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ABSTRACT
Background: Nucleolin is a multifunctional nucleolar protein with RNA-binding properties. Increased
nucleolin expression protects cells from H2O2-induced damage, but the mechanism remains
unknown. Long noncoding RNAs (lncRNAs) play crucial roles in cardiovascular diseases. However,
the biological functions and underlying mechanisms of lncRNAs in myocardial injury remain unclear.
Methods: In a nucleolin-overexpressing cardiac cell line, high-throughput technology was used to
identify lncRNAs controlled by nucleolin. Cell counting kit-8 assay was used to determine cell
viability, lactate dehydrogenase (LDH) assay to detect cell death, caspase activity assay and
propidium iodide staining to confirm cell apoptosis, and RNA immunoprecipitation to examine the
interaction between Fendrr and nucleolin.
Results:We found that Fendrr expression was significantly downregulated in mouse hearts subjected
to myocardial ischemia-reperfusion (MI/R) injury. High Fendrr expression abrogated H2O2-mediated
injury in cardiomyocytes as evidenced by increased cell viability and decreased cell apoptosis.
Conversely, Fendrr knockdown exacerbated the cardiomyocytes injury. Also, nucleolin
overexpression inhibits Fendrr downregulation in H2O2-induced cardiomyocyte injury. Fendrr
overexpression significantly reversed the role of the suppression of nucleolin expression in H2O2-
induced cardiomyocytes.
Conclusion: LncRNA Fendrr is involved in the cardioprotective effect of nucleolin against H2O2-
induced injury and may be a potential therapeutic target for oxidative stress-induced myocardial
injury.

Abbreviations: MI/R: myocardial ischemia-reperfusion; H2O2: hydrogen peroxide; lncRNA: long
noncoding RNA; Fendrr: FOXF1 adjacent noncoding developmental regulatory RNA; LDH: lactate
dehydrogenase; PI: Propidium iodide; AMI: acute myocardial infarction; CCK-8: cell counting Kit-8;
qRT-PCR: quantitative real-time polymerase chain reaction; RIP: RNA immunoprecipitation; SD:
standard deviation; siRNA: small interfering RNA; NCL: Nucleolin; HCM: hypertrophic cardiomyopathy.
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Introduction

Nucleolin (also known as C23) is a multifunctional protein
commonly expressed in eukaryotic cells [1]. Nucleolin is
essential for ribosome biogenesis and RNA metabolism [2].
It participates in a variety of biological processes, including
gene replication, transcription, gene silencing, cell cycle regu-
lation, and cell death [3]. Our previous research has shown
that oxidative stress causes nucleolin cleavage and apoptosis
in C2C12 myogenic [4] and human umbilical vein endothelial
cells [5]. Nucleolin overexpression inhibits hydrogen peroxide
(H2O2)-induced apoptosis [6]. It protects the heart by interact-
ing with other molecules, resulting in a smaller infarcted area
and reduced cardiomyocyte death [7, 8]. Although research
has shown that nucleolin plays a significant protective role
in cardiomyocyte injury, its precise molecular mechanism
remains unknown.

The protein-coding genes account for only approximately
2–3% of the human genome, and the majority of the remain-
ing genes are transcribed into noncoding RNA (ncRNA) [9].

Long ncRNAs (lncRNAs) are transcripts with more than 200
nucleotides and limited coding potential. The nomenclature
of lncRNAs depends on multiple characteristics such as the
transcription initiation point, cell or tissue specificity, molecu-
lar function, and mechanism of action [10]. Recently, lncRNAs
have been implicated as important gene regulators in cardiac
remodeling, myocardial hypertrophy, and myocardial ische-
mia-reperfusion (MI/R) injury [11–13]. The rapid development
of RNA sequencing technology has revealed that lncRNAs are
abnormally expressed in various diseases. The biological
functions and mechanisms of lncRNAs in various diseases
have also been extensively studied.

Cardiovascular diseases and their consequences are the
most common health problems in humans. Extensive
research has been conducted on the pathogenesis of cardio-
vascular disease, such as oxidative stress and activation of cell
death systems [14]. In vitro H2O2 stimulation of cardiomyo-
cytes is the most common way to simulate MI/R models
[15–17]. Recently, new molecular mechanisms have been
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proposed for cardioprotection against MI/R injury. However,
effective drugs and methods for improving reperfusion-
related injuries are still lacking. Therefore, an in-depth under-
standing of the mechanism underlying reperfusion injury and
identification of new targets are crucial for preventing and
treating cardiomyocyte injury.

This study aimed to investigate the molecular mechanism
underlying the protective effect of nucleolin against cardio-
myocyte injury. The expression profile of lncRNAs in cardio-
myocytes overexpressing nucleolin was elucidated using
high-throughput screening technology. We used a mouse
model of MI/R injury to detect the expression of lncRNA
Fendrr and observed the protective effect of Fendrr in
H2O2-induced cardiomyocyte injury. We found that Fendrr
is relevant to the protective role of nucleolin, which regulates
Fendrr expression. This suggests lncRNA Fendrr involvement
in the cardioprotective effect exerted by nucleolin against
H2O2-induced injury.

Material and methods

Animal experiments

All animal experiments were performed in conformance with
the Animal Experimentation Guidelines of the Medical Ethics
Committee of Xiangya Hospital and Central South University
(No. 201402027). The animals were subjected to cardiac
ischemia-reperfusion damage as previously described (Jiang
et al., 2013, 2014). Briefly, BALB/c mice were separated into
experimental (n = 3) and sham operation (n = 3) groups. The
mice were sedated with pentobarbital (50 mg/kg) every 2 h.
Under sterile conditions, left thoracotomy was performed in
the fourth intercostal space to expose the heart. MI/R was
induced by occluding the left anterior descending coronary
artery (LAD) for 30 min, followed by reperfusion for 0, 2, 6,
12, and 24 h. The animals in the sham group underwent
the same procedures as those in the experimental group
with the exception of ligation. Following reperfusion, the
heart was removed at specific time points for histological
and morphological examination.

LncRNA profiling

Using the Aglient Rat lncRNAmicroarray V2.0 (Arraystar, Rock-
ville, MD, USA), three sample pairs were prepared for lncRNA
microarray analysis in the nucleolin-overexpressing rat cardio-
myocyte cell line and control group. The slideswere incubated
for 17 h in an Agilent hybridization chamber at 65°C and
scanned using the Agilent scanner G2505B. Agilent Feature
Extraction software (version 11.0.1.1) was used to analyze
the acquired array images. Quantile normalization and sub-
sequent data processing were conducted using GeneSpring
GX v12.1 software package (Agilent Technologies, Santa
Clara, CA, USA). Differentially expressed lncRNAs between
the two groups were identified through paired t-test (P <
0.05 and fold-change > 2.0). All microarray experiments were
performed by Kangcheng Bio-Tec (Shanghai, China).

Immunofluorescence assays and fluorescence in situ
hybridization (FISH)

Cy3-labeled Fendrr and a Fluorescent In Situ Hybridization
Kit (RiboBio, Guangzhou, China) were used according to

the manufacturer’s instructions. Briefly, H9c2 cells were
fixed with 4% v/v paraformaldehyde for 10-min after the
cells attained 70–80% confluency. Hybridization was then
performed at 37°C overnight using a Fendrr probe. Sub-
sequently, the cells were stained with DAPI and the
images were acquired using an Olympus IX71 inverted
microscope.

Cell culture and treatment

H9c2 cells were obtained from the American Type Culture
Collection and cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% v/v fetal bovine serum.
The cells were cultured at 37 °C in a humidified incubator
under 5% v/v CO2. At 70–80% confluence, cellular oxidative
stress was induced by exposure to different H2O2 concen-
trations for different time periods.

Cell transfection experiments

After the H9c2 cells attained 70–80% confluency, they
were transfected with recombinant lentiviruses housing
the pHS-AVC-LW1120 (Fendrr) and pHS-BVC-LW280
(negative control) constructs (Syngentech; Beijing,
China) for 72 h. Also, the H9c2 cells at 80% confluency
were transfected with a nucleolin plasmid (pcDNA3-
Nuc) and incubated in a CO2 incubator for 48 h at 37°C.
For small interfering RNA (siRNA) transfection, nucleolin
or Fendrr siRNA (si-C23 or si-Fendrr) and the correspond-
ing negative control siRNA (si-NC or si-nc; Invitrogen Life
Technologies) were transfected into cells. Lipofectamine
2000 reagent (Invitrogen) was used for cell transfection
according to the manufacturer’s instructions. After 48 h
of transfection, the cells were lysed for further
experiments.

Propidium iodide staining

Propidium iodide (PI) fluorescence staining was used to
detect cell death. In summary, the cells were stained with 1
µg/mL of PI staining reagent (Dingguo Biotechnology Co.,
Ltd.) for 10 min, washed twice with PBS, and observed. The
cells positive for apoptosis displayed red fluorescence. Hon-
chest was used for nuclear staining.

RNA isolation and qRT-PCR analysis

Total RNA was isolated from mouse myocardial tissues and
cardiomyocytes using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions.
Total RNA was reverse-transcribed into complementary
DNA using a Reverse Transcription Kit (Takara, Dalian,
China). To determine Fendrr expression levels, quantitative
reverse transcription polymerase chain reaction (RT-qPCR)
was performed using an Applied Biosystems 7500 Fast
Real-Time PCR System (Foster City, CA, USA). GADPH was
used as an internal control in myocardial tissues and cardio-
myocytes. Relative gene expression levels were analyzed
using the 2−ΔΔCT method. The sequences of primers are
shown in below table, primers analyses by NCBI blast
search were used to identify the specificity of the
amplified product.
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Gene
Accession
number Sequence

GAPDH
(Mouse)

AY618199.1 Forward 5′- GGTGAAGGTCGGTGTGAACG-
3′

Reverse 5′- CTCGCTCCTGGAAGATGGTG-3′
GAPDH (Rat) NM_017008.4 Forward 5′- ACAGCAACAGGGTGGTGGAC-

3′
Reverse 5′- TTTGAGGGTGCAGCGAACTT-3′

Fendrr
(Mouse)

NR_045471.2 Forward 5′-
GGATGAAGACAGCCACAGTGACA-3′

Reverse 5′-
GGTCCACAAGATCCTTGGATAGAG-3′

Fendrr (Rat) NR_126575.1 Forward 5′-
TGTTGGCAGTACCATCTCGTCATG-3′

Reverse 5′-
GCATCCACAGTCAGGAAGCAGAG- 3′

Cell viability assay

Cell viability was assessed using a Cell Counting Kit-8 assay
(CCK-8; Dojindo, Kumamoto, Japan). The cultured cells were
seeded at a density of 2-4 × 103 cells/well in 96-well plates.
After cell transfection, the medium was replaced with 100
μL of complete culture medium with or without H2O2. CCK-
8 reagent (1:100) was added to the wells, and the wells
were incubated for 1 h. The absorbance of the samples was
measured at 450 nm using a microtiter reader. All exper-
iments were performed in triplicates.

Lactate dehydrogenase (LDH) assay

Cells were seeded in 6- or 12-well plates. After cell transfec-
tion, the medium was replaced with complete culture
medium with or without H2O2. The assay was performed
using a lactate dehydrogenase (LDH) assay kit (Nanjing Jian-
cheng Bioengineering Institute). Absorbance was measured
using a microplate reader at a wavelength of 450 nm.

Caspase activity assay

Caspase activity was analyzed using an ELISA kit (Abcam)
according to the manufacturer’s instructions. Briefly, the
cells were lysed using a homogenous reagent provided by
the manufacturer. Lysates were then added to each well for
analysis. Caspase-3 antibody (CST) was added with the detec-
tion reagent and incubated at room temperature for 15 min.
The absorbance was measured at 450 nm.

RNA immunoprecipitation (RIP) assay

The Magna RIP Kit (Millipore) was used for the RNA immuno-
precipitation (RIP) assay according to the manufacturer’s pro-
tocol. Cardiomyocytes were dissolved in RIP lysis buffer,
followed by overnight incubation with anti-nucleolin anti-
body-conjugated protein A/G beads at 4 °C. After washing
off the unbound materials, the RNAs bound to nucleolin
were eluted and quantified. The purified RNA was analyzed
using RT–PCR.

Statistical analysis

The data were analyzed using SPSS 19.0 software. All data
are presented as mean ± standard error of the mean (SEM).
Differences between three or more groups were analyzed

using Student’s t-test and one-way analysis of variance
(ANOVA). The results were considered statistically significant
at P < 0.05.

Results

LncRNAs regulated by nucleolin in cardiomyocytes

Nucleolin exerts a protective effect on the myocardium;
however, the underlying mechanism is unclear. We used
nucleolin-overexpressing cardiomyocyte cell lines to investi-
gate the mechanism underlying the protective effect of
nucleolin in the myocardium. In total, 267 differentially
expressed lncRNAs (181 upregulated and 96 downregulated)
were screened using high-throughput sequencing technology
and compared with that in the control group (Figure 1A).
These results suggest that nucleolin may regulate the
expression of these lncRNAs. Based on the literature and
chip data, we chose 15 differentially expressed lncRNAs
(Figure 1B) for protein-RNA immunoprecipitation experiments.
We discovered that eight lncRNAs including NR_027324,
NR_126575 (Fendrr), U57362, NR_111959, AF167308, and
MRAK159688 could bind to nucleolin (Figure 1C). Fendrr has
multiple binding sites (Figure 1D), implying that nucleolin
may directly bind and regulate Fendrr expression. However,
few studies have explored the effects of Fendrr on myocardial
injury, and in-depth research on Fendrr functional mechanisms
in myocardial injury remains unexplored.

LncRNA Fendrr expression down-regulated in
myocardial injury

To investigate the expression of Fendrr in myocardial injury,
we established a mouse model of MI/R injury and observed
changes in electrocardiograms (Figure 2A), serum creatine
kinase (Figure 2B) levels, and hematoxylin–eosin staining
(Figure 2C), which suggested that the mouse model of MI/R
injury was successful. We then detected Fendrr expression
in the injured mouse heart tissues at different time points
using qRT-PCR. The results showed that Fendrr expression
level decreased to the lowest level after 6 h but gradually
increased at 12 h and approached the basal level at 24 h of
reperfusion (Figure 2D). We used RNA FISH to determine
the degree of Fendrr localization in cardiomyocytes and
confirmed high Fendrr enrichment in the cytoplasm of
H9c2 cells (Figure 2E). H2O2 treatment of H9c2 cells simulated
cardiomyocyte injury in vitro. We found that Fendrr
expression significantly decreased in the H2O2-induced cardi-
omyocyte injury model with increasing H2O2 concentrations
(Figure 2F), whereas its expression gradually decreased as
the duration of H2O2 treatment increased (Figure 2G). Thus,
Fendrr was downregulated in MI/R injury and cardiomyocyte
injury induced by oxidative stress.

LncRNA Fendrr relieved H2O2-induced cardiomyocyte
injury

To explore the role of Fendrr in H2O2-induced cardiomyocyte
injury, we knocked down its expression using small interfer-
ing RNA (siRNA) and overexpressed it in H9c2 cardiomyocytes
(Figure 3A). LDH was released from cardiomyocytes and the
upregulation of Fendrr reduced LDH release from injured car-
diomyocytes after H2O2 treatment (Figure 3B). Evaluating the
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cell viability post H2O2-induced cardiomyocyte injury, we
found that Fendrr overexpression alleviated the decrease in
cell viability induced by H2O2; however, cell viability further
decreased after Fendrr knockdown (Figure 3C). Caspase-3
activity was detected in cardiomyocytes, and the data
showed that Fendrr overexpression alleviated the cell apop-
tosis induced by H2O2; however, cell apoptosis further
increased after reducing Fendrr (Figure 3D). Propidium
iodide staining indicated apoptosis by staining the nuclei of
H2O2-treated cardiomyocytes red, indicating cell damage.
Fendrr upregulation significantly reversed H2O2-induced
damage in cardiomyocytes compared to that in H2O2-
treated cells (Figure 3E). Thus, Fendrr protects cardiomyo-
cytes from H2O2-induced injury.

Nucleolin up-regulated the expression of LncRNA
Fendrr in H2O2-induced cardiomyocytes injury

To investigate the effect of nucleolin on Fendrr expression in
cardiomyocytes, H9c2 cells overexpressing nucleolin were
treated with H2O2 for 12 h, and nucleolin overexpression
increased the expression of Fendrr in H2O2-induced cardio-
myocyte injury (Figure 4A). RIP results also revealed that
nucleolin could bind to Fendrr (Figure 4B). Thus, nucleolin
regulates Fendrr expression by interacting with Fendrr in
cardiomyocytes.

Nucleolin protects H2O2-induced injury by up-
regulating Fendrr in cardiomyocytes

To further explore the effect of Fendrr on the cardioprotective
role of nucleolin during oxidative stress, we co-transfected
the cells with Fendrr lentiviral vector and nucleolin siRNA.
The results indicated that low nucleolin expression could
further promote the decline of cardiomyocyte viability
caused by H2O2, but Fendrr overexpression in cells with
nucleolin knockdown showed significantly improved cell via-
bility after H2O2 treatment (Figure 5A). Similarly, wemeasured
LDH levels in the cell culture medium and found that Fendrr
overexpression partially inhibited LDH release from H2O2-
treated cells (Figure 5B). Furthermore, we co-transfected
Fendrr siRNA and a nucleolin vector into H9c2 cells, and
low Fendrr expression eliminated the protective effect of
nucleolin against H2O2-induced cardiomyocyte injury
(Figure 5C). Thus, nucleolin could interact with Fendrr, upre-
gulate Fendrr expression, and inhibit H2O2-induced cell apop-
tosis in cardiomyocytes (Figure 5D). Fendrr is involved in the
protective effects of nucleolin in cardiomyocytes during oxi-
dative stress.

Discussion

LncRNAs play numerous roles in biological processes. Many
studies have investigated the intracellular mechanisms of

Figure 1. lncRNAs regulated by nucleolin in cardiomyocytes. (A) Heatmap profile of lncRNA microarray analysis. Green to red colors indicate low to high transcrip-
tional levels. The lncRNAs differentially expressed between the two groups were identified through paired t-test P≤ 0.05 and a fold change (FC)≥ 2.5; n = 3 inde-
pendent biological samples for each group. (B) The expression of 15 selected lncRNAs in chip test, where 10 differentially expressed up-regulated lncRNAs (up) and
5 differentially expressed down-regulated lncRNAs (down) were selected. (C) The interactions between nucleolin and lncRNAs were confirmed by RIP and ident-
ified via qRT-PCR. *, P < 0.05, vs. IgG group, n = 3. pcDNA3.1, the empty vector served as negative control; pcDNA3.1-Nuc, overexpression nucleolin group. (D)
Bioinformatics website predicted Fendrr binding elements with nucleolin.
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functional lncRNAs, which can bind to multiple molecules [18,
19]. lncRNA Fendrr was discovered for the first time during its
interaction with polycomb inhibitory complex 2 (PRC2)
during mouse heart development [20]. According to bioinfor-
matics analysis and RIP experiment results, Fendrr may bind
to the PRC2 complex and the MLL histone modification

complex to play a functional role [21–23]. Fendrr enhances
doxorubicin resistance in doxorubicin-resistant and-sensitive
human osteosarcoma cells by negatively regulating the
post-transcriptional expression of the multidrug resistance-
related proteins ABCB1 and ABCC1 [24]. Fendrr transcription
levels are negatively correlated with SOX4 protein levels in

Figure 2. lncRNA Fendrr expression down-regulated in myocardial injury. (A) ECGs were recorded after ligating the left anterior descending coronary artery (LAD)
in the mice hearts. Sham, sham operated control group; MI, myocardial ischemia group. (B) Serum creatine kinase (CK) value was detected after 30 min of ischemia
followed by reperfusion for different time periods (0, 2, 6, 12, and 24 h) in mice (n = 3). Data have been represented as mean ± SD. *, P<0.05, vs. sham group, n = 3;
**, P<0.01, n = 3, vs. sham group, n = 3; ****, P<0.0001, vs. sham group n = 3. (C) The representative hematoxylin-eosin staining images of the mice hearts after
ischemia for 30 min followed by reperfusion for different time periods. Sham, sham operated control group; I/R, ischemia (30 min)-reperfusion group. (D) Fendrr
expression was detected using qRT-PCR after 30 min of ischemia followed by reperfusion for different time periods (0, 2, 6, 12, and 24 h) in 8–12 weeks old Balb/c
mice. *, P<0.05, vs. sham group, n = 3; **, P<0.01, vs. sham group, n = 3. (E) The localization of Fendrr was determined using FISH assay with 18s rRNA as internal
control in cardiomyocytes. (F) Fendrr expression was detected using qRT-PCR in cardiomyocytes treated with different H2O2 concentrations (0, 0.1, 0.25, and
0.4 mM). ***, P<0.001, vs. 0 mM group, n = 4. (G) Fendrr expression was detected using qRT-PCR in cardiomyocytes treated with H2O2 (0.4 mM) for different
time periods (0, 6, 12, and 24 h). ***, P<0.001, vs. 0 mM group, n = 4; ****, P < 0.0001, vs. 0 h group, n = 4.
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Figure 3. LncRNA Fendrr relieved H2O2-induced cardiomyocyte injury. (A) The overexpression or knockdown efficiency of Fendrr were measured in H9c2 cells after
transfection with Fendrr overexpression vector or siRNAs. Fendrr expression was not affected by transfection. All experiments were repeated at least thrice Data
are represented as mean ± SD. ***, P < 0.001; ns, not significantly. (B) Effect of Fendrr overexpression or knockdown on lactate dehydrogenase (LDH) release in
cardiomyocytes with H2O2 (0.4 mM, 12 h) treatment. ns, not significantly, **, P < 0.001. (C) The effect of Fendrr overexpression or knockdown on cell viability in
cardiomyocytes with H2O2 (0.4 mM, 12 h) treatment. **, P < 0.01, vs. lenti-nc + H2O2 group, n = 4; **, P < 0.001. (D) The caspase-3 activity was evaluated in car-
diomyocytes with Fendrr overexpression or knockdown with H2O2 (0.4 mM, 12 h) treatment. si-nc, negative control; si-Fendrr, Fendrr siRNA. lenti-nc, the empty
lentivirus vector served as negative control; lenti-Fendrr, the lentivirus vector containing Fendrr overexpression plasmid. Data are represented as mean ± SD. ***, P
< 0.001. (E) Propidium iodide staining was performed in lentivirus-transfected cardiomyocytes with PBS or H2O2 (0.4 mM, 12 h) treatment. The cells indicated by
the arrow are representative of apoptotic cells. lenti-nc, the lentivirus empty vector served as negative control; lenti-Fendrr, the lentivirus vector containing Fendrr
overexpression plasmid.
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colon cancer; SOX4 protein is one of the binding targets of
Fendrr, and Fendrr-mediated SOX4 inhibition may be essen-
tial in reducing colon cancer progression [25]. However, the
role of Fendrr in human cardiovascular disease remains
unclear. The negative association of Fendrr levels in periph-
eral blood mononuclear cells with the left ventricular mass
index in hypertensive individuals revealed that it may play a
cardioprotective role [26]. In addition, Fendrr polymorphism
was recently found to be significantly associated with the
risk of developing hypertrophic cardiomyopathy (HCM)
using NGS. This study found that rare alleles in the Fendrr
polymorphism were significantly protective against HCM
[27]. lncRNA Fendrr was significantly upregulated in a
mouse model of MI/R injury and could interact with nucleolin
in cardiomyocytes. Moreover, overexpression of lncRNA
Fendrr plays a protective role against H2O2-induced injury
in cardiomyocytes. Also, Fendrr is involved in the myocardial
protective role of nucleolin during oxidative stress. Therefore,

lncRNA Fendrr could be a new biomarker for the early diagno-
sis, therapeutic target, and prognosis prediction of heart
diseases.

LncRNA-protein interactions primarily reveal the post-tran-
scriptional regulatory mechanism. So far, research has
revealed related molecular mechanisms of the interaction
between long noncoding RNA and nucleolin, which could
lead to a plethora of useful targets for disease diagnosis
and prevention. For example, lncRNA CYP4B1-PS1-001 may
influence nucleolin ubiquitination and degradation, making
it a promising target for diabetic nephropathy [15]. The
lncRNA CYTOR is significantly upregulated in colon cancer
tissue samples and is associated with poor prognosis. The
complex formed by the CYTOR-nucleolin interaction activates
signaling pathways that promote colon cancer progression
[28]. Our inference that Fendrr is important for the protective
role of nucleolin implies that nucleolin may exert a protective
function by interacting with Fendrr during cardiomyocyte

Figure 4. Nucleolin up-regulated the expression of LncRNA Fendrr in H2O2-induced cardiomyocytes injury. (A) Fendrr expression was detected using qRT-PCR.
Cardiac muscle cell line with nucleolin overexpression was treated with H2O2 for 12 h. *, P < 0.01, vs. Vect group, n = 6; #, P < 0.01, vs. Vect + H2O2 group, n
= 6. (B) The interaction between nucleolin and Fendrr was confirmed using RNA immunoprecipitation (RIP) (top) and electrophoresis on agarose gel (bottom)
in cardiomyocytes treated with PBS or H2O2 (0.4 mM, 12 h). **, P < 0.01, vs. IgG group, n = 4. Vect, the empty vector served as negative control; pcDNA3.1-
Nuc, nucleolin overexpression group.
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Figure 5. Nucleolin protected H2O2-induced injury by up-regulating lncRNA Fendrr in cardiomyocytes. (A) The effect of Fendrr overexpression on the decrease of
cell viability mediated by nucleolin ablation and H2O2 exposure. Cell viability was detected in siRNA- or lentivirus-transfected cardiomyocytes with PBS or H2O2

(0.4 mM, 12 h) treatment. **, P < 0.01, vs. si-C23 + lenti-nc group, n = 4; (B) The effect of Fendrr overexpression on the LDH release induced by nucleolin ablation
and H2O2 exposure. The LDH release level in culture medium was tested. *, P < 0.05, vs. si-C23 + lenti-nc group, n = 3; (C) The effect of Fendrr knockdown on the
protective effect exerted by nucleolin in cardiomyocytes. *, P < 0.01, vs. Vect + H2O2 group, n = 6. #, P < 0.01, vs. pcDNA3-Nuc + Scramble + H2O2 group, n = 6. si-
NC, negative control; si-C23, nucleolin siRNA; lenti-nc, the empty lentivirus vector served as negative control; lenti-Fendrr, the lentivirus vector containing Fendrr
overexpression plasmid. Vect, the empty vector served as negative control; pcDNA3-Nuc, overexpression nucleolin group; si-nc, negative control; si-Fendrr, Fendrr
siRNA. (D) Diagram summarizing the inferences: Fendrr is down-regulated in cardiomyocytes after H2O2 exposure, nucleolin interacts with Fendrr and up-regulates
Fendrr expression, and nucleolin protects myocardial cells against oxidative stress by up-regulating Fendrr expression. Paragraph: use this for the first paragraph in
a section, or to continue after an extract.
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injury and provides a new perspective on the mechanism
through which nucleolin protects against myocardial injury.

The function of nucleolin depends mainly on the RNA-
binding domain in the central region [29]. Nucleolin binds
to the G-rich regions of mRNA and lncRNAs. Also, nucleolin
combines with the G-rich regions of SNHG1, which partially
indicates the nuclear retention of SNHG1 in disease states
[30]. Additionally, nucleolin directly binds to lncRNA
Dnm3os and enhances Dnm3os-induced inflammation-
related gene expression [31]. Nucleolin can also protect cardi-
omyocytes from DOX-induced damage by interacting with
miR-21 and upregulating miR-21 expression [32]. Our results
suggest that nucleolin may play a protective role in myocar-
dial injury by binding to Fendrr and regulating its expression.
Thus, exploring the answers for questions such as what is the
specific mechanism underlying nucleolin regulation of Fendrr
in cardiomyocytes and other molecules mechanism would
provide researchers with an in-depth knowledge of the
pathogenesis of myocardial injury and target identification
for its prevention and treatment. These questions will be
our future studies direction, and other researchers are
welcome to explore with us.

Conclusions

In conclusion, we discovered that lncRNA Fendrr plays an
important role in the cardioprotective effect of nucleolin
against H2O2-induced injury. lncRNA Fendrr may be a poten-
tial therapeutic target for myocardial injury during oxidative
stress.
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