a geostatistical model to predict podoconiosis 
revalence in areas where the occurrence of podoconiosis was 
redicted, using the environmental modelling results, at the vil- 
age level across Kenya. We let podoconiosis risk depend on the 
redicted environmental suitability value obtained in the previ- 
us step. We included spatial random effects to account for spa- 
ial variation in podoconiosis prevalence between villages that 
s not explained by the explanatory variable. We validated the 
odel using a variogram-based procedure that tests the com- 
atibility of the adopted spatial structure with the data. More 
etails are provided in the appendix. The analysis was carried 
ut using the PrevMap R package, 36 which implements parameter 
stimation and spatial prediction of geostatistical models. This 
odel was applied to produce continuous predictions of preva- 
ence of podoconiosis among adults ( ≥15 y of age) at 1-km 

2 spa- 
ial resolution and probability maps of exceeding a 1% prevalence 
hreshold, which was used to define podoconiosis endemicity. We 
hecked the validity of the assumed covariance model for the 
patial correlation using the Monte Carlo algorithm and empiri- 
al semi-variogram as described in the supplemental file. Addi- 
ionally, maps of the number of standard errors from the poste- 
ior mean prevalence of podoconiosis and number of cases were 
enerated for each 1 km × 1 km grid location. 
Gridded maps of both population density and age structure 
ere obtained from the WorldPop project. 37 , 38 We used these 
ridded surfaces of population estimates to compute the poten- 
ial affected adult population ( ≥15 y of age). An output raster 
ataset computing the estimated number of podoconiosis cases 
er grid cell was obtained by multiplying the 1-km 

2 raster dataset 
f predictive prevalence with the corresponding adult population 
ensity surface. The same procedure was used to estimate the 
ncertainty range of the affected population using the gridded 
urfaces of the 95% uncertainty interval (UI) for predicted preva- 
ence. These surfaces were then used to extract the aggregate 
umber of people with podoconiosis and the uncertainty range 
y administrative area (subcounties and counties). In brief, the 
5% UI was calculated based on the uncertainty in environmen- 
al suitability, by summarising the 50 predictions by mean and 
75 
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Table 1. Estimation of podoconiosis cases by regions in Kenya 

Estimated podoconiosis cases 

95% CI 

Province Predicted suitable area (sq. km) Population living in suitable areas n Lower bound Upper bound 

Central 387 38 805 25 11 49 
Coast 8817 270 203 816 353 1612 
Eastern 7003 468 451 1112 495 2160 
Nairobi – – – – –
Northeastern 2185 2539 8 3 16 
Nyanza 2153 510 888 2302 1061 4373 
Rift Valley 1211 36 090 29 14 56 
Western 2649 912 192 5052 2285 9696 
Total 24 405 2 239 168 9344 4222 17 962 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 
Main outcomes of the survey 
In 2019, a national survey was conducted in Kenya in 48 vil-
lages in 24 subcounties across 15 counties covering the Western,
Nyanza, Eastern, North Eastern, Rift Valley and Coast regions of
Kenya. In each village, an average of 43 households (range 12–
120) and 129 participants (range 44–311) were surveyed. Over-
all, data were collected from 2024 households and 6228 partic-
ipants. Overall, 16/6228 (0.3% [95% confidence interval 0.1 to
0.5]) of the participants were diagnosed with podoconiosis. Anal-
ysis by county indicated that podoconiosis cases were prevalent
in six counties: Siaya, Meru, Busia, Makueni, Marsabit and Tana
River. Accordingly, analysis of prevalence by subcounty revealed
that podoconiosis cases were prevalent in eight subcounties. Of
the 48 surveyed villages, 10 reported at least one case of podoco-
niosis (range one to four) (Figure 1 ). 

Factors associated with podoconiosis occurrence 
Figures in the appendix show the marginal effect of each covari-
ate on the probability of podoconiosis occurrence, while the rel-
ative contribution of each predictor variable on the outcome
(podoconiosis prevalence) is summarised in the supplemen-
tary file (Figure 4S). The covariate contribution was estimated
separately for the BRT and RF models. Of the selected seven
covariates, three variables (iron content, probability of having an
orthent-type soil and mean temperature of the wettest quarter)
appeared to be the major contributors to both the BRT and RF
models. When the extractable iron content exceeded 100 mg/kg,
the probability of podoconiosis occurrence increased. The prob-
ability of having an orthent-type soil was negatively associated
with the probability of podoconiosis occurrence. There was a
higher risk of podoconiosis occurrence when the mean tempera-
ture during the wettest quarter was 20°C–25°C. The presence of
podoconiosis became increasing more likely the closer the land
was to water, and it was particularly high in areas with steep
slopes. 
 

76 
Environmental limits of podoconiosis in Kenya 
In total, 4.2% of the landmass of Kenya was found to be envi-
ronmentally suitable for the occurrence of podoconiosis. Most of
the land mass suitable for the occurrence of podoconiosis was
situated in the Coastal, Eastern and Nyanza regions (Table 1 , Fig-
ure 2 ). A total of 2.2 million people live in an environment suitable
for the occurrence of podoconiosis, the majority of which were
from the Coastal, Eastern, Nyanza and Western regions. 

Validation statistics 
Validation statistics indicated an excellent predictive perfor-
mance of all the algorithms (see the Appendix). However, the BRT,
MaxEnt and GLM performed better than the other models, with
AUC scores of 0.83 (95% UI 0.75 to 0.94), 0.84 (95% UI 0.82 to
0.92) and 0.82 (95% UI 0.71 to 0.96), respectively. An environ-
mental suitability threshold of 0.602 provided the best discrim-
ination between presence and absence records, with a sensitiv-
ity of 100%, specificity of 98.53% and AUC score of 0.996. This
threshold value was used to classify the environmental suitability
map into a binary map of the environmental limits of occurrence,
which is included in the Appendix. The variogram fitted on the
residuals of the modelled prevalence leads us to conclude that
the data were compatible with the assumptions of an exponen-
tial correlation function and that the underlying spatial structure
was accounted for by the spatial fixed and random effects (see
Appendix). 

Predicted prevalence and estimation of podoconiosis 
burden 
The prevalence of podoconiosis was predicted to be variable in
four regions (Coastal, Eastern, Nyanza and Western) (Figure 3 ).
In the remaining regions, the distribution of podoconiosis was
predicted to be focal and of low prevalence. Podoconiosis cases
were prevalent in pockets of villages in the western and cen-
tral parts of Kenya. Nationally, we estimated 9344 people (95%
UI 4222 to 17 962) to be living with podoconiosis in 2020 in
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Figure 2. Ensemble of predicted environmental suitability models for podoconiosis and corresponding uncertainty of prediction. Uncertainty was 
calculated as the range of the 95% UI in predicted probability of occurrence for each pixel and rescaling to a 0–1 scale. 
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Figure 3. Predicted podoconiosis prevalence maps of Cameroon. (A) Mean predicted prevalence and (B) lower and (C) upper 95% UI bounds. Areas 
considered environmentally unsuitable for the occurrence of podoconiosis as predicted by the environmental model have been excluded. 

 

 

 

 

 

 

 

 

 

 

Kenya (Table 1 ). Three regions (Eastern, Nyanza and Western)
contributed to > 90% of the absolute number of cases. The great-
est proportion (54%) of people with podoconiosis resided in the
Western region, surrounding Lave Victoria in the Kisumu area.
At least one case of podoconiosis was predicted in 33 of the 47
78 
counties in Kenya. Eleven counties were predicted to have > 100
cases of podoconiosis, while only six had > 500 predicted cases
(Figure 4 and Appendix). We also estimated the continuous prob-
ability of exceeding 1% podoconiosis prevalence (the threshold
considered for intervention) across the endemic areas (Figure 5 ).
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Figure 4. County-level predicted prevalence of podoconiosis. (A) Mean predicated prevalence of podoconiosis and (B) estimated number of people 
with podoconiosis. 
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ost areas showed a low probability of exceeding 1%, and only 
 few restricted areas of the Coastal and Western regions poten- 
ially exceeded that threshold. 

iscussion 

his secondary analysis aimed to determine the environmental 
imits to the distribution of podoconiosis and estimate its bur- 
en in Kenya to provide evidence to inform the Ministry of Health 
nd WHO action plans for the prevention, management and elim- 
nation of podoconiosis. 1 Several regions in Kenya were found 
o have environments suitable for the development of podoco- 
iosis. The number of cases in these regions ranged from 25 to 
052. The environmental extent, population at risk and number 
f cases of podoconiosis in the country is small compared with 
ther endemic countries, making the elimination of podoconio- 
is feasible with concerted effort to expand prevention and case 
anagement interventions. 
The predicted number of cases of podoconiosis in Kenya 

9344) was lower than what was estimated in Cameroon 
41556) 12 and Ethiopia (1.56 million) 11 but higher than the esti- 
ate in Rwanda (6429). 13 In addition, the areas suitable for 
odoconiosis were geographically restricted in Kenya (i.e. 4.2% 

f the total landmass of Kenya) compared with Ethiopia (24%). 16 
he burden of podoconiosis coupled with almost universal shoe 
earing at an early age implies that with little effort to scale 
p the prevention and management of podoconiosis, the coun- 
ry is poised to eliminate podoconiosis. 14 Increased urbaniza- 
ion, improved access to water and infrastructure development, 
ncluding improved housing and road construction, will pay divi- 
ends in reducing the burden of podoconiosis and ultimately its 
limination. 
The prevalence and burden of podoconiosis in Kenya is geo- 

raphically variable. There was no risk or cases predicted in 
he Nairobi region. This agrees with this region’s better socio- 
conomic and infrastructure development compared with other 
egions. A high burden is estimated in the Eastern, Nyanza and 
estern regions. The Eastern region is a lowland area with a 
ot of mining exploration and sand harvesting, most often done 
hen people work barefooted. The Nyanza and Western regions 
re largely highlands and mountainous, they receive relatively 
igh amounts of rainfall 39 , 40 and the soil types in these areas 
re largely volcanic, which are thought to contain irritant min- 
rals that can trigger inflammatory processes. 41 , 42 Interventions 
argeted towards podoconiosis should prioritize these regions. 
he number of podoconiosis cases per county is small in most 
ounties. Only 6 counties had > 500 cases and only 11 coun- 
ies had > 100 cases. This implies that the morbidity manage- 
ent of podoconiosis can easily be integrated at dispensaries, 
ealth centres and subcounty hospitals as part of routine health 
ervices without the need to set up a stand-alone podoconiosis 
ontrol program. 43 More than 60% of the cases were predicted 
n three counties (Kakamega, Siaya and Busia). Prioritising these 
igh-burden counties would help significantly reduce the burden 
f podoconiosis and advance the national goal of elimination. 
Although at a low prevalence, podoconiosis is documented 

n Kenya’s Coastal region. Previous studies documented that 
he region is endemic for LF. 44 , 45 This implies that the region is 
here podoconiosis and LF overlap geographically, as described 
79 
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Figure 5. Map of probability of exceeding 1% podoconiosis prevalence in Kenya. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elsewhere. 4 Therefore, health workers in the region should be
trained to have a high index of suspicion for lymphoedema due
to these two diseases. Even if the morbidity management is sim-
ilar for the two diseases, there is a need to differentiate the
cause of lymphoedema to tailor preventive public health educa-
tion and social mobilization strategies based on the aetiology of
lymphoedema in the region. 
Our modelling approach is not without limitations. First, the

number of data points used in the analysis is minimal (i.e. 48
villages). Nonetheless, the data points were geographically dis-
tributed across Kenya. We believe the data points captured the
different geographic, climatic, spatial variability and environmen-
tal characteristics to accurately define the geographical limits of
podoconiosis in Kenya. Second, an ongoing challenge for podoco-
niosis modelling is the absence of covariates at the required spa-
tial scale. 4 , 12 , 13 This includes access to shoes and shoe-wearing
practices. Host genetic factors are also determinants of suscep-
tibility to podoconiosis, but the mechanisms are currently poorly
understood beyond the clear association with class II HLA gene
variation. HLA genes are highly polymorphic and the frequencies
of the different gene variants vary considerably between popula-
tions. Therefore it is impossible to extrapolate findings from other
endemic populations to Kenyan populations, so this information
could not be included in our modelling work. Third, limitations
exist in the survey data that were used to construct the models.
Data quality issues such as sampling bias may have arisen when
80 
remote areas were left out due to inaccessibility. In addition,
underestimation of podoconiosis cases might have resulted from
lack of mobility and associated stigma. 14 Looking to the future,
as additional covariates and prevalence data continue to be col-
lected, it will be important to extend this modelling framework
to include shoe-wearing practices, the poverty index and genetic
susceptibility to podoconiosis. This will help to include individual
behaviours data in addition to climatic and environmental data
in the models. 
Our analysis provided important insights into the geographi-

cal distribution, environmental limits and burden of podoconio-
sis in Kenya. Such information is critical for tackling the disease,
designing preventive interventions and monitoring progress. We
identified the high-risk areas and high-burden counties where the
focus of prevention and morbidity management interventions
should be. Such information helps the Ministry of Health deter-
mine where to prioritize resources and efforts to bring about high
impact and value for the money at an early intervention stage. 
In conclusion, our analysis has identified restricted geograph-

ical and environmental suitability for podoconiosis in Kenya. In
addition, the number of estimated cases in the country com-
pared with other countries is low. Most of the cases were found
in three counties: Kakamega, Siaya and Busia. Therefore, an
approach targeting these three high-burden counties would be
an efficient way of planning podoconiosis prevention and treat-
ment interventions. The findings also suggest that the Kenyan
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inistry of Health should plan and roll out a podoconiosis 
esponse, including morbidity management, footwear use at an 
arly age and foot hygiene practices. The rollout of interventions 
an be achieved by integrating these interventions and services 
ithin the national health structure, focusing on dispensaries, 
ealth centres and subcounty hospitals. There is a need for inclu- 
ion of podoconiosis in the community-based surveillance sys- 
em. Intensified and tailored behavioural change communication 
nd social transformation is required to address the preventable 
oot causes of podoconiosis (barefoot and poor foot hygiene prac- 
ices), which will advance the national goal and accelerate the 
rogress towards a world without podoconiosis. 

upplementary data 

upplementary data are available at Transactions online. 
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