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Aims Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite
trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances plate-
let responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we ex-
plore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF.
We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo.

....................................................................................................................................................................................................
Methods
and results

In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet
therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were
associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial in-
farction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI),
1.73 (1.25–2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted
HR (95% CI) 1.75 (1.25–2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported
TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO
and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset
(n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08–2.69)]. These
collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors
that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial
cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In
mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which
upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury
mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by
either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine).

....................................................................................................................................................................................................
Conclusion Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by tar-

geted non-lethal inhibition of gut microbial choline TMA-lyase.
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1. Introduction

The microbiome is critically involved in the vascular complications of
cardiovascular disease (CVD).1–5 Gut microbiota both contribute to car-
diovascular homeostasis and shape the vascular phenotype through gen-
eration of metaorganismal (involving both microbe and host)
metabolites that either directly or indirectly impact host physiology.5–10

However, our mechanistic understanding of how gut microbes affect
thrombotic complications of atherosclerosis, the hallmark of acute coro-
nary syndromes (ACS) and the primary cause of death in CVD, remains
incomplete. The microbiota-dependent metabolite trimethylamine N-
oxide (TMAO) has been both clinically and mechanistically linked to
CVD7,11–21 and thrombotic complications.19,22–24 TMAO synthesis
begins with dietary precursors that are abundant in various foods (e.g.
red meat, which contains high levels of the precursors choline and carni-
tine), which are then metabolized by gut microbiota TMA-lyases to form
trimethylamine (TMA).5,24–26 Following absorption into the portal circu-
lation, TMA is rapidly oxidized in the host liver by flavin monooxyge-
nases, thereby forming TMAO.7,27 Meta-analyses of multiple clinical
studies confirm circulating TMAO levels are strongly associated with in-
cident major adverse cardiovascular events (MACE) (myocardial infarc-
tion, stroke, and death) and adverse cardiovascular outcomes in
subjects, including amongst subjects with heart failure.28–31 A common
theme observed in cases of elevated TMAO is its association with vascu-
lar phenotypes linked to a ‘vulnerable plaque’, including effects on both
the vessel wall and circulating cells.22,32–35 Further, mechanistic studies in
both animals and humans have revealed that TMAO potentiates platelet
calcium signalling, platelet aggregation to multiple agonists, vascular in-
flammation, and in vivo thrombosis.5,19,22,24,36–40 Despite these findings, it
is unclear whether TMAO-dependent enhancement of in vivo thrombo-
sis extends beyond platelets and involves TMAO-associated alterations

of coagulation factors. Moreover, it remains unknown whether the strik-
ing clinical association between TMAO and adverse thrombotic event
risk can be observed in the presence of anti-platelet drugs, such as aspi-
rin, adenosine diphosphate (ADP)-receptor antagonists, or their combi-
nation [dual anti-platelet therapy (DAPT)].

Tissue Factor (TF) is the membrane-bound receptor for Factor(F)VII/
VIIa, and the primary initiator of the extrinsic pathway of blood coagula-
tion.41–43 TF is constitutively expressed in the perivascular space and
triggers activation of FIX to FIXa and FX to FXa, leading to thrombin gen-
eration. TF thus plays an essential role in haemostasis following vascular
injury.41–43 During atherosclerotic CVD and vascular inflammation, en-
hanced expression of both full length (fl) TF and its soluble alternatively-
spliced isoform (asTF) are observed within the vessel wall and blood
cells, contributing to a pro-thrombotic state and vascular complica-
tions.44–49 In particular, it is widely accepted that vessel wall-derived TF
critically contributes to in vivo thrombosis initiation, through mechanisms
involving local thrombin generation, which induces platelet activation
and release of secondary platelet agonists, such as ADP, at the site of in-
jury.50,51 Thus, processes that lead to heightened vascular TF expression
are of interest.

Despite the numerous clinical and mechanistic links between the
metaorganismal TMAO pathway and enhanced clotting risks (both in
clinical studies and in animal models of thrombosis), a role for TF in con-
tributing to TMAO-dependent enhanced thrombosis in vivo remains to
be established. Herein, we first examined in two distinct clinical studies
whether TMAO-related thrombotic risk extends to patients who are on
anti-platelet drugs, including aspirin with or without ADP-receptor
antagonists. Then, through various mechanistic and animal models of ar-
terial injury and thrombosis, we explored whether TMAO induces endo-
thelial TF and VCAM1 expression, and whether TMAO-stimulated TF
expression contributes to TMAO-enhanced thrombosis potential in vivo.

Graphical Abstract

2 M. Witkowski et al.2368



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..Finally, we both tested whether selective non-lethal pharmacological tar-
geting of gut microbe-dependent TMAO generation attenuates choline
diet-induced TF expression and heightened thrombogenicity, and identi-
fied caecal microbial taxa whose proportions are associated with
TMAO-enhanced TF pathway activation and thrombosis.

2. Material and methods

2.1 Ethical statement
All enrolled participants in the Cleveland Clinic Genebank study gave
written informed consent for a protocol that was approved by the
Cleveland Clinic Institutional Review Board.

For the multi-site Swiss Special Program University Medicine Acute
Coronary Syndromes (SPUM-ACS) cohort all subjects gave written in-
formed consent, and the study was approved by the institutional review
board (Ethics Committee of the Canton of Zurich, Switzerland). Both
studies were in accordance with the principles outlined in the
Declaration of Helsinki. All animal model studies were approved by the
Institutional Animal Care and Use Committee at the Cleveland Clinic
(Protocol # 2018-2082).

2.2 Human studies
For clinical studies, we leveraged access to data from two independent
study cohorts with already reported TMAO data7,52 to explore whether
TMAO retained clinical prognostic value in subjects on chronic anti-
platelet agent therapy. We thus focused analyses on patients docu-
mented to have remained on anti-platelet therapy throughout the dura-
tion of follow-up. The Cleveland Clinic Genebank study (clinicaltrials.gov
Identifier: NCT00590200) is a large, single-centre, prospective cohort
study with cardiovascular outcomes in individuals undergoing elective di-
agnostic coronary angiography at the Cleveland Clinic from 2001 to
2007. We have previously reported that TMAO levels among Genebank
subjects (n = 4007) predict CVD risks.7 In this study, analysis included
only the subset of sequential patients that received anti-platelet therapy
(aspirin or an ADP-antagonist, n = 2989) throughout the follow-up pe-
riod (3 years). The adjudicated occurrence of MACE was defined as a
composite of death, non-fatal myocardial infarction, or non-fatal stroke.

The SPUM-ACS cohort is a prospective multi-site cohort that en-
rolled patients who underwent coronary angiography for ACS at any of
the participating University Hospitals (Zurich, Bern, Lausanne, and
Geneva).52 We have previously reported that in the Swiss ACS Cohort
(n = 1683) TMAO levels were associated with event risk.53 As per pro-
tocol, upon enrolment in the Swiss ACS Cohort, patients were either
placed on aspirin alone (e.g. in case of coronary artery bypass grafting),
DAPT (defined as aspirin 100 mg/d plus ADP-receptor antagonist, i.e. ei-
ther ticagrelor 90 mg twice daily for non-ST-elevation myocardial infarc-
tion, or prasugrel 10 mg/d for ST-elevation myocardial infarction), or a
combination of oral anticoagulants and anti-platelet agent agents when
indicated. The present analysis only included the subset (n = 1469) of
SWISS ACS Cohort patients that received DAPT throughout the
follow-up period. The adjudicated occurrence of MACE (death, non-fatal
myocardial infarction, non-fatal stroke or need for revascularization) was
recorded during the first year of follow-up.

In both cohorts, circulating levels of TMAO levels in plasma were de-
termined by stable isotope dilution high-performance liquid chromatog-
raphy with on line electrospray ionization tandem mass spectrometry

(LC/MS/MS) using d9-(trimethyl)-labelled internal standard, as described
previously.54

2.3 Mouse studies and mass spectrometry
Female C57BL/6J mice (Stock No 000664, Jackson Laboratory, Bar
Harbor, ME, USA) were bred and maintained on Teklad (Envigo,
Indianapolis, IN, USA) diet 2918 (an irradiated global 18% protein rodent
diet). For studies involving acute TMAO exposure, the mice were given
a single bolus injection intraperitoneally of TMAO or vehicle (normal sa-
line) to achieve physiological levels of circulating TMAO as previously
described.22 Resulting plasma TMAO levels are reported. As a positive
control for vascular TF expression and thrombin–anti-thrombin com-
plex (TAT) levels, mice were intraperitoneally injected with 15 mg/kg li-
popolysaccharide (LPS) (Catalogue # L2630, Sigma, St. Louis, MO, USA).
Blood and tissues were harvested from mice following intraperitoneal in-
jection at the following times: 1.5 h for RNA, 6 h for protein and TAT lev-
els, and at both 1.5 h and 6 h for mass spectrometry analyses.

Chronic TMAO and choline exposures were also examined using die-
tary supplementation. During breeding and routine housing prior to ran-
domization into dietary arms, animals were put on a control diet (Teklad
2018, Envigo, Indianapolis, IN, USA,), a global 18% protein standard rodent
diet without added choline that was documented to contain 0.08 g% of to-
tal choline content by mass spectrometry. At indicated time points, ani-
mals were randomized to either this control (chow) diet or a choline-
supplemented diet (the control diet supplemented with an additional 1 g%
choline). Where indicated, mice were also treated with fluoromethylcho-
line (FMC) in the drinking water (0.006% weight/volume of the salt, which
corresponds to �10 mg/kg/day). Animals were fed ad libitum on the indi-
cated diets for at least 10 days before euthanasia and tissue collection.
Blood was drawn by vena cava puncture and 10% sodium citrate added.
Choline content of food, plasma levels of TMAO, and choline were quan-
tified by stable isotope dilution LC/MS/MS as previously described.7

2.4 In vivo thrombosis
A common carotid artery FeCl3 induced injury model was performed as
previously described.22 Where indicated, animals were injected with ei-
ther the neutralizing rat anti-mouse TF antibody 1H155 (20 mg/kg), or an
isotype-matched control antibody (20 mg/kg of rat IgG2a j isotype con-
trol, clone eBR2a, eBioscience San Diego, CA, USA) 1 h before perform-
ing the injury model, as described.56 Briefly, rhodamine 6G (100 lL;
0.5 mg/mL, catalogue # 252433, Sigma, St. Louis, MO, USA) was injected
into the right jugular vein to label platelets. The left carotid artery was
then exposed to a Whatman filter paper (Catalogue # 1003-055, GE
healthcare, Chicago, IL, USA) of 1 mm2 size, soaked in 10% FeCl3
(Catalogue # 157740, Sigma, St. Louis, MO, USA) for 1 min. Thrombus
formation was observed in real time using intravital fluorescence micros-
copy and video image capture. Time to complete cessation of blood
flow was determined by visual inspection of computer images by two in-
dependent investigators blinded to mouse treatment group, and end
points with complete thrombotic occlusion were set as cessation of
blood flow for more than 30 s. Following the procedure, blood was
drawn for plasma isolation, and carotid arteries with thrombi were re-
covered for immunohistochemical analyses.

All animals (acutely injected with vehicle, TMAO or LPS, on different
diets outlined above or used for in vivo thrombosis) were euthanized fol-
lowing AVMA guidelines (2020, https://certifiedhumane.org/wp-content/
uploads/2020-Euthanasia-Final-1-17-20.pdf) by intraperitoneal injection

Contribution of tissue factor in TMAO-enhanced thrombosis 32369
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of 300 mg/kg ketamine þ 30 mg/kg xylazine. Death was assured by post
mortem exsanguination and removal of vital organs prior to disposal.
For in vivo thrombosis animals were anesthetized by administering IP
100 mg/kg ketamine þ 10 mg/kg xylazine. Up to 50 mg/kg ketamine was
given supplemental when required to maintain surgical plane of anaes-
thesia (lack of pedal reflex). Body temperature was maintained with a
supplemental heat source during the procedure. Animals were immedi-
ately euthanized after data acquisition was complete. All procedures in-
volving animals were approved by the Cleveland Clinic Institutional
Animal Care and Use Committee and in accordance with the NIH
Guide for the Care and Use of Laboratory Animals.

2.5 Cell culture
Human microvascular endothelial cells (HMECs) (Catalogue # CRL-
3243, ATCC, Manassas, VA, USA) were maintained in MCBD 131 me-
dium (Catalogue # 10372019, Thermofisher, Waltham, MA, USA) þ
10% FBS (Catalogue # 26140, Thermofisher, Waltham, MA, USA) þ
100 U/mL penicillin/streptomycin (Catalogue # 15140122,
Thermofisher, Waltham, MA, USA)þ 2 mM L-Glutamin (PAA laborato-
ries, Toronto, Ontario, Canada) þ 0.05 mg/mL Hydrocortison. HMECs
were used for experiments until the 15th passage. Immediately prior to
TMAO exposure, HMECs were serum-starved for 1 h and exposed to
the indicated concentrations of TMAO (Catalogue #317594, Sigma, St.
Louis, MO, USA) for various time points, as indicated in the figure/leg-
end. Human monocytic cells (THP-1) (Catalogue # TIB-202, ATCC,
Manassas, VA, USA) were grown in RPMI 1640 medium (Catalogue #
12633012, Thermofisher, Waltham, MA, USA)þ 10% FBSþ 1% penicil-
lin/streptomycin. THP-1 cells were exposed to 200mM TMAO for 2 h.

2.6 RNA extraction and quantitative
polymerase chain reaction (PCR)
For real-time polymerase chain reaction (PCR), total mRNA was iso-
lated from cultured cells and murine tissue with TRIzolTM Reagent
(Catalogue # 15596026, Thermofisher, Waltham, MA, USA) or
peqGOLD TriFast (Catalogue # 30-2010, VWR Peqlab, Radnor, PA,
USA). Aortic tissue was lysed using a tissue homogenzier (TissueLyser II,
Quiagen, Hilden, Germany). Total RNA was transcribed to cDNA with
the High-Capacity cDNA Reverse Transcription Kit (Catalogue #
4368814, Thermofisher, Waltham, MA, USA). Gene expression was de-
termined using TaqMan Fast Universal PCR Master Mix (Catalogue
#4366072, Thermofisher, Waltham, MA, USA) or TaqManTM RNA-to-
CTTM 1-Step Kit (Catalogue #4392653, Thermofisher, Waltham, MA,
USA) using the following FAM- or VIC-tagged TaqManVR gene expression
assays (all from Life Technologies, Carlsbad, CA, USA): Human GAPDH
(Assay ID Hs99999905_m1), human asTF and flTF (Custom probes, for
details see Reference57) human VCAM1 (Assay ID Hs01003372_m1),
mouse GAPDH (Assay ID Mm99999915_g1), mouse flTF (Assay ID
Mm00438856_m1), mouse asTF (custom probe, Clone ID AP7DRF4),
mouse VCAM1 (Assay ID Mm00449197_m1). Relative gene expression
was determined via the comparative C(t) (DDCt) method with GAPDH
as endogenous control for mRNA expression.

2.7 Western blot and ELISA
Cells and tissue samples were lysed in cell lysis buffer (10% glycerol, 10%
SDS, pH adjusted to 7.6 using Tris) containing a protease/phosphate in-
hibitor cocktail (Catalogue # 5872, Cell Signaling, Danvers, MA, USA).
Mouse aortas were homogenized using a Dual Tissue Grinder (DWK
Life Sciences, Millville, NJ, USA) in 10mL lysis buffer per 1 mg of tissue

using zirconium oxide beads (Catalogue # 13765, Cayman Chemicals,
Ann Arbor, MI, USA). Following quantification of protein with a BCA
protein assay kit (Catalogue # 23225, Thermofisher, Waltham, MA,
USA), homogenate was subjected to western blot as described previ-
ously.57 For detection in mouse aortae, proteins were transferred to a
Polyvinylidene fluoride membrane (Catalogue # IPFL00005, Merck
Millipore, Burlington, MA, USA) and band intensity scanned using the
Odyssey ImagingSystem (LiCor Inc, Lincoln, NE, USA). The following
antibodies were used for detection: Goat anti-human TF (Catalogue #
4501, 4mg/mL, American Diagnostica, Stamford, CT, USA), Goat anti-
human asTF (Pineda, 1mg/mL), Rabbit anti-human VCAM1 (Catalogue #
13662, 0.6mg/mL, Cell Signaling, Danvers, MA, USA), Mouse anti-
GAPDH (Catalogue # CB1001, 0.6mg/mL, Calbiochem, San Diego, CA,
USA), Rabbit Anti-mouse TF (Catalogue #4501, 2mg/mL Biomedica,
Vienna, Austria), Goat anti-VCAM1 (Catalogue #AF643, 1mg/mL, R&D
systems, Minneapolis, MN, USA), Mouse anti-GAPDH (Catalogue #
MA5-15738, 0.1mg/mL, Invitrogen, Carlsbad, CA, USA,), 680RD Donkey
anti-Goat IgG (Catalogue # 926-68074, 0.1mg/mL, LiCor Inc, Lincoln,
NE, USA), 680RD Goat anti-Rabbit IgG (Catalogue # 926-68071, 0.1mg/
mL, LiCor Inc, Lincoln, NE, USA), and 800CW Goat anti-Mouse IgG
(Catalogue # 926-32210, 0.1mg/mL, LiCor Inc, Lincoln, NE, USA).
Recombinant mouse TF (Catalogue # RPA524Mu01, 1 ng, Cloud-Clone
Corp, Houston, TX, USA) was used as a positive control. ImageJ (NIH)
software was used to quantify images.

TAT levels in mouse plasma were assessed by using Siemens
EnzygnostVR TAT micro immunoassay (Catalogue # OWMG15 Siemens,
Erlangen, Germany).

2.8 Immunohistochemistry and
immunofluorescence of mouse tissue
Frozen sections of aortas and carotid arteries were mounted on glass
slides, fixed with IC fixation buffer (Catalogue # 00-8222-49 Invitrogen,
Carlsbad, CA, USA) for 20 min, and washed three times in dH2O. After
quenching endogenous peroxidase with 3% H2O2 (Fisher Chemical,
Catalogue # 7722-84-1) for 10 min, non-specific avidin-biotin activity
was blocked with an avidin/biotin blocking kit (Catalogue #SP-2001,
Vector laboratories, Burlingame, CA, USA). Sections were then blocked
with normal Rabbit Serum Blocking reagent (Catalogue # S-5000,
Vector laboratories, Burlingame, CA, USA) for 1 h followed by overnight
incubation with the primary antibodies: rat anti-TF 1H1 8mg/mL, rat
IgG2a j isotype control (clone eBR2a, 8mg/mL, eBioscience San Diego,
CA, USA), rat anti-mouse VCAM1(CD106) (Catalogue # 550547,
0.62508mg/mL BD Pharmingen, San Diego, CA, USA), goat anti-CD31
(AF3628, 15mg/mL, R&D systems, Minneapolis, MN, USA), and rat anti-
mouse CD41 (clone MWReg3, 10mg/mL, BD Pharmingen, San Diego,
CA, USA). The slides were developed by Vectastain Elite ABC
(Catalogue # PK-6105, Vector laboratories, Burlingame, CA, USA) with
3,3’-diaminobenzidine (DAB) (Catalogue # SK-4100, Vector laborato-
ries, Burlingame, CA, USA) or 3-amino-9-ethylcarbazole (AEC,
Catalogue # K3464, Dako, Jena, Germany) and then counterstained with
haematoxylin (Catalogue # H-3401, Vector laboratories, Burlingame,
CA, USA) and mounted in Aqua-Poly/Mount medium (Catalogue #
NC9439247, Polysciences, Warrington, PA, USA). Images were taken
using a light microscope (Olympus type BX61). Quantification was per-
formed using the software QuPath0.2.0-m10.58 Background values were
adjusted by measuring average background within each image to mini-
mize error due to minor intensity variations across the image set. DAB
and AEC signals were isolated using the colour deconvolution function

4 M. Witkowski et al.2370
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of QuPath.58 Mean optical density (OD) for DAB or AEC stain was
quantified by manually annotating the endothelial layer or thrombus and
mean OD quantified within the endothelial layer or thrombus. Three dis-
tinct anatomic sides per animal were quantified with mouse aortas in-
cluding both thoracic and abdominal parts.

For immunofluorescence, aortic tissue was blocked with the avidin/bi-
otin blocking kit (Catalogue # SP-2001, Vector laboratories, Burlingame,
CA, USA) and 10% normal goat serum (Catalogue # X0907, DAKO,
Jena, Germany). Analysis was performed with the following antibodies/
probes: rat anti-TF 1H1 (8mg/mL), rabbit anti-mouse TF (Catalogue #
4501, 10mg/mL, Biomedica, Vienna, Austria), rat anti-mouse VCAM1
(Catalogue # 550547, 0.625ug/mL, BD Pharmingen, San Diego, CA,
USA), rabbit anti-mouse VCAM1 (Catalogue # 39036, 1:1000 dilution,
Cell Signaling, Danvers, MA, USA), goat anti-CD31 (AF3628, 15ug/mL,
R&D systems, Minneapolis, MN, USA), Goat IgG anti-Rabbit IgG-Biotin
(Catalogue # 111-065-045, 6mg/mL Dianova), biotinylated rabbit anti-
rat IgG Antibody

(Catalogue # BA-4000, Vector laboratories, Burlingame, CA, USA),
Streptavidin-Cy3 (Catalogue # 016-160-084, 7mg/mL, Dianova,
Hamburg, Germany), Streptavidin DyLightVR 549 (Catalogue # SA-5549-
1, 1mg/mL Vector laboratories, Burlingame, CA, USA), Alexa 488 don-
key anti-goat (Catalogue # A11055, 4mg/mL, Invitrogen, Carlsbad, CA,
USA), Alexa 647 donkey anti-rabbit IgG (Catalogue # A31573, 4mg/mL,
Invitrogen, Carlsbad, CA, USA), DAPI (Catalogue # D1168, 2mg/mL,
Invitrogen, Carlsbad, CA, USA), and Phalloidin–Atto 647 N (Catalogue
# 65906, 0.02mM, Thermofisher, Waltham, MA, USA).

2.9 Caecal microbiota composition
analyses and statistical analysis
The 16S rRNA gene sequencing methods used were adapted from the
methods developed for the National Institutes of Health-Human
Microbiome Project.59 Briefly, genomic DNA was extracted from indi-
vidual mouse caecum with a MagAttract HMW DNA Kit (Qiagen,
Hilden, Germany). Next, the 16S rRNA V4 region was amplified and se-
quenced on Illumina Iseq 100 platform following the manufacturer’s
instructions. Raw 16S amplicon sequence (forward reads only) and
metadata were demultiplexed using the split_libraries_fastq.py script
implemented in QIIME1.9.1.60 The demultiplexed fastq file was split into
sample-specific fastq files using split_sequence_file_on_sample_ids.py
script from Qiime1.9.1.60 Individual fastq files without non-biological
nucleotides were processed using Divisive Amplicon Denoising
Algorithm pipeline.61 The output of the dada2 pipeline (feature table of
amplicon sequence variants) was processed for alpha and beta diversity
analysis using phyloseq62 and microbiomeSeq (http://www.github.com/
umerijaz/microbiomeSeq) packages in R. Alpha diversity estimates were
analysed within group categories using estimate_richness function of the
phyloseq package.62 Non-multidimensional scaling (NMDS) was per-
formed using Bray–Curtis dissimilarity matrix3763 between groups and
visualized by using ggplot2 package. We assessed the statistical signifi-
cance (P < 0.05) throughout and whenever necessary adjusted P-values
for multiple comparisons according to the Benjamini and Hochberg
method to control false discovery rate,64 while performing multiple test-
ing on taxa abundance according to sample categories. We performed
an ANOVA among sample categories while measuring a-diversity using
the plot_anova_diversity function in microbiomeSeq package (http://
www.github.com/umerijaz/microbiomeSeq). Permutational multivariate
ANOVA with 999 permutations was performed to test the statistical sig-
nificance of the NMDS patterns with the ordination function of the

microbiomeSeq package. Linear regression was performed on taxa
abundances against metadata variables using ‘lm’ function implemented
in dplyr package in R.

Statistical analyses were performed using the software GraphPad
Prism 8 and R 3.5.3 (Vienna, Austria, 2018). For the clinical analysis,
Shapiro–Wilk test was used to test for normality. Continuous data are
presented as mean ± standard deviation or median (interquartile range),
categorical variables are presented as %. Hazards ratios (HR)s for inci-
dent MACE at 1 and 3-years follow-up and corresponding 95% confi-
dence interval (95% CI) were analysed using univariable (unadjusted)
and multivariable (adjusted) Cox models. Kaplan–Meier analysis with
Cox proportional hazards regression was used for event-free survival
from MACE. Adjustments were made for traditional cardiac risk factors
including age, sex, hypertension, smoking, diabetes, HDL cholesterol,
LDL cholesterol, and triglycerides (adjustment 1); and all of the above
mentioned adjustments in addition to creatinine levels (adjustment 2).

In cell culture and animal experiments, the D’Agostino–Pearson test
was applied to test for normality. After testing for normal distribution,
differences between two groups were examined using either a Student’s
t-test or Mann–Whitney test (non-parametric). For comparisons of one
parameter between more than two related groups, an ANOVA with
Tukey’s multiple comparisons test (parametric) or a Kruskal–Wallis test
with Dunn’s multiple comparison post hoc test (non-parametric) was
performed. For correlation between plasma TMAO levels and vascular
TF and VCAM expression, P-values were calculated using non-paramet-
ric Spearman correlation. In vitro laboratory and animal model data are
represented as mean± SEM. P-values < 0.05 are considered statistically
significant.

3. Results

3.1 Plasma TMAO levels are associated
with incident major adverse cardiovascular
events in patients on anti-platelet therapy
TMAO directly enhances platelet stimulus-dependent intracellular cal-
cium release, reactivity and thrombosis.22,24,38 We reasoned that if ele-
vated TMAO levels foster a pro-thrombotic effect in subjects partially
via TF pathway activation, we should find associations between circulat-
ing TMAO levels and thrombotic events even among subjects on anti-
platelet therapy. To test this, we analysed two large independent cohorts
of varying patient risk profile: (i) the first comprised of a single-centre co-
hort of stable patients undergoing elective diagnostic coronary angiogra-
phy (including both primary and secondary prevention patients)
(Cleveland Clinic GeneBank). In the present analyses, only the subset of
GeneBank subjects treated with anti-platelet therapy (primarily aspirin)
throughout longitudinal follow-up were included (n = 2989); (ii) the sec-
ond cohort is comprised of a multi-centre observational study of
patients presenting with ACS. In the present analyses, only the subset of
subjects treated with dual anti-platelet therapy throughout longitudinal
follow-up were included (Swiss ACS, n = 1469). Baseline characteristics
for each cohort are shown in Supplementary material online, Tables S1
and S2.

Kaplan–Meier analyses revealed an increase in event (MACE) rates
with increasing TMAO quartiles among GeneBank subjects on anti-
platelet therapy (defined as either aspirin or ADP-receptor antagonists)
(log rank P < 0.0001) (Figure 1A). This association was also observed
when restricting analyses to individuals on aspirin alone throughout the
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..follow-up period (log rank P < 0.0001, n = 2793, Supplementary material
online, Figure S1A). Multivariable Cox models with adjustments for tradi-
tional risk factors (including age, sex, hypertension, smoking, diabetes,
HDL cholesterol, LDL cholesterol, and triglycerides; adjustment 1), in-
cluding additional adjustments for renal function (adjustment 2), showed
elevated TMAO remained significantly associated with incident MACE in
all subjects on anti-platelet therapy [HR 95% CI for quartile (Q)4 vs. Q1,
1.73 (1.25–2.38), P = 0.0008 and 1.50 (1.08–2.10), P = 0.0157, respec-
tively, Figure 1B], as well as subjects on aspirin only [1.75 (1.25–2.44),
P = 0.0012, Supplementary material online, Figure S1B].

We next sought to determine whether the strong prognostic value of
TMAO in stable subjects on anti-platelet therapy observed in the single-
centre Cleveland (GeneBank) cohort could be replicated in an indepen-
dent cohort of patients with heightened risk profile. For this, we elected

to examine TMAO levels in patients presenting with ACS in the indepen-
dent multi-site SPUM-ACS cohort, examining the subset (n = 1469) of
patients who were treated with DAPT throughout the 1-year follow-up
period, as described in Section 2. Again, Kaplan–Meier survival analyses
revealed increasing TMAO levels were associated with a graded increase
(log rank P < 0.0001) in incident MACE (Figure 1C). Moreover, patients
with higher TMAO levels (e.g. Q4 vs. Q1) showed a significant 2.1-fold
increase in incident MACE risk [HR (95% CI) at 1 year of 2.1 (1.35–3.28),
P = 0.001], which remained significant after adjustment for traditional risk
factors as above, as well as with adjustments for traditional risk factors
plus renal function [1.70 (1.08–2.69), P = 0.02 and 1.67 (1.05–2.64),
P = 0.0302, respectively, Figure 1D]. While clinical association studies
such as these cannot directly demonstrate mechanism of action, they
nonetheless can serve as hypothesis generation studies. The results

Figure 1 The association of TMAO levels with thromboembolic clinical outcomes in patients on anti-platelets in the Cleveland and Swiss ACS Cohorts.
Kaplan–Meier estimates and the risk of incident MACE (MI, stroke, or death) over follow-up periods ranked by quartiles of TMAO levels in (A) GeneBank
patients with anti-platelet therapy (aspirin or ADP-receptor antagonists) as well as (C) Swiss ACS patients with dual anti-platelet therapy. P-values by log
rank test are indicated. Forest plots indicating the risks of (B) incident MACE at 3 years for GeneBank and (D) at 1 year for Swiss ACS subjects stratified by
quartiles of TMAO levels (unadjusted in grey), multivariable Cox model for HR included adjustments for traditional risk factors including age, gender, hyper-
tension, smoking, diabetes, HDL, LDL, TG (adjustment 1, in black); and traditional risk factors plus renal function (adjustment 2, in red), as described in
Section 2. The 5–95% CI is indicated by line length.
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..arguably suggest that factors independent of a direct effect of TMAO on
platelet reactivity are likely involved in the observed residual clinical risks
since TMAO remained associated with increased MACE even in the
presence of anti-platelet agents. Moreover, multiple prior mechanistic
investigations have demonstrated that TMAO enhances in vivo thrombo-
sis in animal models.5,19,22,24,38–40

3.2 TMAO induces expression of TF and
VCAM1 in HMECs
We used HMEC-1 as a model system to test the hypothesis that the gut
microbiota-derived metabolite TMAO impacts vascular TF expression
and adhesion molecules that are induced by activated endothelial cells.
Notably, TMAO induced a robust induction of TF mRNA (both flTF and
asTF), and VCAM1 mRNA in HMEC-1 after 2–4 h of incubation (Figure

2A–C). Dose–response experiments demonstrated that physiological
TMAO concentrations (within the ranges observed in both of our pa-
tient cohorts, Figure 1; and in reported clinical studies28–31) were suffi-
cient to induce both TF isoform transcripts and VCAM1 mRNA
expression (Figure 2D–F). Western blot experiments confirmed the
TMAO-dependent expression of endothelial flTF, asTF, and VCAM1 on
the protein level (Figure 2G). By contrast, TMAO had no effect on TF ex-
pression in human monocytic (THP-1) cells (Figure 2H and I).

3.3 Acute elevation of TMAO induces
aortic endothelial TF and VCAM1
expression in vivo
We used mouse models to analyse the effects of acute TMAO exposure
on aortic TF and VCAM1 expression in vivo. For this purpose, C57/BL6

Figure 2 Effects of TMAO exposure on TF and VCAM1 expression in human endothelial cells. HMEC-1 was left untreated or exposed to 200 mM
TMAO for 2, 4, and 6 h and mRNA expression for (A) flTF, (B) asTF, and (C) VCAM1 analysed. In addition, HMEC-1 was treated with vehicle or TMAO at
different concentrations as indicated for 2 h and mRNA expression of (D) flTF, (E) asTF, and (F) VCAM1 assessed. (G) Protein amounts of flTF, asTF, and
VCAM1 in HMEC treated with 200mM TMAO for 6 h quantified via western blot. Human monocytic THP-1 cells were treated with TMAO or vehicle for
2 h and mRNA expression of (H) flTF and (I) asTF analysed. Results are presented as mean±SEM. Global P-values shown were obtained by non-parametric
Kruskal–Wallis test with Dunn’s multiple comparisons post hoc test to compare different treatments. Differences between two groups were assessed using a
Mann–Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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.
mice were injected intraperitoneally with TMAO or vehicle, and both
blood and aortas were harvested either 1.5 h or 6 h post injection to as-
sess plasma TMAO levels and aortic TF mRNA and protein expression.
Analyses of samples collected 1.5 h post-TMAO injection (compared to
controls) showed an increase in circulating TMAO levels (Figure 3A)
without elevation in its precursor metabolite TMA (Supplementary ma-
terial online, Figure S2A). At this time point post injection, the TMAO in-
crease was accompanied by induction of both flTF and asTF mRNA, but
not VCAM1 mRNA (Figure 3B–D). Moreover, we observed a correlation
of plasma TMAO levels with flTF expression, but not with asTF
(Spearman R 0.66, P = 0.04 for flTF, Supplementary material online,
Figure S2B and C). When blood and aortic tissues were examined 6 h fol-
lowing intraperitoneal injection of either TMAO or vehicle, a much
lower elevation in plasma TMAO was observed (Figure 3E), whereas
western blot analysis of aortic lysates showed a significant increase in TF
protein and a trend towards more VCAM1 protein (Figure 3F and G).
Immunohistochemistry studies of aortic sections localized both TF and
VCAM1 to the endothelial layer (Figure 3H).

3.4 A chronic elevation in TMAO levels
with choline-supplemented diet induces
aortic TF and VCAM1 expression
We next assessed the impact of chronic increases in TMAO levels on
vascular TF and VCAM1 expression using dietary manipulation. C57/BL6
mice were fed either a chemically defined diet (chow) or the same diet
supplemented with choline (1% choline) for 10 days, and then blood and
tissues were recovered for analyses as described under Section 2. As
expected, chronic dietary choline supplementation led to a significant in-
crease in plasma levels of choline, TMA (Supplementary material online,
Figure S3A and B) and TMAO (Figure 4A). Higher plasma TMAO was as-
sociated with increased aortic flTF mRNA expression but not asTF, and a
trend for increased RNA levels of VCAM1 that failed to reach statistical
significance (Figure 4B–D). Notably, western blot analyses of aortic
lysates revealed significant choline diet-induced increases in both TF and
VCAM1 protein (Figure 4E and F). In line with our finding that TMAO
failed to induce TF in human monocytes (Figure 2H and I), we observed
no difference in TAT in citrated plasma recovered from mice supple-
mented with choline vs. the control (chow) diet, suggesting that mouse
monocytic TF production65 is not induced by TMAO (Figure 4G). Parallel
immunohistochemistry studies using the well-established 1H1 anti-TF
antibody55 and a VCAM1-specific antibody (Section 2) revealed that die-
tary supplementation with choline resulted in both chronic TMAO ele-
vation and induction of both TF and VCAM1 vascular protein.
Moreover, immunolocalization studies showed staining primarily within
the endothelial layer of the aorta, as judged by co-localization with endo-
thelial cell-specific marker CD31 (Figure 4H and I and Supplementary ma-
terial online, Figure S4). The endothelial localization of vascular wall TF
and VCAM1 (induced by a choline-supplemented diet) was also further
confirmed in immunofluorescence studies with double staining of CD31
with either TF or VCAM1 (Supplementary material online, Figure S4).

3.5 Pharmacological targeting of gut
microbial choline TMA-lyase prevents
TMAO-related vascular TF and VCAM1 ex-
pression in the host
In additional studies, we analysed the effect of a recently developed and
characterized non-lethal (with respect to microbes; i.e. non-antibiotic)
small molecule inhibitor FMC—which specifically targets microbial

choline TMA-lyases—on host vascular TF expression.39 FMC was
designed as a mechanism-based inhibitor that both selectively accumu-
lates within gut microbiota and is poorly absorbed in the host.39 C57/
BL6 mice were fed a choline-supplemented diet with or without FMC in
the drinking water. Provision of FMC drastically reduced circulating TMA
and TMAO (>95%), while enhancing choline bioavailability (Figure 5B).
Aortas of animals on the choline-supplemented diet showed strong im-
munohistochemical staining localized to the aortic endothelium using
distinct mAb specific for either TF (Figure 5A, upper left panel) or
VCAM1 (Figure 5A, middle left panel). By contrast, immunostaining of
aortas recovered from choline diet-supplemented littermates that also
received FMC showed virtually undetectable aortic endothelial TF or
VCAM1 (Figure 5A, upper and middle right panel). Notably, FMC treat-
ment did not change the extent of perivascular (interstitial) TF protein.
Computer image analysis of multiple sections of tissue staining across
three distinct anatomic sides per animal (as described under Section 2)
revealed a significant increase in both TF and VCAM1 protein under con-
ditions where TMAO levels were elevated (Figure 5B). In Addition,
Spearman correlation analyses demonstrated significant associations be-
tween circulating TMAO or TMA levels with either endothelial cell TF
(Figure 5C left panel) or VCAM1 (Figure 5C, right panel).

3.6 Infusion of an inhibitory anti-TF anti-
body prevents TMAO-enhanced thrombo-
sis potential in vivo
To assess the role of TMAO-depending vascular TF expression on
thrombus formation in vivo, we conducted a proof-of-concept study us-
ing the carotid artery injury (FeCl3) model. Animals were chronically fed
a chemically defined diet (chow) with experimentally determined total
choline content (0.08 g%) vs. the same diet supplemented with 1.0 g%
choline (choline diet, total choline content 1.08 g%). After 2 weeks of
choline supplemented diet, the impact of TF inhibition on TMAO-
enhanced in vivo thrombosis potential was examined. For these studies,
mice on the choline diet were randomly split into either treatment with
the rat anti-mouse TF monoclonal antibody55 or isotype-matched rat
IgG2a j control antibody (clone eBR2a, eBioscience San Diego, CA,
USA), as described in Section 2, before quantifying both FeCl3 injury-
induced in vivo thrombus formation and time to cessation of blood flow
in the injured arterial segment. Fluorescent micrographs of the growing
thrombus over time from a representative mouse from each group are
shown in Figure 6A, and quantitation of time to cessation of blood flow in
all animals is shown in Figure 6B. Review of the representative fluorescent
images of the growing thrombus readily reveal that mice fed a choline-
supplemented diet (receiving control IgG2a treatment) have more rapid
FeCl3-induced thrombus formation compared to chow-fed animals, as
well as marked reduction in time to vessel occlusion (Figure 6A).
Strikingly, despite maintaining a comparably high TMAO level, mice on
the choline diet that were administered the TF-inhibitory antibody
(1H1) showed marked reversal of both the TMAO-enhanced thrombus
formation (Figure 6A) and TMAO-reduced time to cessation of blood
flow, with occlusion times nearly normalized to what was observed in
chow-fed animals (Figure 6B). Immunohistochemistry examination was
also performed on the injured carotid arteries with thrombi recovered
from animals injected with the control IgG2a (N.B. the anti-TF antibody
injected i.p. is the same antibody as used in immunohistochemical exami-
nation, preventing examination of tissues recovered from mice already
injected with the inhibitory antibody). Notably, the choline diet-fed mice
exhibited more endothelial TF that was incorporated into the thrombus

8 M. Witkowski et al.2374

https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvab263#supplementary-data


Figure 3 TMAO acutely raises TF and VCAM1 expression in aortic tissue in vivo. C57/BL6 mice were injected with TMAO or vehicle intraperitoneally for
1.5 h. Next, (A) plasma TMAO levels were quantified by LC/MS/MS and arotic mRNA expression of (B) flTF, (C) asTF, and (D) VCAM1 quantified via
TaqMan rtPCR. To assess protein expression, the animals were injected with vehicle or TMAO for 6 h. Subsequently, (E) TMAO plasma levels and (F) pro-
tein amounts of TF and VCAM1 were quantified via western blot and (G) density of the protein bands quantified. (H) To analyse localization within the vessel
wall, aortic tissue of TMAO-injected mice was probed for TF and VCAM1 expression 6 h post injection using immunofluorescence staining (TF red, upper
panel, VCAM1 red, lower panel). The tissue was counterstained with DAPI (blue) and an f-actin probe (green). Results are presented as mean±SEM.
Pairwise comparison was performed using a Mann–Whitney test.
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Figure 4 TMAO chronically induces endothelial TF and VCAM1 expression in mouse aortas in vivo. C57/BL6 mice were either fed a control chow diet or
a choline diet. After 10 days of diet, (A) plasma levels of TMAO were quantified and aortic mRNA expression for (B) flTF, (C)asTF, and (D) VCAM1 analysed.
(E) Protein amounts of TF and VCAM1 in aortic tissue were measured via western blot and related to the corresponding plasma levels of TMAO. Aortas of
LPS-injected mice (15 mg/kg for 6 h) as well as recombinant mouse TF were used as positive controls. (F) Density of the detected bands was quantified using
an imaging software. (G) Plasma of the same animals was analysed with respect to TAT complexes via ELISA. LPS-injected animals served as a known positive
control for TAT induction (H) Immunohistochemistry experiments using specific antibodies were used to assess protein expression of TF, VCAM1, and the
endothelial marker CD31 in aortic tissue. (I) Mean OD of endothelial protein expression from three different anatomical sides was quantified using an imag-
ing software and three data points for each animal were plotted. Results are presented as mean±SEM. Pairwise comparison was performed using a Mann–
Whitney test.
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(Figure 6C and D). Moreover, thrombi were seen to be mainly composed
of platelets, as evidenced by a CD41-specific staining, with a modest in-
crease in choline-fed animals as compared to chow-fed littermates
(Figure 6C and D).

3.7 The gut microbiota choline TMA-lyase
inhibitor, FMC, modulates TMAO-
associated taxa and their association with
vascular TF and VCAM1 expression
In parallel studies, we examined the impact of a choline diet and FMC
treatment on gut microbial community structure with respect to
TMAO-associated taxa, and their association with vascular TF and
VCAM1 expression. Caecal microbial DNA encoding 16S ribosomal
RNA was sequenced, and NMDS was performed among the groups of
mice. Shannon index-based alpha diversity analyses revealed significant
differences between the groups (Figure 7A). Three distinct (non-overlap-
ping) clusters in the principal component analysis (Figure 7B) indicated
that dietary choline and dietary choline þ FMC each induced significant
(permutational multivariate ANOVA, R2 = 0.67, P = 0.001) detectable
rearrangements in the overall caecal microbial composition. Notably, we
identified multiple caecal microbial taxa whose abundances accounted
for significant (P < 0.05, Benjamini Hochberg false discovery rate cor-
rected) differences observed among the different groups (chow, choline,
and cholineþFMC) (Figure 7C).

In additional analyses, we also tested whether the proportions of the
taxa that changed upon different treatments were significantly correlated
with TMAO or expression of either vascular TF or VCAM1, the latter
two quantified by immunohistochemical OD analyses (Section 2) in the
endothelial layer of aortic tissue sections. The caecal microbial commu-
nity of choline diet-fed animals showed a significant increase in the pro-
portion of the genera Dorea and Candidatus stoquefichus, whose
proportion was reduced by exposure to FMC close to levels observed
in mice fed the control (chow) diet (Figure 7C). Furthermore, the pro-
portions of Dorea and Candidatus stoquefichus significantly correlated with
plasma levels of TMAO and both vascular TF and VCAM1 expression
levels. By contrast, a choline diet reduced the proportion of
Lachnospiraceae NK4136 and Anaerotruncus, whose proportions were re-
stored (reduced) by FMC treatment to levels similar to those observed
on chow (Figure 7C). These caecal microbiota genera also correlated sig-
nificantly with plasma levels of TMAO, aortic endothelial cell TF, and
VCAM1 immunohistochemical staining (Anaerotruncus). In line with our
findings, Lachnospiraceae has previously been shown to be associated
with lower TMAO levels and an anti-thrombotic phenotype.22

Furthermore, significant correlations of additional genera with aortic tis-
sue endothelial cell TF or VCAM1 levels were also observed for
Acetitomaculum, Oscillibater, Romboutsia, Roseburia, Ruminiclostridium,
Ruminococcaceae, and Tucicibacter (Supplementary material online, Figures
S5 and S6).

4. Discussion

The TF pathway is the rate-limiting step for in vivo thrombosis.
Moreover, adverse phenotypes that are linked to pathological vascular
TF expression, including diabetes,66–68 coronary artery disease,69 myo-
cardial infarction,70,71 and stroke,72 likewise show strong associations
with elevated levels of TMAO.7,23,53,73 Here, we show that TMAO indu-
ces vascular endothelial TF, which the present studies reveal contributes

to TMAO-heightened thrombosis potential in vivo. Our studies thus pro-
vide new mechanistic insights into how the metaorganismal TMAO path-
way and gut microbiota can contribute to atherothrombotic event risks.
They also identify a new axis that enhances the risk for thrombosis, com-
prising diet, microbiome, TMAO, and vascular TF.

In multiple cohorts with varying clinical phenotypes ranging from sta-
ble subjects undergoing elective diagnostic coronary angiography to
patients presenting with ACS, we observed heightened MACE risk with
elevated TMAO levels, even in the presence of one or more anti-platelet
drugs. Although prior studies have reported an association between
TMAO and adverse outcomes in patient cohorts that include some indi-
viduals on anti-platelet agents—e.g. in secondary stroke prophylaxis23 or
following ACS74—there has been no analysis of TMAO’s prognostic
value in cohorts with documented anti-platelet therapy for all subjects
throughout the duration of follow-up. The pathogenesis of thrombosis is
complex and involves platelets, the vascular wall and coagulation factors.
Our clinical findings suggest that factors within the vasculature in addition
to platelets that are not inhibited by anti-platelet therapy contribute to
the heighted thrombosis risk promoted by TMAO. While clinical studies
that have quantified coronary atherosclerotic plaque using detailed quan-
titative coronary angiography and GENSINI score, or SYNTAX score,
or optical coherence tomography, have shown an association between
TMAO and both atherosclerotic plaque burden75–77 and plaque vulnera-
bility,32,33 other studies examining different surrogate markers of plaque
like coronary artery calcification and carotid intimal medial thickness
have failed to observe an association.35 Notably, multiple studies have
reported a strong association between TMAO levels and increased arte-
rial thrombotic events,12,22,23,38,74 and a recent animal model study
reported that circulating TMAO could reduce the inhibitory effects of
clopidogrel on platelet aggregation.78 Thrombus generation involves
multiple cell types (vascular cells and platelets)79 and biochemical path-
ways, including the extrinsic coagulation pathway.80 Our prior studies on
the TMAO pathway and thrombosis have primarily focused on the ability
of TMAO to directly impact platelet calcium signalling, and the impact of
TMAO on platelet responsiveness to a variety of agonists.22,38 In addi-
tion, numerous studies have shown that TMAO can activate vascular en-
dothelial cells through either NF-jB- or NLRP3-dependent pathways,
providing additional potential mechanisms for TMAO-dependent en-
hancement of platelet adhesion and clot formation in vivo.17,36,81–86

However, surprisingly, despite the clinical associations between TMAO
and thrombotic event risks, and the central role of the TF pathway in
both thrombosis and the extrinsic clotting cascade,41,42 few studies have
examined the relationship between TMAO and TF. One recent in vitro
study with cultured vascular endothelial cells reported that TMAO addi-
tion to media up regulates TF expression.87 However, no studies to date
have examined whether an increase in TMAO directly leads to enhanced
vascular TF expression in vivo, contributes to TMAO-dependent height-
ened thrombosis susceptibility in animal models, or is associated with
MACE in patients on anti-platelet therapies.

While the present studies demonstrate a mechanistic link between
TMAO and TF dependent increases in thrombosis susceptibility in vivo,
further investigation is needed to understand the host signalling partners
involved. Thus, it remains to be established what molecular participant(s)
in the host link TMAO elevation to enhanced vascular endothelial cell TF
expression. One candidate that merits further investigation is the re-
cently reported TMAO receptor PKR-like ER kinase (PERK), a compo-
nent of the protein unfolding response.88 In that study, PERK was
reported to bind to TMAO and trigger TMAO-dependent changes in
glucose metabolism. However, its involvement in other more traditional
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phenotypes associated with heightened TMAO levels (e.g. platelet reac-
tivity and thrombosis potential) has not yet been explored. It is notable
that a recent study investigated the role of PERK inhibition in vascular in-
timal hyperplasia and restenosis.89 The PERK inhibitor SK2606414 was
reported to reduce tumour necrosis factor (TNF) a-induced TF expres-
sion in cultured rat aortic rings, and oral administration of SK2606414 to

C57BL/6 mice prevented occlusive thrombosis in a FeCl3 arterial injury
model.89 However, in that study, neither the involvement of TMAO, or
TF, in the anti-thrombotic properties of the PERK inhibitor were ex-
plored. It should also be noted that beyond PERK, there are numerous
alternative candidate pathways through which TMAO may affect TF ex-
pression. For example, TMAO has been shown to activate known

Figure 5 A small molecule TMA-lyase inhibitor reverses TMAO-stimulated increase in aortic TF and VCAM1. C57/BL6 mice were put on a choline diet
with and without FMC in the drinking water. (A) Aortic tissue was subjected to immunohistochemistry using antibodies against TF, VCAM1, and the endo-
thelial marker CD31. (B) Mean OD was quantified from three different anatomical sides and three data points are plotted for each animal. (B, lower panel)
Levels of plasma TMAO, TMA, and choline were quantified via LC/MS/MS and (C) correlated with endothelial TF and VCAM1 expression. Results are pre-
sented as mean±SEM. Pairwise comparison was performed using a Mann–Whitney test. Correlation of TMA and TMAO levels with TF or VCAM1 mean en-
dothelial OD was performed using non-parametric Spearman correlation.
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..potential drivers of TF expression including NFjB dependent endothelial
cell activation,36,37 inflammasome activation and oxidative
stress,17,85,90,91 as well as mitogen-activated protein kinase signalling and

TNFa release36,92—all of which have been shown to induce TF expres-
sion in the vasculature.41,42,47,93 Moreover, TF facilitates adverse signal-
ling via protease-activated receptors through FXa and thrombin

Figure 6 A TF-inhibitory antibody prevents the TMAO-associated enhancement in thrombus formation following arterial injury. C57/BL6 mice were put
on a chow or choline diet for 10 days. The animals then received either an isotype control antibody (IgG2a) or the TF-inhibitory antibody (1H1) prior to a
ferric chloride injury in vivo thrombosis model. (A) Intravital microscopy of rhodamine-labelled platelets during the in vivo thrombosis model was used to
monitor thrombus formation in the animals on a chow diet with a control antibody, choline diet with a control antibody, and choline diet with a TF-neutraliz-
ing antibody and (B) time to cessation of flow assessed. Carotid thrombi of animals on chow or choline diet that received the control antibody were stained
for TF and the platelet marker CD41 via immunohistochemistry. (C) Mean OD for vessel wall-associated thrombus TF and thrombus CD41 of three differ-
ent sides (three data points for each animal are plotted) quantified by an imaging software. (D) Representative Immunohistochemistry images. Results are
presented as mean±SEM. Global P-values shown were obtained by non-parametric Kruskal–Wallis test with Dunn’s multiple comparisons post hoc test to
compare occlusion time. Differences between two groups were assessed using a Mann–Whitney test.

Contribution of tissue factor in TMAO-enhanced thrombosis 132379



..

..

..

..

..

..

..

..

..

..

..

..

..

..generation.94,95 Given the present findings that TMAO induces vascular
endothelial cell TF expression in vivo, the role of TMAO in inducing TF-
related pathologies merits further investigation.

Interestingly, we observed no impact of TMAO on TF expression in
human monocytic cells while endothelial TF production was strongly in-
creased. The contribution of TF originating from different cellular sour-
ces (vessel wall and blood cells) to thrombus generation in different
disease models has been debated in the past. In addition to haemato-
poietic TF,65 bone marrow transplantation studies coupled with

microvascular and macrovascular thrombosis models, confirmed that
vessel wall TF is a key contributor to arterial thrombosis formation
in vivo.50,51

While our recent approaches towards the treatment of CVD have
made tremendous advances, it is widely recognized that there still exists
considerable residual clinical risk. Despite aggressive preventive efforts
and the use of anti-platelet agents, atherothrombotic events are still the
major cause of mortality. It is notable, however, that results from recent
clinical trials show that this residual atherothrombotic event risk is in

Figure 7 The gut microbiota choline TMA-lyase inhibitor FMC shifts the choline diet-induced changes in caecal microbial community associated with vas-
cular TF and VCAM1. (A) Shannon diversity indices distinguishing chow, choline, and cholineþFMC samples. Statistical analysis was performed using
ANOVA. (B) NMDS based on Bray–Curtis index between the caecal microbiota recovered from mice that were on indicated diets. Statistical analysis was
performed using permutational multivariate ANOVA with R2 values for % variance explained by diet being the variable of interest. (C, upper panel)
Statistically significant (Benjamini–Hochberg false discovery rate; P < 0.05) genera differentiating three groups (chow, choline, and cholineþFMC). Plotted
are interquartile ranges (IQRs) (boxes). The dark line in the box is the median, lower whiskers represent smallest observation (>_25% quantile—1.5�IQR),
upper whiskers largest observation (<_75% quantile—1.5�IQR) with outliers as dots outside of the box. (C, second panel) Scatter plots based on linear re-
gression showing correlation between abundance of indicated genera with plasma TMAO (lM) levels, (C, third panel) endothelial TF protein and (C, fourth
panel) endothelial VCAM1 protein in mouse aortas on the indicated diets, expressed as OD within the annotated endothelial layer quantified by immunoflu-
orescence (as described in Section 2). R2 and P-values are indicated in each panel. For all panels, the same colour scheme was used for data to indicate animal
diet: chow (green), choline (purple), and cholineþFMC (red). The grey area shows the 95% CI.
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part mitigated by targeting the extrinsic clotting pathway via FXa inhibi-
tors.96–98 However, use of FXa inhibitors and other treatment options
for patients presenting with a pro-thrombotic state (i.e. chronic coro-
nary syndromes) remain challenged by excess bleeding risks as an ad-
verse complication.99

In previous studies, we showed that targeted inhibition of gut
microbe-dependent TMAO production by provision of FMC served as a
mechanism to inhibit thrombosis potential without adverse bleeding as a
complication, since platelet hyper-responsiveness was reversed to nor-
mal.22 Here, provision of FMC almost completely abolished TMAO-
associated vascular endothelial cell TF and VCAM1 expression, while vi-
sual inspection of the adventitial compartment TF expression appears to
remain intact. Collectively, the present and past studies suggest that
modulation of the gut microbe—TMAO—TF axis (e.g. via dietary inter-
ventions, or targeted non-lethal small molecule inhibitors of microbial
TMA generation) represents a novel avenue to selectively target patho-
logical endothelial TF expression, extrinsic clotting cascade activation,
and thrombosis, while preserving haemostasis. Translation of agents like
FMC thus far only used in preclinical models to human interventions
studies remains an attractive goal.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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Translational Perspective
The pro-thrombotic effects of the gut microbial TMAO pathway are shown to extend beyond enhancement of platelet responsiveness and include
heightened vascular Tissue Factor (TF). In clinical studies, TMAO is shown to predict event risk in patients in the presence of anti-platelet drugs. In
animal studies, TMAO elevation is shown to promote vascular endothelial TF expression and a TF-dependent pro-thrombotic effect.
Pharmacological targeting of gut microbial choline TMA-lyase reduced host TMAO, vascular TF and abrogated the pro-thrombotic TMAO-associ-
ated phenotype. These studies suggest inhibiting the TMAO pathway may be a rational target for reducing residual risk in patients on anti-platelet
therapy.
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