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Abstract

Introduction: CYP2D6 contributes to the metabolism of approximately 20–25% of drugs. 

However, CYP2D6 is highly polymorphic and different alleles can lead to impacts ranging from 

null to dramatic increases through gene duplication. Moreover, there are commonly used drugs 

that potently inhibit the CYP2D6 enzyme, thus causing “phenoconversion” which has potential 

to convert the genotypic normal metabolizer into phenotypic poor metabolizer. Despite growing 

literature on the clinical implications of non-normal CYP2D6 genotype and phenoconversion on 

patient-related outcomes, implementation of CYP2D6 pharmacogenetics and phenoconversion to 

guide prescribing in clinical care is rare. This review focuses on providing the clinical importance 

of CYP2D6 pharmacogenetics and phenoconversion in precision medicine and summarizes the 

challenges and approaches to implement CYP2D6 pharmacogenetics and phenoconversion into 

clinical practice.

Areas covered: A literature search was performed using PubMed and clinical studies 

documenting effects of CYP2D6 genotypes and/or CYP2D6 inhibitor medications on 

pharmacokinetics, pharmacodynamics or treatment outcomes of CYP2D6-metabolized drugs, and 

studies on implementation challenges and approaches.

Expert opinion: Considering the extent and impact of genetic polymorphisms of CYP2D6, 
phenoconversion by the comedications, and contribution of CYP2D6 in drug metabolism, 

CYP2D6 pharmacogenetics is essential to ensure drug safety and efficacy. Utilization of proper 

guidelines incorporating both CYP2D6 pharmacogenetics and phenoconversion in clinical care 

assists in optimizing drug therapy.
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1. Introduction

Recent developments in pharmacogenetics research and clinical implementation have 

advanced pharmacogenetics-based personalized therapy, with the goal of improving drug 

safety and efficacy[1,2]. The drug metabolizing enzyme, cytochrome P450 2D6 (CYP2D6) 

is estimated to contribute to the metabolism of approximately 20–25% of drugs. The 

gene encoding CYP2D6 is also highly polymorphic and given its importance in drug 

metabolism and genetic variability, CYP2D6 pharmacogenetics is essential for designing 

and implementing personalized drug therapy. As a result, pharmacogenetic-based drug 

therapy guidelines have been developed for at least 50 CYP2D6-metabolized drugs based on 

the activity of CYP2D6 (Table 1)[3].

Around 100 alleles of CYP2D6 with different impact on function of the encoded protein 

have been identified[4]. Variant alleles range from a loss of function and no enzyme activity 

to gene duplication that can lead to greater activity than normal[5,6]. Based on the activity 

level of the different alleles, an activity score is given to the CYP2D6 diplotype. The higher 

the activity score, the higher the enzyme activity of the CYP2D6. Based on the activity 

score of CYP2D6, a genotype-based phenotype is assigned. These include poor metabolizer 

(PM), intermediate metabolizer (IM), normal metabolizer (NM), and ultra-rapid metabolizer 

(UM) [5,6]. However, CYP2D6 is highly susceptible to inhibition by several commonly 

used medications, and the expected phenotype based on genotype alone could be erroneous 

if concomitant use of CYP2D6 inhibitors is not considered while predicting the CYP2D6 

phenotype[7,8]. Those inhibitor medications can convert CYP2D6 NMs or UMs to IMs or 

PMs. This phenomenon is known as phenoconversion, which occurs when the individual’s 

genotype-based prediction of phenotype for drug metabolism does not match with the 

actual capacity for metabolizing drugs, due to the presence of the CYP2D6-inhibiting 

comedication[8].

The US Food and Drug Administration (FDA) lists and classifies CYP2D6 inhibitors 

as strong, moderate, and weak [9]. Strong (e.g., paroxetine, fluoxetine, bupropion) and 

moderate (e.g., duloxetine, sertraline) inhibitors can decrease the CYP2D6 activity such that 

genotypically NM individuals are converted phenotypically to PMs and IMs, respectively. 

Those inhibitor medications are highly prescribed and three of them (fluoxetine, bupropion, 

and duloxetine ) are in the list of top 50 most commonly prescribed drugs in the 

United States [10]. Moreover, concomitant use of those drugs cannot be overlooked while 

predicting the phenotype as they are very common among the patients prescribed CYP2D6 

metabolized medications [6,11,12]. As personalized medicine is primarily dependent on the 

prediction of the actual metabolizing ability of the metabolizing enzyme, failure to consider 

the comedications while predicting the phenotype can be the Achilles’ heel of personalized 

medicine as it relates to CYP2D6 [8]. Considering the importance of phenoconversion, 
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Clinical Pharmacogenetics Implementation Consortium (CPIC)[13] guidelines suggest 

incorporating the effects of CYP2D6 inhibitors while calculating the activity score of 

CYP2D6[7,14–16].

Integration of CYP2D6 pharmacogenetics and phenoconversion in clinical practice 

to benefit patients is challenging. CYP2D6 laboratory testing results often include 

the genotypes and activity scores without proper interpretation and guidelines for 

prescribing[17]. In addition, information on phenoconversion and interpretation of 

phenotypes after considering phenoconversion are challenging yet essential for proper 

implementation. Current electronic health record (EHR) systems also lack support tools 

to assist health providers with integrating drug interactions with pharmacogenetics to 

implement personalized medicine in practice.

This review aims to provide information about the clinical importance of CYP2D6 
pharmacogenetics and phenoconversion in precision medicine for CYP2D6 metabolized 

drugs. Challenges and approaches to integrating CYP2D6 pharmacogenetics and 

phenoconversion into clinical practice are also reviewed.

2. CYP2D6 pharmacogenetics

The CYP2D6 enzyme is encoded by nine exons of the CYP2D6 gene located on 

chromosome 22(22q13.1). Being involved in metabolizing 20–25% of all the drugs, 

CYP2D6 is one of the essential enzymes for metabolism of drugs in humans[18–

20]. Furthermore, CYP2D6 is involved not only in metabolizing active drug into its 

inactive metabolite, including antidepressants (e.g., amitriptyline, nortriptyline, venlafaxine, 

paroxetine), antipsychotics (e.g., aripiprazole, risperidone), cardiovascular drugs (e.g., 

metoprolol, carvedilol) but also in metabolizing the inactive drug into its active metabolite 

including opioid analgesics (e.g., codeine, tramadol, hydrocodone), and the anticancer anti-

estrogenic agent (tamoxifen)[21–25]. Therefore, the metabolic activity of CYP2D6 can be 

associated with adverse drug reactions[7,21] or drug ineffectiveness[26–28]. Table 1 lists 

the 50 drugs that are metabolized by CYP2D6 either to inactive metabolites or active 

metabolites and have pharmacogenetics-based drug therapy guidelines. In addition to liver, 

CYP2D6 is also present in the brain. In the brain, CYP2D6 is involved in local drug 

biotransformation and metabolism of endogenous substrates[29].

CYP2D6 is extremely polymorphic, and more than 100 alleles have been identified[4]. 

Variant alleles range from a loss of function and no enzyme activity (PM) to gene 

duplication/multiplication that can lead to increased activity (UM)[7]. An activity score 

is given to a specific allele of CYP2D6, which correlates with the enzyme function. These 

allelic activity scores are used to calculate the predicted activity score of the encoded 

protein[6,30]. Normal functional alleles(e.g. *1, *2, or *35) are considered to have an 

activity score of 1 whereas reduced functional alleles (e.g. *9, *17, *10 etc.) have an 

activity score of 0.25 or 0.5 and non-functional alleles (e.g. *3, *4 etc.) have activity score 

of 0 (Table 2)[5,6]. The diplotype score (sum of the activity scores of the two alleles) is 

considered the total activity score of CYP2D6 and is used to predict the phenotype of the 

enzyme. Diplotype scores of 1.25– 2.25 are considered a normal metabolizer (NM), a score 
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of 0.25–1 as intermediate metabolizer (IM), a score of 0 as PM, and a score more than 

2.25 as UM. The frequencies of PM, IM, and UM phenotypes based on genotypes range 

from 5–10%, 5–11%, and 3–29%, respectively, among various racial/ethnic groups[7,31]. 

Figure 1 shows the differences in rate and extent of metabolism among different CYP2D6 

phenotypes.

Here we will discuss the impact of different CYP2D6 genotypes on metabolism and 

clinical outcomes of the most commonly studied CYP2D6 substrates including CYP2D6 

metabolized opioids, antidepressants, antipsychotics, tamoxifen, atomoxetine, ondansetron, 

tropisetron, and metoprolol.

2.1. CYP2D6 pharmacogenetics and opioids

CYP2D6-metabolized opioids tramadol, codeine, and hydrocodone account for the majority 

of opioid prescriptions written in the U.S., accounting for more than 50 million opioid 

prescriptions dispensed in 2020 [32,33]. These opioids are widely used to treat moderate 

to severe pain[34]. CYP2D6 bioactivates codeine, tramadol, and hydrocodone into active 

metabolites, and the parent compounds have little to no analgesic activity compared to the 

active metabolites[7,35,36]. Thus, the active metabolites are entirely or largely responsible 

for the analgesic effects these specific opioids provide, and therefore the extent of analgesic 

activity of these opioids largely depends on the activity of CYP2D6[7,36]. Generally, it is 

expected that PMs and IMs would have reduced generation of the active metabolite and 

thus reduced pain control whereas UMs would be expected to generate excessive amounts of 

active metabolites and thus risk of toxicity.

In clinical trials, CYP2D6 PM and IM phenotypes were found to be associated with 

lower formation of morphine from codeine when compared to NM phenotype[37–42], and 

thus were associated with poor pain control after codeine administration[43]. In contrast 

CYP2D6 gene duplication/multiplication (UMs) causes higher plasma concentrations of 

morphine[44–46], which can lead to oversedation, respiratory depression, and even death 

in pediatric population. This is the reason why U.S. Food and Drug Administration (FDA) 

contraindicated the use of codeine to treat pain and cough in patients under the age of 12 in 

April, 2017[47].

In the case of tramadol, the effects of different CYP2D6 phenotypes are similar to that of 

codeine. Lower biotransformation of tramadol to active form O-desmethyl tramadol was 

observed among the CYP2D6 PMs and IMs when compared to NMs[48–54]. Tramadol’s 

effectiveness in pain control was worse among CYP2D6 PMs compared to NMs or IMs[55–

59]. Increased frequency of adverse events, including respiratory depression, were observed 

in UMs compared to IMs or PMs [54,60,61] and the FDA has also contraindicated use of 

tramadol in children under 12, as of April, 2017 [47].

CYP2D6 PMs have also been shown to produce a decreased amount of hydromorphone 

from hydrocodone compared to NMs[62,63], whereas UMs are at increased risk of adverse 

effects[64]. The data from these three drugs clearly show the importance of considering 

CYP2D6 pharmacogenetics in the clinical setting while prescribing opioids, where such an 

approach has the potential to improve efficacy and decrease toxicity, in both cases typically 
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through selection of a non-CYP2D6 metabolized opioid or non-opioid as alternative 

therapy[7].

Considering the evidence, CPIC provides recommendations for dosing of codeine, tramadol 

and hydrocodone based on CYP2D6 genotypes (Table 3).

2.2. CYP2D6 pharmacogenetics and antidepressants

CYP2D6 is involved in metabolizing several antidepressants, including tricyclic 

antidepressants (e.g., amitriptyline, nortriptyline), selective serotonin reuptake inhibitors 

(SSRIs) (e.g., paroxetine, fluoxetine), and serotonin and norepinephrine reuptake inhibitors 

(SNRIs)(e.g., venlafaxine). CYP2D6 metabolizes the many antidepressants to their less 

or inactive metabolites ( and in some cases the parent and metabolite are active, e.g. 

with amitripline and its metabolism to nortriptyline). Active antidepressant drugs are 

expected to have higher concentrations in PMs and IMs and thus PMs and IMs are at 

risk of concentration related adverse effects. Conversely UMs are expected to have low 

concentrations of active drug, thus increasing the risk of inefficacy.

Multiple studies have shown decreased metabolism of amitriptyline[65–67], and 

nortriptyline[68] among CYP2D6 PMs and IMs when compared to NMs, leading to higher 

plasma concentrations of the active drugs. Increased plasma concentrations of were found 

to be associated with several dose-dependent severe adverse effects including cardiotoxicity 

among PMs, which required discontinuation of the treatment or dose reduction[66,68]. 

Conversely, amitriptyline discontinuation was recorded more among CYP2D6 UMs due to 

decreased response to the drug[69]. CYP2D6 also metabolizes paroxetine and fluoxetine 

to pharmacologically less active or inactive metabolites[70,71]. The most active alleles 

had the lowest paroxetine concentrations in plasma[72–74]. As CYP2D6 UMs have very 

high paroxetine clearance, studies found lower plasma concentration of paroxetine at a 

steady state in CYP2D6 UMs[75–77] that resulted in decreased response to paroxetine[75]. 

In contrast, CYP2D6 PMs had significantly higher plasma paroxetine concentrations at a 

steady state[75,78], contributing to adverse drug effects[79]. For fluvoxamine, lower plasma 

clearance and longer half-life were observed among CYP2D6 PMs versus NMs[80,81]. 

Increased exposure to nortriptyline[82–84] and venlafaxine[83,85,86] was also observed 

among CYP2D6 PMs and IMs. Considering the clinical evidence, CPIC recommends using 

CYP2D6 pharmacogenetics for prescribing with SSRIs (paroxetine, fluoxetine) and tricyclic 

antidepressants (e.g., amitriptyline, nortriptyline) (Table 3)[16,21].

2.3. CYP2D6 pharmacogenetics and antipsychotics

Several antipsychotics (e.g., aripiprazole, risperidone) are metabolized to their inactive 

metabolites by CYP2D6. In CYP2D6 PMs and IMs, due to lower catalytic activity, 

plasma concentrations of the active drugs are expected to be higher than in NMs, causing 

concentration-related adverse effects. On the other hand, in UMs, due to higher enzymatic 

activity, active drug concentration is anticipated to be lower and may result in reduced 

efficacy. As CYP2D6 is also present in the brain, different phenotypes of CYP2D6 

determine drug response not only via drug biotransformation in the liver, but also via drug 

and endogenous substrate metabolism in the brain[29].
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Several studies identified that CYP2D6 PMs and IMs had poor aripiprazole catabolizing 

capacity when compared to NMs, resulting in increased plasma aripiprazole concentrations 

among PMs and IMs[87–94]. PMs and IMs also exhibited higher Cmax and T1/2 [88,95],and 

the mean elimination half-life of aripiprazole was shown to increase from 75 hours to 146 

hours among PMs [89,96]. A recent meta-analysis including 12 studies and 1038 patients 

found that CYP2D6 PMs and IMs had significantly increased exposure to aripiprazole 

(1.48 ratio of means in PM+IM vs. NM)[83]. Increased concentration of aripiprazole may 

lead to several adverse drug effects, such as somnolence, headache, insomnia, dizziness, 

restlessness, palpitations, among others [97].

Among PMs and IMs, risperidone plasma concentration was significantly higher than 

NMs[89,94,98–103]. In one study, CYP2D6 PMs and IMs also had 1.7-fold increased 

exposure to risperidone compared to NMs[83]. PMs for CYP2D6 showed a higher 

risperidone Cmax, AUC and T1/2 and a lower clearance[98,103]. Higher concentrations of 

risperidone among PMs and IMs may cause several adverse effects, such as somnolence, 

headache, and dizziness [98,104]. One study on 76 schizophrenic patients reported that 

CYP2D6 PM phenotype was associated with significant improvement[105] suggesting that 

the higher drug concentrations led to improved efficacy. Further, previous studies have 

reported greater side effects and treatment discontinuations in CYP2D6 PMs compared to 

NMs [106,107]. Plasma concentrations of haloperidol were also found to be significantly 

higher among PMs and IMs when compared to NMs[83,94,99].

2.4. CYP2D6 pharmacogenetics and tamoxifen

CYP2D6 catalyzes the anticancer antiestrogenic drug tamoxifen to its active form, 

endoxifen. CYP2D6 phenotypes are found to be associated with variations in plasma 

concentration of endoxifen [108–112]. CYP2D6 PMs and IMs have no to lower 

concentration of endoxifen when compared to NMs or UMs[15] and CYP2D6 phenotypes 

are essential predictors of response to tamoxifen therapy[108]. Several clinical studies 

reported that recurrence of breast cancer was observed more commonly among CYP2D6 

IMs or PMs than among NMs[70,113–116]. Other clinical trial data suggest worse 

event-free survival among CYP2D6 PMs versus NMs treated with tamoxifen [116–

118]. Considering the importance CYP2D6 genetics, CPIC recommends using CYP2D6 
pharmacogenetics guidelines while prescribing tamoxifen(briefly described in Table 3)[15].

2.5. CYP2D6 pharmacogenetics and atomoxetine

A selective norepinephrine reuptake inhibitor, atomoxetine is widely used to treat ADHD 

among children and adults. CYP2D6 is involved in the metabolism of atomoxetine to 

an inactive metabolite. Decreased metabolism in CYP2D6 PMs causes increased plasma 

concentration of atomoxetine [119–121], which may cause several moderate to severe 

adverse drug effects, including an increase in pulse and blood pressure or decrease 

in body weight [119,120,122]. Higher plasma concentrations of atomoxetine in PMs is 

also associated with improvement in ADHD among them[119,120,123]. Based on the 

evidence, CPIC provides guidelines for dosing of atomoxetine based on the genotypes of 

CYP2D6(Table 3) [14].
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2.6. CYP2D6 pharmacogenetics and ondansetron and tropisetron

Ondansetron and tropisetron are selective 5-HT3 receptor antagonists and are metabolized 

by CYP2D6 to inactive metabolites[124–126]. CYP2D6 PMs had higher plasma 

concentrations of tropisetron when compared to NMs[127]. CYP2D6 UMs is associated 

with decreased AUC of ondansetron[128] and tropisetron[129] and thus decreased response 

to those drugs[127,130] Considering the importance of CYP2D6 genotypes on those drugs, 

CPIC provides dosing recommendations based on CYP2D6 genotypes (Table 3) [131].

2.7. CYP2D6 pharmacogenetics and metoprolol

Metoprolol, a beta blocker, is widely used to treat hypertension, angina, and heart failure. 

Metoprolol is also metabolized by CYP2D6[132,133]. Individuals with reduced or CYP2D6 

PM phenotype may have plasma metoprolol concentration up to almost five times higher 

than NMs, which may increase the risk of various side effects[134–137]. However, some 

studies clinical study reported that neither antihypertensive response rate, blood pressure 

changes nor adverse event rates significantly differed by activity scores or among different 

CYP2D6 phenotypes. This is likely the result of the dosing strategy of beta-blockers as 

doses are selected based on the titration to a heart rate response[138–140].

3. CYP2D6 phenoconversion

Phenoconversion occurs when the individual’s genotype-based prediction of phenotype 

for drug metabolism does not match with the true capacity of metabolizing the drugs 

caused by some extrinsic nongenetic factors[8]. In other words, CYP2D6 inhibitors can 

cause the conversion of CYP2D6 genotypic ultra or normal metabolizers (UMs or NMs) 

into phenotypic intermediate or poor metabolizers (IMs or PMs) and this phenomenon 

is called phenoconversion. In the context of this review, phenoconversion is the result of 

drug-drug interactions, whose implications vary by genotype, also known as drug-drug-gene 

interactions.

The FDA publishes a list of strong, moderate or weak CYP2D6 inhibitors [9], and of them, 

strong and moderate inhibitors may cause a significant reduction in CYP2D6-mediated 

metabolism ranging from half (by moderate inhibitors) to null (by strong inhibitors), 

converting the phenotype from UM or NM to IM or PM[7,141]. Figure 2 shows the 

phenoconversion in the presence of strong (SI) or moderate (MI) inhibitors and the extent 

of metabolism of drugs by CYP2D6 phenotypes. Although multiple sources for CYP2D6 

inhibitors are available, we contend that the FDA list is the most appropriate for considering 

clinical implications [17]. This is because FDA categorizes the inhibitors based on strong, 

moderate, and weak status, defined by the increase in AUC of sensitive index substrates. 

Specifically, a strong inhibitor increases plasma concentration (i.e. AUC) ≥5-fold, whereas 

moderate and weak inhibitors increase AUC by ≥2 to <5-fold, and ≥1.25 to <2-fold, 

respectively [9]. Knowledge of the strength of the inhibitor (moderate or strong) is vital 

to understanding the degree of phenoconversion, which along with genotype is used in 

defining the phenotype [142,143]. There is consensus among experts that weak inhibitors 

are not clinically important to consider because they minimally impact the area under the 

curve [17]. Table 4 lists the FDA strong and moderate inhibitors that can significantly 
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inhibit CYP2D6. Consideration of phenoconversion cannot be ignored as concomitant 

use of the CYP2D6 inhibitors is very common among the patients prescribed CYP2D6 

metabolized medications. Specifically, data indicate that up to 20– 70% of the patients who 

are on CYP2D6 metabolized drugs are at risk of CYP2D6 phenoconversion by concomitant 

medications[6,11,12].

The impact of CYP2D6 inhibitors in combination with CYP2D6 genotype has gotten 

increasing attention in recent years. One study suggested that patients co-administered 

another CYP2D6-metabolized drug were 9.5 times more likely to have genotype-phenotype 

discordance[18]. Phenoconversion to IMs or PMs can affect either the metabolism of the 

active drug to its inactive metabolite or the metabolism of the inactive drug to its active 

metabolite[144]. In general, whether the patient is a PM or IM due to genetics, CYP2D6 

inhibitor or both, the impact on drug metabolism and thus active drug concentration is the 

same. For example, coadministration of paroxetine (a CYP2D6 inhibitor) with tramadol (an 

inactive drug metabolized to an active metabolite by CYP2D6) may result in a lack of proper 

pain control in a CYP2D6 *1/*1 (NM) patient. This is because paroxetine phenoconverts 

the NM to a PM resulting in decreased formation of morphine (the active metabolite of 

codeine) that provides the analgesic effect. Similarly, coadministration of bupropion (a 

CYP2D6 inhibitor) with aripiprazole (an active drug metabolized to an inactive metabolite 

by CYP2D6) may lead to excessively high aripiprazole concentrations, and potential for 

discontinuation of the treatment due to adverse drug effects (ADEs).

Considering the importance of phenoconversion, CPIC guidelines for CYP2D6-metabolized 

drug therapy suggest considering the concomitant use of CYP2D6 inhibitors while 

calculating the CYP2D6 activity score[7,14–16]. It is recommended that the genotype-based 

activity score of CYP2D6 is adjusted based on the use of inhibitors, with the specific 

adjustment for phenoconversion depending on the strength of the inhibitor (moderate or 

strong)[142,143]. If the individual is taking one of the strong inhibitors concomitantly, 

then the genotype-based activity score is multiplied by 0, and if the individual is taking 

moderate inhibitors concomitantly, then the genotype-based activity score is multiplied by 

0.5[7]. Details of the activity score of the alleles, calculation of genotype-based score, and 

adjustment of score based on the use of CYP2D6 inhibitors are summarized in Table 2.

The impact of inhibition by a CYP2D6 inhibitor may differ according to genotype. A 

CYP2D6 PM by genotype will be unaffected by the concomitant use of an inhibitor since, 

in PMs, there is no active enzyme to be inhibited [143,145,146]. On the other hand, 

CYP2D6 UMs, NMs and IMs may have a significant reduction in their metabolic activity 

by the same inhibitor[8,143,145,146]. Some studies suggest CYP2D6 IMs are likely to be 

more susceptible to clinically important phenoconversion due to their already compromised 

activity by the genotype [8,146].

Consideration of CYP2D6 phenoconversion is an integral part of CYP2D6 

pharmacogenetics-based personalized therapy. CYP2D6 genetics alone may not result 

in a better prediction of drug effectiveness or drug safety [8,147–152]. Furthermore, 

phenoconversion could clarify many of the inconsistent pharmacogenetic findings and might 

explain the failures of replication of the published results. [143,150,153,154]. Some studies 
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reported inconsistent findings in pharmacogenetic studies on tamoxifen. [155,156]. Kiyotani 

et al. [150] reported that this discrepancies in the results may happen due to the concomitant 

medications the patients received. They observed that recurrence free survival was not 

associated with CYP2D6 genotypes if breast cancer patients who received other medications 

in addition to tamoxifen were included in the cohort. Moreover, positive association was 

found in the subgroup analysis where patients who were only on tamoxifen were included.

3.1. CYP2D6 phenoconversion in various clinical studies

Several clinical studies have been conducted to understand the importance of 

phenoconversion in the clinical setting. These studies mainly focus on the extent of 

phenoconversion (drug-drug or drug-drug-gene interaction) and impact on pharmacokinetics 

and clinical outcome of different medications. Here we will discuss several different clinical 

studies that addressed the clinical relevance of phenoconversion.

While prescribing opioids, consideration of CYP2D6 strong and moderate inhibitors is very 

important, as 20 – 30% of patients treated for pain are also prescribed a CYP2D6 inhibitor 

[6,12] which can lead to increased incidences of phenoconversion among opioid users. In 

studies of acute[157] and chronic pain[158], the percentage classified as PMs went up from 

6% to 17% and 5.3% to 19.2%, respectively, when CYP2D6 inhibitors were considered. 

In one of the first studies on phenoconversion was published in 1991, in a randomized 

cross-over study, Dayer et al. demonstrated that quinidine, a strong CYP2D6 inhibitor 

can convert the genotypic NM to a phenotypic PM, and if quinidine was administered 

with codeine, there was very little to no morphine (active metabolite of codeine) in the 

genotypic NM[159,160]. Consequently poor response to opioid was observed in genotypic 

NMs because of their phenoconversion to phenotypic PMs by a CYP2D6 inhibitor [160]. 

Several other studies compared pain control, and morphine milligram equivalents to manage 

pain among CYP2D6 inhibitor users vs non-users. Individuals in the CYP2D6 inhibitor 

user group required significantly more breakthrough morphine milligram equivalents per 

day compared with patients in CYP2D6 inhibitor non-user group (geometric mean ± SD 

18.2 ± 6.3 vs 5.7 ± 6.7 mg morphine milligram equivalents, p<0.001)[141]. Another study 

compared association between pain control vs activity score based on genotype alone 

(DGI-drug-gene interaction model), and inhibitor and genotype both (DDI + DGI- drug-

drug interaction and drug-gene interaction model). In the DDI + DGI model a significant 

association between activity score and uncontrolled pain was observed whereas in the DGI 

model no significant association with uncontrolled pain was observed. Among individuals 

in DDI+DGI model with an activity score of 0.5 or less, approximately 41% complained of 

uncontrolled pain while only 15.7% of the individuals with an activity score of 1 or greater 

relayed similar complaints[161]. Furthermore, in a study performed with data from more 

than 50,000 adults, it was reported that the average expenses for healthcare related services 

were higher for opioid users with drug-drug interactions (DDI) compared to those without 

DDIs ($7841 vs. $5625)[162]. Thus, a CYP2D6-guided approach considering both genotype 

and inhibitor use is recommended by CPIC when prescribing these opioids[7].

When CYP2D6 genotype and phenoconversion are both considered, improved pain control 

by CYP2D6-metabolized opioids was observed. One study reported that 24% of CYP2D6-
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phenotype guided (considering both genotype and phenoconversion) vs. 0% of usual care 

participants reported greater than 30% reduction in pain score of, which is often considered 

the clinically significant level of pain improvement. As there were no differences in 

prescribing between IMs/PMs and NMs, the greater pain control in the CYP2D6-phenotype 

guided group was due to the intervention. [158]. Another study on postoperative pain 

management reported that if phenoconversion is considered in addition to CYP2D6 

genotypes, fewer morphine milligram equivalents(MME) of opioid provides a similar level 

of pain control when compared with the usual care arm (200 vs. 230 MME; p = 0.047)[157]. 

The IGNITE network, funded by the NIH, is conducting a large multicenter randomized 

pragmatic trial to determine the effect of CYP2D6-guided opioid prescribing on chronic pain 

and post-operative pain control and opioid usage[163].

Phenoconversion was also found to be the limiting factor for predicting clinical outcome 

of aripiprazole treatment based on the CYP2D6 genotype[106]. A significant percentage of 

the patients prescribed aripiprazole are also prescribed a CYP2D6 inhibitor. In a study of 

aripiprazole tolerability in 277 pediatric patients with mood disorders, 72% of the cohort 

were concomitantly taking a CYP2D6 inhibitor. Consideration of the inhibitors while 

phenotyping CYP2D6 decreased the NMs from 57% to 27% while increasing the PMs 

from 6% to 49%[164]. Those phenoconverted IMs and PMs have lower CYP2D6 metabolic 

activity that caused the accumulation of active aripiprazole in the blood. [106,142]. In 

one study, among the NM patients who were taking inhibitors concomitantly, aripiprazole 

concentrations were about 50% higher than the NMs who were not taking the inhibitors 

[142]. 37% of the patients of a study discontinued treatment for adverse effects where most 

of them (67%) are phenotypic PMs[164]. The data highlight the importance of considering 

CYP2D6 inhibitors in patients prescribed CYP2D6 substrates like aripiprazole.

The antiestrogenic clinical activity of tamoxifen is provided by endoxifen that is produced 

from hydroxylation of N-Desmethyl tamoxifen (primary metabolite of tamoxifen) by 

CYP2D6[165]. CYP2D6 NMs in the presence of strong or moderate inhibitors can 

phenoconvert to IMs or PMs and cannot produce adequate active metabolite endoxifen. 

Endoxifen concentrations can be decreased by 64% (95% CI = 39% to 89%) in women with 

a NM CYP2D6 genotype after paroxetine coadministration[166]. One study reported that 

plasma concentrations of endoxifen were significantly lower in CYP2D6 NMs who were 

taking strong CYP2D6 inhibitors than NMs who were not taking CYP2D6 inhibitors (23.5 

nmol/L vs. 84.1 nmol/L, P < .001) [165]. For 25%, 50%, and 75% increases in percent 

overlap days between paroxetine and tamoxifen, hazard ratios for subsequent breast cancer 

risk were 1.06, 1.13, and 1.20 respectively[167]. Concomitant use of paroxetine resulted in 

increased risk of death from breast cancer. One study demonstrated that 25%, 50%, and 75% 

increase in the overlapping time of paroxetine and tamoxifen increased the risk of death 

from breast cancer to 24%, 54%, and 91% respectively (P<0.05 for each comparison) [168]. 

Therefore, according to the CPIC guidelines, it is strongly recommended not to use any 

CYP2D6 strong or moderate inhibitors when prescribing tamoxifen among CYP2D6 NMs 

and UMs[15].

Metabolism of atomoxetine by CYP2D6 is also decreased when coadministered 

with CYP2D6 inhibitors, which leads to change in pharmacokinetic parameters of 
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atomoxetine[169–173]. With concomitant paroxetine treatment, AUC0−24 of atomoxetine 

was increased by 2.3-, 1.7-, and 1.3-fold, in CYP2D6*wt/*wt, CYP2D6*wt/*10, and 

CYP2D6*10/*10 respectively when compared to atomoxetine concentration without 

paroxetine coadministration[169]. Atomoxetine Cmax was also increased from 221to 

373 ng/mL[172] with concomitant paroxetine. Similar results were also reported for 

bupropion coadministration where systemic exposure to atomoxetine was increased (5.1-

fold) and exposure to its main metabolite was decreased (1.5-fold) when compared to 

exposure to atomoxetine without bupropion administration[173]. Cardiovascular side effects 

were observed after atomoxetine and fluoxetine comedication[171,174]. Considering the 

importance of phenoconversion, CPIC suggests considering CYP2D6 inhibitors when 

prescribing atomoxetine[14].

4. Implementation in clinical practice

Utilization of CYP2D6 pharmacogenetics for personalized therapy is uncommon in clinical 

practice and consideration of the effect of CYP2D6 inhibitors is even more rarely 

considered. The data summarized herein highlight that CYP2D6 phenotype (as determined 

by genotype and/or drug interactions) have clinically important implications on the efficacy 

and/or toxicity of many CYP2D6-metabolized drugs. Thus clinical implementation of 

CYP2D6 pharmacogenetics and phenoconversion in clinical practice is a critical component 

to providing personalized drug therapy.

CPIC currently has pharmacogenetics guidelines for tramadol, codeine, hydrocodone, 

atomoxetine, tamoxifen, paroxetine, fluoxetine, fluvoxamine, amitriptyline, nortriptyline, 

ondansetron and tropisetron[7,14–16,21,131]. These guidelines address the effects of 

CYP2D6 inhibitor on metabolism of those drugs except for ondansetron and tropisetron. 

Lack of data and/or lack of a recent update might be the reason for not including 

the phenoconversion in the CPIC guidelines of ondansetron and tropisetron[131]. New 

CPIC pharmacogenetic guidelines for additional CYP2D6 substrate drugs including 

antipsychotics(e.g., aripiprazole, brexpiprazole, pimozide etc.), antidepressants (e.g., 

SNRIs), beta-blockers (e.g., carvedilol, metoprolol etc.) and one update on guidelines for 

SSRIs are now in progress[175].

To benefit patients based on the recommendations in CYP2D6 pharmacogenetics guidelines, 

CYP2D6 pharmacogenetic testing can be ordered if not already available in the EHR [7,14–

16,21,131]. As pharmacogenetics results are lifelong results it is not required to be retested 

again, unless additional clinically important alleles are discovered[176]. The test results 

often include the CYP2D6 genotypes (e.g., CYP2D6 *1/*4) and activity score (AS) of 

CYP2D6 (e.g., AS 1, intermediate metabolize) or both. To get the actual clinical phenotype 

of the patient, CYP2D6 genotypic phenotype and concomitant inhibitor medication should 

both be taken into consideration. Based on the type of inhibitor, activity score should be 

modified and the clinical phenotype can be determined. Details of the activity score of 

specific alleles, calculation of the activity score for genotype alone and adjustment for 

CYP2D6 inhibitors and interpretation of clinical phenotype have been described in Table 

2. CYP2D6 can regain its normal activity after 5–7 days of discontinuation of CYP2D6 
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inhibitors[177]. So, concomitant medications need to be considered routinely since the 

phenotype based on inhibitor presence or absence can change over time.

As no tool is currently available in the EHR to assist in consideration of CYP2D6 

phenotype based on both genotype and drug interactions, adjustment of the activity 

score needs to be done manually for patients. To make this process easier and to 

implement phenoconversion in practice, a CYP2D6 phenoconversion calculator tool was 

developed (https://precisionmedicine.ufhealth.org/phenoconversion-calculator/) [17]. This 

calculator needs genotype information (e.g., CYP2D6 *1/ *4), number of alleles present, 

and comedication information to provide the predicted clinical CYP2D6 phenotype of 

the individual. Using the clinical phenotype and pharmacogenetics guidelines provided by 

CPIC, clinicians can provide the best available personalized therapy to the patients. While 

this is a valuable tool to assist clinicians, widespread adoption of personalized CYP2D6 

treatments will require and approach that is automated within the EHR.

There are several challenges to incorporate CYP2D6 pharmacogenetics and 

phenoconversion into clinical practice, which have been highlighted by several groups 

who have undertaken such a clinical implementation [178–181]. Of those, one of the 

most important challenges is out-of-pocket cost of pharmacogenetic testing. Presenting the 

reimbursement data to patients and prior authorizations to cover the pharmacogenetic tests 

costs can help to overcome the barrier[179]. As data emerge on the clinical impact of using 

CYP2D6 phenotype to guide drug therapy, it is anticipated that more payers will provide 

coverage for the pharmacogenetic testing. Another barrier to proper implementation is lack 

of use of clinical decision support tools to provide proper guidance and knowledge on 

genotype-based actions[180]. The use of clinical decision support tools can help integrate 

pharmacogenetics into clinical practice, but incorporation of phenoconversion along with 

genotype is more difficult and there are not EHR-based tools available yet to support this. In 

the clinical setting, an updated list of current medications is essential to determine whether 

phenoconversion is present for individuals who are also taking a CYP2D6-relevant drug. So 

routine update of the medication list in the medical record is a prerequisite. Moreover, 

phenoconversion should be continually evaluated at least before every prescription as 

concurrent medication may change. Manual calculation of the activity score adjusted 

for phenoconversion can also be challenging though utilization of the phenoconversion 

calculator tool can ease this process for healthcare providers [17]. Most of the resources 

commonly used by prescribers (e.g., Drug.com, RxList, or other drug interaction checkers) 

include limited information about CYP2D6 genetics, drug interactions and guidelines for 

incorporating CYP2D6 pharmacogenetics and phenoconversion in clinical practice [144]. 

Proper clinical integration and training can help to disseminate the importance of CYP2D6 
pharmacogenetics and phenoconversion among clinicians.

5. Conclusion

Considering the extent and impact of genetic variability of CYP2D6, vulnerability of 

CYP2D6 after co-administration of inhibitor drugs, and significance of CYP2D6 in 

drug metabolism, CYP2D6 pharmacogenetics is highly important for designing and 

implementing personalized drug therapy to ensure drug safety and efficacy. Proper genetic 
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testing and interpretation of the results, and adjustment of the phenotype considering 

the concomitant CYP2D6 inhibitors is essential for CYP2D6 pharmacogenetics-based 

personalized therapy. Approaches to overcome the challenges including appropriate use 

of clinical decision support tools, integration of CYP2D6 phenoconversion into clinical 

care, reimbursement of pharmacogenetic testing costs, and a local clinical expert to assist 

other clinicians can help achieve proper implementation of CYP2D6 pharmacogenetics and 

phenoconversion in the clinical setting to improve drug therapy outcomes in patients.

6. Expert opinion

CYP2D6 is involved in metabolizing 20–25% of all the drugs available on the market. 

This enzyme can either metabolize the active drug to inactive metabolite(s), facilitating 

the excretion of the drug, or metabolize the inactive prodrug to the active drug, assisting 

in exerting the proper pharmacological activity of the drug. Reduced or absent (IM or 

PM) CYP2D6 can lead to increased plasma concentrations for the active drug for a longer 

time, increasing risk of adverse drug effects and non-adherence. Conversely, decreased 

conversion of prodrugs to active drugs in those with impaired CYP2D6 activity is likely 

to impair efficacy. Conversely, gene duplication/multiplication or an increase in the activity 

of CYP2D6 (UM) may inactivate an active drug very quickly, leading to reduced efficacy 

whereas in the case of a prodrug, the excessive conversion to an active metabolite may 

cause serious adverse drug effects. While the UM phenotype can only be accomplished 

through genetic variation, the PM and IM phenotypes may occur based on genotype, drug 

interactions or the combination. The large number of drugs metabolized by CYP2D6, the 

frequency of genetic variation in CYP2D6 that leads to a non-normal phenotype, and 

the common clinical use of CYP2D6 inhibitors, which can alter the CYP2D6 phenotype 

makes attention to CYP2D6 phenotype essential in the quest to optimize therapy through 

personalized approaches.

Recent developments within pharmacogenetics and various guidelines from CPIC 

have promoted personalized therapy, ensuring drug safety and efficacy, especially for 

the medications metabolized by CYP2D6 (including tramadol, codeine, hydrocodone, 

atomoxetine, tamoxifen, paroxetine, fluoxetine, fluvoxamine, amitriptyline, nortriptyline, 

ondansetron and tropisetron). Although genotype-guided therapy for CYP2D6 metabolized 

drugs has gained popularity in the last decade, use of CYP2D6 pharmacogenetics while 

prescribing in clinical practice is not yet standard of care. And in the absence of genetic 

data, even the consideration of phenoconversion while prescribing is extremely limited. The 

impact of CYP2D6 inhibitors on the efficacy and safety of CYP2D6-metabolized drugs 

and percentages of concomitant use of the CYP2D6 inhibitors can easily explain the need 

to implement phenoconversion along with CYP2D6 pharmacogenetics to lead to optimal 

therapeutic outcomes. And in the absence of genetic data, clinicians should still consider the 

impact of a concomitant CYP2D6 inhibitor on the therapeutic outcomes. Concomitant use 

of CYP2D6 inhibitors can make the genotypic NM act like a PM, although the individual 

doesn’t carry any non-functional allele. Moreover, data indicate that approximately 20– 70% 

of patients on CYP2D6 metabolized medications are at risk of CYP2D6 phenoconversion 

by concomitant medications. Thus, consideration of CYP2D6 genotype alone is insufficient 

in the quest for personalizing therapy with CYP2D6 substrates. This approach can only be 
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optimal if CYP2D6 genotype and drug interactions are considered together in assigning a 

CYP2D6 phenotype.

There are many challenges to implementing use of CYP2D6 phenotype to guide prescribing. 

These include proper interpretation of genotype-based phenotype from CYP2D6 alleles 

or activity score, adjustment of phenotype considering the concomitant administration of 

CYP2D6 inhibitor medications, routinely checking concomitant medications for phenotype 

adjustment, reimbursement of genetic testing costs, proper training of the clinicians 

among other challenges. For widespread utilization of personalized approaches for 

drugs metabolized by CYP2D6, proper integration of CYP2D6 pharmacogenetics and 

phenoconversion in the EHR is necessary. While much progress has been made in recent 

years in optimizing the reporting of CYP2D6 genotype in a meaningful way in the EHR, we 

are aware of no EHR system that does this along with incorporating the drug interaction 

effectively to provide the clinician with a predicted phenotype. Laboratory CYP2D6 
genotyping reports with appropriate interpretations of the CYP2D6 phenotype and quick 

access to evaluate the risks of phenoconversion could ease the path to personalized medicine 

in clinical care. In addition to integrating those support tools, increasing awareness among 

prescribers of the clinical implications of CYP2D6 inhibitors and their ability to create 

phenoconversion is also critical to optimal use of drug therapy.

In summary, the utilization of proper guidelines incorporating both CYP2D6 
pharmacogenetics and phenoconversion in clinical care is essential to ensure the most 

benefits of personalized medicine.
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Article highlights:

• CYP2D6 is estimated to contribute to the metabolism of approximately 

20–25% of drugs. CYP2D6 is involved not only in metabolizing active 

drugs into its inactive metabolites (e.g., paroxetine, aripiprazole) but also in 

metabolizing inactive drugs into its active metabolite including (e.g., codeine, 

tamoxifen). Therefore, the metabolic activity of CYP2D6 is associated with 

adverse drug reactions or drug ineffectiveness.

• The gene encoding CYP2D6 is highly polymorphic and around 100 alleles 

of CYP2D6 with different impact on function of the encoded protein have 

been identified. An activity score is given to a specific allele of CYP2D6 
and summing the activity scores of the two (or more) alleles leads to the 

diplotype activity score. Using the diplotype score, genotypic phenotype of 

CYP2D6 is estimated, with resulting phenotypes including poor metabolizer 

(PM), intermediate metabolizer (IM), normal metabolizer (NM), ultra-rapid 

metabolizer (UM).

• Strong (e.g., paroxetine, bupropion) and moderate (e.g., duloxetine, sertraline) 

inhibitors can also decrease the CYP2D6 activity, phenoconverting the 

genotypic NMs or UMs into phenotypic PMs or IMs. So, concomitant use 

of those drugs cannot be overlooked while predicting the CYP2D6 phenotype. 

Moreover, data indicate that up to 20– 70% of the patients who are on 

CYP2D6 metabolized drugs are at risk of CYP2D6 phenoconversion by 

concomitant medications.

• It is important to adjust the activity score of CYP2D6 based on use of 

CYP2D6 inhibitors. If the individual is taking one of the strong or moderate 

inhibitors concomitantly, then the genotype-based activity score should be 

multiplied by 0 or 0.5 respectively. Then the actual clinical phenotype can be 

estimated based on the adjusted activity score.

• Pharmacogenetic-based drug therapy guidelines have been developed for 

at least 50 CYP2D6-metabolized drugs based on the activity of CYP2D6. 

Considering the importance of phenoconversion, Clinical Pharmacogenetics 

Implementation Consortium (CPIC) guidelines suggest incorporating the 

effects of CYP2D6 inhibitors while calculating the activity score of CYP2D6 

for CYP2D6 metabolized opioids, tricyclic antidepressants, tamoxifen and 

atomoxetine.

• There are many challenges to implementing use of CYP2D6 

pharmacogenetics and phenoconversion to guide prescribing. These include 

proper interpretation of genotype-based phenotype from CYP2D6 alleles 

or activity score, adjustment of phenotype considering the concomitant 

administration of CYP2D6 inhibitor medications, routinely checking of 

concomitant medications for phenotype adjustment, reimbursement of genetic 

testing costs, proper training of the clinicians etc.
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Figure 1. Representative differences in rate and extent of metabolism among different CYP2D6 
phenotypes
Figure 1a shows metabolism of active drug (green bars) to inactive metabolite (open bars) 

and Figure 1b shows the metabolism of a prodrug (inactive) (open bars) to active metabolite 

(green bars) in absence of CYP2D6 inhibitors. NM can metabolize the drugs in an expected 

standard rate (represented by two (>>) arrows) and extent (4 out of 6 units in a given time) 

to provide the pharmacological activity. UM, being more active and rapid, can metabolize 

the drugs at a higher rate (represented by three (>>>) arrows) and extent than NM (6 out of 

six units in a given time). IM is slower (represented by one (>) arrow) and can metabolize 

less(2 out of 6 units in each given time) than NM. PM has no metabolic activity and cannot 

metabolize a drug.

UM- ultrarapid metabolizer; NM- normal metabolizer; IM- intermediate metabolizer; PM- 

poor metabolizer.
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Figure 2. Phenoconversion of CYP2D6 in presence of strong (SI) or moderate (MI) inhibitors 
and metabolism of drugs by CYP2D6 phenotypes
Figure 2a shows the phenoconversion in presence of SI and metabolism of active drug 

(green bars) to inactive metabolite (open bars) and prodrug (open bars) to active metabolite 

(green bars) in phenoconverted CYP2D6 phenotypic PMs(pPM). SI can decrease the activity 

of the CYP2D6 enzymes to null and phenoconvert the gUM, gNM or gIM to pPM. Thus, the 

pPM cannot metabolize the drug.

Figure 2b shows the phenoconversion in presence of MI and metabolism of active drug 

(green bars) to inactive metabolite (open bars) and prodrug (open bars) to active metabolite 

(green bars) in phenoconverted CYP2D6 phenotypic IMs(pIM). MI can decrease the activity 

of the CYP2D6 enzymes to nearly half and can phenoconvert the gUM, gNM or gIM to 

pIM. Thus, the pIM metabolizes the drug very slowly and to a lower extent (2 out of 6 

units).

Note: For gUMs, in presence of three or more normal functioning alleles MI can 

phenoconvert them to NM or UM (not shown in the figure).
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SI- strong inhibitors; MI- moderate inhibitor; gUM- genotypic ultrarapid metabolizer; gNM- 

genotypic normal metabolizer; gIM- genotypic intermediate metabolize; pPM- phenotypic 

PM; pIM- phenotypic IM; PM- poor metabolizer; IM- intermediate metabolizer.
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Table 1.

Drugs metabolized by CYP2D6 to their inactive or active metabolites

Type of metabolism Drug class Drug names

Active drugs metabolized to less active or inactive drug by CYP2D6 # 

Antidepressants

amitriptyline

citalopram

clomipramine

desipramine

doxepin

duloxetine

escitalopram

fluoxetine

fluvoxamine

imipramine

mirtazapine

nortriptyline

paroxetine

sertraline

trimipramine

venlafaxine

Antiphychotics

aripiprazole

brexpiprazole

clozapine

flupenthixol

fluphenazine

haloperidol

olanzapine

pimozide

quetiapine

risperidone

zuclopenthixol

Beta blocker

atenolol

bisoprolol

carvedilol

metoprolol

Antiarrhythmic

amiodarone

disopyramide

flecainide

propafenone

quinidine

sotalol
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Type of metabolism Drug class Drug names

Opioid
methadone

oxycodone

ADHD treatment
atomoxetine

methylphenidate

Gaucher’s disease treatment eliglustat

Antiemetic
odansetron

tropisetron

Antihypertensive clonidine

Inactive drugs metabolized to active drug by CYP2D6

Opioids

codeine

tramadol

hydrocodone

Antiestrogens tamoxifen

Anticancer gefitinib

#
Some metabolites might be similarly active as the active parent drug.
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Table 2.

CYP2D6 activity scores (AS) and phenotype adjustment for CYP2D6 inhibitors

Alleles and assigned score

Alleles Activity score

Functional allele *1, *2 or*35 1

Reduced functional allele
*9, *17, *29 or*41 0.5

*10 0.25

Nonfunctional allele *3 through*8, *11 or*15 0

AS considering only genotype: Genotype-based Activity Score=Sum of the scores of the alleles

AS considering both genotype and CYP2D6 inhibitor: CYP2D6 activity score= Inhibitor factor (IF) x genotype-based AS; IF= 0, 0.5 and 1 
for strong, moderate and no CYP2D6 inhibitor

Phenotype based on genotype and 
inhibitors

Phenotype CYP2D6 activity score

Ultra-rapid metabolizers (UM) >2.25

Normal Metabolizers (NM) 1.25–2.250

Intermediate metabolizers (IM) 0.25–1

Poor Metabolizers (PM) 0
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Table 3.

CPIC dosing recommendations for different drugs based on CYP2D6 phenotype

Drug class Medications CYP2D6 
phenotypes Implications Recommendations Classification of 

recommendation Reference

Tricyclic 
antidepressants

Amitriptyline 
and 
nortriptyline

UM

Increased metabolism 
to less 
active compounds 
increasing the 
probability to lack of 
efficacy.

Avoid use of 
amitriptyline and 
nortriptyline. Consider 
alternative drug 
not metabolized by 
CYP2D6.

Strong

Hicks et. 
al., 2017 
[16]

NM
Expected metabolism 
to less active 
compounds

Initiate therapy with 
recommended starting 
dose.

Strong

IM

Reduced metabolism 
to less 
active compounds 
increasing risk of 
adverse effects

Consider a 25% 
reduction of 
recommended starting 
dose

Moderate

PM

Greatly reduced 
metabolism to less 
active compounds 
increasing risk of 
adverse effects

Avoid use of 
amitriptyline and 
nortriptyline. Consider 
alternative drug 
not metabolized by 
CYP2D6.

Strong

Clomipramine, 
desipramine, 
doxepin, 
imipramine, 
and 
trimipramine

UM

Increased metabolism 
to less 
active compounds 
increasing the 
probability for lack of 
efficacy.

Avoid use of the drugs. 
Consider alternative 
drug not metabolized by 
CYP2D6.

Optional

NM
Expected metabolism 
to less active 
compounds

Initiate therapy with 
recommended starting 
dose.

Strong

IM

Reduced metabolism 
to less 
active compounds 
increasing risk of 
adverse effects

Consider a 25% 
reduction of 
recommended starting 
dose.

Optional

PM

Greatly reduced 
metabolism to less 
active compounds 
increasing risk of 
adverse effects

Avoid use of the drugs. 
Consider alternative 
drug not metabolized by 
CYP2D6.

Optional

Selective 
serotonin 
reuptake 
inhibitors

Paroxetine

UM

Increased metabolism 
to less 
active compounds 
increasing the 
probability for lack of 
efficacy.

Avoid paroxetine. 
Consider alternative 
drug not predominantly 
metabolized by CYP2D6

Strong

Hicks et. 
al., 2015 
[21]

NM
Expected metabolism 
to less active 
compounds

Initiate therapy with 
recommended starting 
dose.

Strong

IM

Reduced metabolism 
to less 
active compounds 
increasing risk of 
adverse effects

Initiate therapy with 
recommended starting 
dose.

Moderate

PM

Greatly reduced 
metabolism to less 
active compounds 
increasing risk of 
adverse effects

Avoid paroxetine. 
Consider alternative 
drug not predominantly 
metabolized by CYP2D6

Optional
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Drug class Medications CYP2D6 
phenotypes Implications Recommendations Classification of 

recommendation Reference

Fluvoxamine

UM
No data available for 
CYP2D6 ultrarapid 
metabolizers

No recommendation due 
to lack of evidence Optional

NM
Expected metabolism 
to less active 
compounds

Initiate therapy with 
recommended starting 
dose.

Strong

IM

Reduced metabolism 
to less 
active compounds 
increasing risk of 
adverse effects

Initiate therapy with 
recommended starting 
dose.

Moderate

PM

Greatly reduced 
metabolism to less 
active compounds 
increasing risk of 
adverse effects

Consider a 25–
50% reduction of 
recommended starting 
dose and titrate 
to response. Or, 
Consider alternative 
drug not predominantly 
metabolized by CYP2D6

Optional

Antiemetic Ondansetron 
and tropisetron

UM

Increased metabolism 
to less 
active compounds 
increasing the 
probability to lack of 
efficacy.

Avoid use of the drugs. 
Consider alternative 
drug not metabolized by 
CYP2D6.

Moderate

Bell et. al., 
2017 [131]

NM
Expected metabolism 
to less active 
compounds

Initiate therapy with 
recommended starting 
dose.

Strong

IM Very limited data 
available

Initiate therapy with 
recommended starting 
dose.

No 
recommendation

PM Very limited data 
available

Initiate therapy with 
recommended starting 
dose.

No 
recommendation

ADHD 
treatment Atomoxetine

UM Very limited data 
available

Initiate with a dose 
of 0.5mg/kg/day in 
children or 40 mg/day 
in adults and increase to 
1.2mg/kg/day in children 
or 80 mg/ day in 
adults after 3 days. If 
no clinical response, 
consider titration to 
reach 400 ng/mL peak 
plasma concentration. 
Details here.

Moderate

Brown et. 
al., 2019 
[14]

NM
Expected metabolism 
to less active 
compounds

Initiate with a dose 
of 0.5mg/kg/day in 
children or 40 mg/day 
in adults and increase to 
1.2mg/kg/day in children 
or 80 mg/ day in 
adults after 3 days. 
If no clinical response 
consider titration to 
reach 400 ng/mL peak 
plasma concentration. 
Details here. If 
unacceptable side effects 
are present at any time, 
consider a reduction in 
dose. Details here.

Moderate

IM Reduced metabolism 
to less 

Initiate with a dose 
of 0.5mg/kg/day in Moderate
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Drug class Medications CYP2D6 
phenotypes Implications Recommendations Classification of 

recommendation Reference

active compounds 
increasing risk of 
discontinuation

children or 40 mg/day 
in adults. If no clinical 
response, consider 
titration to reach 400 
ng/mL peak plasma 
concentration. Details 
here. If unacceptable 
side effects are present 
at any time, consider 
a reduction in dose. 
Details here.

PM

Greatly reduced 
metabolism to less 
active compounds 
increasing risk of 
adverse effects but 
may result in 
greater improvement 
of ADHD.

Initiate with a dose 
of 0.5mg/kg/day in 
children or 40 mg/day 
in adults. If no clinical 
response, consider 
titration to reach 400 
ng/mL peak plasma 
concentration. Details 
here. If unacceptable 
side effects are present 
at any time, consider 
a reduction in dose. 
Details here.

Moderate

Opioids

Codeine

UM
Increase formation of 
morphine leading to 
higher risk of toxicity

Avoid use of codeine. 
Consider use of non-
tramadol opioid or other 
analgesics

Strong

Crews et. 
al., 2021 [7]

NM Expected metabolism 
to morphine

Initiate therapy with 
recommended starting 
dose.

Strong

IM Reduced formation of 
morphine

Initiate therapy with 
recommended starting 
dose. If no response 
consider use of non-
tramadol opioid or other 
analgesics

Moderate

PM

Greatly reduced 
formation of 
morphine leading to 
diminished analgesia

Avoid use of codeine. 
Consider use of non-
tramadol opioid or other 
analgesics

Strong

Tramadol

UM

Increase formation of 
o-desmethyltramadol 
leading to higher risk 
of toxicity

Avoid use of tramadol. 
Consider use of non-
codeine opioid or other 
analgesics

Strong

NM
Expected 
metabolism to o-
desmethyltramadol

Initiate therapy with 
recommended starting 
dose.

Strong

IM Reduced formation of 
o-desmethyltramadol

Initiate therapy with 
recommended starting 
dose. If no response 
consider use of non-
codeine opioid or other 
analgesics

Optional

PM

Greatly reduced 
formation of o-
desmethyltramadol 
leading to diminished 
analgesia

Avoid use of tramadol. 
Consider use of non-
codeine opioid or other 
analgesics

Strong

Hydrocodone UM Very limited data 
available

No recommendation due 
to lack of evidence

No 
recommendation
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Drug class Medications CYP2D6 
phenotypes Implications Recommendations Classification of 

recommendation Reference

NM Expected metabolism 
to hydromorphone

Initiate therapy with 
recommended starting 
dose.

Strong

IM Very limited data 
available

Initiate therapy with 
recommended starting 
dose. If no response 
consider use of 
non-codeine or non-
tramadol opioid or other 
analgesics

Optional

PM

Reduced formation of 
hydromorphone, but 
there is insufficient 
evidence to determine 
if these effects 
on pharmacokinetics 
translate into 
decreased analgesia 
or side effects

Initiate therapy with 
recommended starting 
dose. If no response 
consider use of 
non-codeine or non-
tramadol opioid or other 
analgesics

Optional

Antiestrogens Tamoxifen

UM Expected metabolism 
to endoxifen

Avoid moderate and 
strong inhibitors. 
Initiate therapy with 
recommended starting 
dose.

Strong

Goetz et. 
al., 2018 
[15]

NM Expected metabolism 
to endoxifen

Avoid moderate and 
strong inhibitors. 
Initiate therapy with 
recommended starting 
dose.

Strong

IM

Reduced formation 
of endoxifen. May 
increase the risk 
of breast cancer 
recurrence, event-free 
and recurrence-free 
survival

Avoid moderate and 
strong inhibitors. 
Consider hormonal 
therapy such as an 
aromatase inhibitor 
with/without ovarian 
function suppression. 
If aromatase inhibitor 
use is contraindicated, 
consideration should be 
given to use a higher 
but FDA approved 
tamoxifen dose (40 mg/
day). Details here.

Moderate

PM

Reduced formation 
of endoxifen. May 
increase the risk 
of breast cancer 
recurrence, event-free 
and recurrence-free 
survival

Recommend alternative 
hormonal therapy such 
as an aromatase inhibitor 
with/without ovarian 
function suppression. 
If aromatase inhibitor 
use is contraindicated, 
consideration should be 
given to use a higher 
but FDA approved 
tamoxifen dose (40 mg/
day). Details here.

Strong
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Table 4.

Strong and moderate CYP2D6 inhibitors according to US FDA[9]

Type of inhibitors CYP2D6 inhibitors

Strong inhibitors bupropion, fluoxetine, paroxetine, terbinafine, quinidine

Moderate inhibitors abiraterone, cinacalcet, mirabegron, duloxetine, lorcaserin, rolapitant
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