
Polygenic enrichment distinguishes disease associations of 
individual cells in single-cell RNA-seq data

Martin Jinye Zhang1,2,*, Kangcheng Hou3,4,5,*, Kushal K. Dey1,2, Saori Sakaue2,6,7,8,9, 
Karthik A. Jagadeesh1,2, Kathryn Weinand2,6,7,8,9, Aris Taychameekiatchai10,11, Poorvi 
Rao10, Angela Oliveira Pisco12, James Zou12,13,14, Bruce Wang10, Michael Gandal15,16,17, 
Soumya Raychaudhuri2,6,7,8,9,18, Bogdan Pasaniuc3,4,5,†, Alkes L. Price1,2,19,†

1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

2Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 
MA, USA

3Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, 
CA, USA

4Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University 
of California, Los Angeles, Los Angeles, CA, USA

5Department of Computational Medicine, David Geffen School of Medicine, University of 
California, Los Angeles, Los Angeles, CA, USA

6Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA

7Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard 
Medical School, Boston, MA, USA

8Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and 
Women’s Hospital and Harvard Medical School, Boston, MA, USA

9Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

10Department of Medicine and Liver Center, University of California San Francisco, San 
Francisco, CA, USA

Corresponding authors: Martin Jinye Zhang jinyezhang@hsph.harvard.edu, Kangcheng Hou houkc@ucla.edu, Bogdan Pasaniuc 
pasaniuc@ucla.edu, Alkes L. Price aprice@hsph.harvard.edu.
8These authors contributed equally
†These authors jointly supervised this work
Author Contributions Statement
M.J.Z., K.H., B.P., and A.L.P. designed the study and developed statistical methodologies. M.J.Z. and K.H. analyzed the data with 
assistance from K.K.D., A.O.P., and K.A.J. S.S., K.W., A.T., P.R., A.O.P., J.Z., B.W., M.G., and S.R. provided expert guidance and 
feedback on analysis, results, and biological interpretations. M.J.Z., K.H., B.P., and A.L.P. wrote the manuscript with feedback from 
all authors.

Competing Interests Statement
The authors declare no competing interests.

Code availability
Software implementing scDRS and its downstream applications and a web interface for interactively exploring results of scDRS are 
available at https://github.com/martinjzhang/scDRS75. Code for generating all results of the paper is available at https://github.com/
martinjzhang/scDRS_paper76.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2023 April 01.

Published in final edited form as:
Nat Genet. 2022 October ; 54(10): 1572–1580. doi:10.1038/s41588-022-01167-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/martinjzhang/scDRS
https://github.com/martinjzhang/scDRS_paper
https://github.com/martinjzhang/scDRS_paper


11Developmental and Stem Cell Biology Graduate Program, University of California San 
Francisco, San Francisco, CA, USA

12Chan Zuckerberg Biohub, San Francisco, CA, USA

13Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA

14Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA

15Department of Psychiatry, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA, USA

16Department of Human Genetics, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA, USA

17Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, 
University of California, Los Angeles, Los Angeles, CA, USA

18Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, 
Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

19Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Abstract

Single-cell RNA-sequencing (scRNA-seq) provides unique insights into the pathology and cellular 

origin of disease. We introduce scDRS, an approach that links scRNA-seq with polygenic 

disease risk at single-cell resolution, independent of annotated cell-types. scDRS identifies 

cells exhibiting excess expression across disease-associated genes implicated by genome-wide 

association studies (GWAS). We applied scDRS 74 diseases/traits and 1.3M single-cell gene-

expression profiles across 31 tissues/organs. Cell-type-level results broadly recapitulated known 

cell-type-disease associations. Individual-cell-level results identified subpopulations of disease-

associated cells not captured by existing cell-type labels, including T cell subpopulations 

associated with inflammatory bowel disease, partially characterized by their effector-like states; 

neuron subpopulations associated with schizophrenia, partially characterized by their spatial 

locations; hepatocyte subpopulations associated with triglyceride levels, partially characterized 

by their higher ploidy levels. Genes whose expression was correlated with the scDRS score across 

cells (reflecting co-expression with GWAS disease-associated genes) were strongly enriched for 

gold-standard drug target and Mendelian disease genes.

Editor summary:

scDRS associates individual cells in scRNA-seq with disease by scoring single-cell transcriptomes 

using GWAS gene signatures. Applied to 74 GWAS and 1.3 million single-cell profiles, scDRS 

identifies specific cellular subpopulations associated with these diseases.

Introduction

The mechanisms through which risk variants identified by genome-wide association studies 

(GWASs) impact critical tissues and cell types are largely unknown1; identifying these 

tissues and cell types is central to our understanding of disease etiologies and will inform 
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efforts to develop therapeutic treatments2. Single-cell RNA sequencing (scRNA-seq) has 

emerged as the tool of choice for measuring gene expression abundance at single-cell 

resolution3, providing an increasingly clear picture of which genes are active in which cell 

types and also being able to identify novel cell populations within classically defined cell 

types. Integrating scRNA-seq with GWAS data offers the potential to identify critical tissues, 

cell types, and cell populations through which GWAS risk variants impact disease4–6, thus 

providing finer resolution than studies using bulk transcriptomic data7–10.

Previous studies integrating scRNA-seq with GWAS have largely focused on predefined 

cell type annotations (e.g., classical cell types defined using known marker genes), 

aggregating cells from the same cell type followed by evaluating overlap of the cell 

type-level information with GWAS4–6. However, this approach overlooks the considerable 

heterogeneity of individual cells within cell types that has been reported in studies of 

scRNA-seq data alone11–16; the underlying methods (e.g., Seurat cell-scoring function13, 

Vision14, and VAM16) have sought to explain transcriptional heterogeneity in scRNA-seq 

data by scoring cells based on predefined gene sets such as cellular pathways, but do 

not consider polygenic disease risk from GWAS and generally do not provide individual 

cell-level association p-values. Integrating information from scRNA-seq data at fine-grained 

resolution (e.g., individual cells both within and across cell types) with polygenic signals 

from disease GWAS has considerable potential to produce new biological insights.

Here, we introduce single-cell Disease Relevance Score (scDRS), a method to evaluate 

polygenic disease enrichment of individual cells in scRNA-seq data. scDRS assesses 

whether a given cell has excess expression levels across a set of putative disease genes 

derived from GWAS, using an appropriately matched empirical null distribution to estimate 

well-calibrated p-values. We performed extensive simulations to assess the calibration and 

power of scDRS. We applied scDRS to 74 diseases/traits (average GWAS N=346K) and 16 

scRNA-seq data sets (including the Tabula Muris Senis (TMS) mouse cell atlas17), assessing 

cell type-disease associations and within-cell type association heterogeneity, including 

heterogeneity of T cells in association with autoimmune diseases, neurons in association 

with brain-related diseases/traits, and hepatocytes in association with metabolic traits; we 

analyzed a broader set of scRNA-seq data sets to provide validation across species (human 

vs. mouse) and across sequencing platforms, and to include scRNA-seq data sets with 

experimentally determined cell types and cell states.

Results

Overview of methods

scDRS integrates gene expression profiles from scRNA-seq with polygenic disease 

information from GWAS to associate individual cells to disease, by assessing the excess 

expression of GWAS putative disease genes in a given cell relative to other genes with 

similar expression across all cells. scDRS consists of three steps (Figure 1). First, scDRS 

constructs a set of putative disease genes from GWAS summary statistics using MAGMA18, 

an existing gene scoring method (top 1,000 MAGMA genes). Second, scDRS quantifies the 

aggregate expression of the putative disease genes in each cell to generate cell-specific raw 
disease scores; to maximize power, each putative disease gene is weighted by its GWAS 
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MAGMA z-score and inversely weighted by its gene-specific technical noise level in the 

single-cell data, estimated via modeling the mean-variance relationship across genes16,19. 

To determine statistical significance, scDRS also generates 1,000 sets of cell-specific raw 
control scores at Monte Carlo (MC) samples of matched control gene sets (matching gene 

set size, mean expression, and expression variance of the putative disease genes). Third, 

scDRS normalizes the raw disease score and raw control scores for each cell (producing 

the normalized disease score and normalized control scores), and then computes cell-level 

p-values based on the empirical distribution of the pooled normalized control scores across 

all control gene sets and all cells. Further details are provided in Methods, Supplementary 

Note, and Supplementary Figures 1–3.

scDRS outputs individual cell-level disease-association p-values, normalized disease scores, 

and 1,000 sets of normalized control scores (referred to as “disease scores” and “control 

scores” in the rest of the paper) that can be used for a wide range of downstream 

applications (Methods). Here, we focus on three downstream analyses. First, we perform 

cell type-level analyses to associate predefined cell types to disease and assess heterogeneity 

in association to disease across cells within a predefined cell type. Second, we perform 

individual cell-level analyses to associate individual cells to disease and correlate individual 

cell-level variables to the scDRS disease score. Third, we perform gene-level analyses to 

prioritize disease-relevant genes whose expression is correlated with the scDRS disease 

score, reflecting co-expression with genes implicated by disease GWAS.

We analyzed publicly available GWAS summary statistics of 74 diseases/traits (average 

N=346K; Supplementary Table 1) in conjunction with 16 scRNA-seq or single-nucleus 

RNA-seq (snRNA-seq) data sets spanning 1.3 million cells from 31 tissues/organs 

from mouse (mus musculus) and human (homo sapiens) (Supplementary Tables 2–7, 

Supplementary Figure 4). The single-cell data sets include two data sets from the Tabula 

Muris Senis (TMS) mouse cell atlases17 collected using different technologies, the Tabula 

Sapiens (TS) human cell atlas20, and other data sets focusing on specific tissues containing 

well-annotated cell types/states. We focused on the TMS FACS data in our primary analyses 

due to its comprehensive coverage of 23 tissues and 120 cell types and more accurate 

quantification of gene expression levels (via Smart-seq221); we used the other 15 data sets 

to validate our results. We note the extensive use of mouse gene expression data to study 

human diseases and complex traits4–7,10,22 (Supplementary Note).

Simulations assessing calibration and power

We performed null simulations and causal simulations to assess the calibration and power 

of scDRS, comparing scDRS to three state-of-art methods for scoring individual cells 

with respect to a specific gene set: Seurat (cell-scoring function)13, Vision14, and VAM16 

(Methods).

First, we evaluated each method in null simulations where no cells have systematically 

higher expression across the putative disease genes analyzed. We subsampled 10,000 cells 

from the TMS FACS data and randomly selected 1,000 putative disease genes. We simulated 

GWAS gene weights for scDRS matching the MAGMA z-score distributions in real traits 

and used binary disease gene sets for the other 3 methods. scDRS and Seurat produced 
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well-calibrated p-values, Vision suffered slightly inflated type I error, and VAM suffered 

severely inflated type I error (Figure 2a and Supplementary Table 8).

Next, we evaluated scDRS, Seurat and Vision in causal simulations where a subset of 

causal cells has systematically higher expression across putative disease genes (we did not 

include VAM, which was not well-calibrated in null simulations). We used the same 10,000 

cells subsampled from the TMS FACS data, randomly selected 1,000 causal disease genes, 

randomly selected 500 of the 10,000 cells as causal cells and artificially perturbed their 

expression levels to be higher (1.05–1.50X for different simulations) across the 1,000 causal 

disease genes, and randomly selected 1,000 putative disease genes (provided as input to each 

method) with 25% overlap with the 1,000 causal disease genes. We used the binary gene 

set for all 3 methods because there were no GWAS weights involved in data generation. We 

determined that scDRS attained higher power than Seurat and Vision to detect individual 

cell-disease associations at FDR<0.1 (Figure 2b and Supplementary Table 9); the improved 

power of scDRS may be due to its incorporation of gene-specific weights that downweight 

genes with higher levels of technical noise.

Results of additional null and causal simulations are reported in the Supplementary Note, 

Extended Data Figures 1,2, Supplementary Figure 5, and Supplementary Table 10.

Results across 120 TMS cell types for 74 diseases and traits

We analyzed GWAS data from 74 diseases/traits (average N=346K; Supplementary Tables 

1,11) in conjunction with the TMS FACS data with 120 cell types (cells from different 

tissues were combined for a given cell type; Supplementary Table 5). We first report scDRS 

cell type-level results, aggregated for each cell type from the scDRS individual cell-level 

results; the individual cell-level results are discussed in subsequent sections. Results for a 

representative subset of 19 cell types and 22 diseases/traits are reported in Figure 3. Within 

this subset, scDRS identified 80 associated cell type-disease pairs (FDR<0.05; squares in 

Figure 3) and detected significant within-cell type disease-association heterogeneity for 43 

of these 80 associated cell type-disease pairs (FDR<0.05; cross symbols in Figure 3) (273 of 

597 across all pairs of the 120 cell types and 74 diseases/traits; Extended Data Figure 3 and 

Supplementary Table 12).

For cell type-disease associations, as expected, scDRS broadly associated blood/immune cell 

types with blood/immune-related diseases/traits, brain cell types with brain-related diseases/

traits, and other cell types with other diseases/traits (block-diagonal pattern in Figure 

3). Most scDRS discoveries recapitulated well-established cell type-disease associations, 

including blood/immune cell types with blood cell traits, immune cell types with immune 

diseases, neuronal cell types with brain-related traits/diseases6,22,23, and hepatocytes 

with metabolic traits24. In addition, chondrocytes, bladder cells, ventricular myocytes 

and pancreatic beta cells were associated with their corresponding expected diseases/

traits25–28. Exceptions to the block-diagonal pattern and further details are discussed in 

the Supplementary Note.

We also discuss several less well-established results. First, granulocyte monocyte 

progenitors (GMP) were strongly associated with multiple sclerosis (MS), highlighting the 
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role of myeloid cells in MS29. Second, oligodendrocytes, oligodendrocyte precursor cells 

(OPCs) were associated with multiple brain-related diseases/traits; these associations are 

less clear in existing genetic studies4,6,22,30, but are biologically plausible, consistent with 

the increasingly discussed role of oligodendrocyte lineage cells in brain diseases/traits: 

the differentiation and myelination activity of oligodendrocyte lineage cells are important 

to maintain the functionality of neuronal cells31. We detected significant heterogeneity 

across OPCs in their association with many brain-related diseases/traits, consistent with 

recent evidence of functionally diverse states of OPCs32, traditionally considered to be 

a homogeneous population (Supplementary Figure 6). Third, we detected significant 

heterogeneity across cells for the association between proerythroblasts and red cell 

distribution width (RDW), which may correspond to erythrocytes at different differentiation 

stages33 (Supplementary Figure 7). We also detected other instances of significant within-

cell type association heterogeneity, including T cells with immune diseases, neurons with 

brain-related diseases/traits, and hepatocytes with metabolic traits, discussed in subsequent 

sections.

Additional secondary analyses assessing robustness of the results and alternative versions 

of scDRS are reported in Methods, Supplementary Note, Extended Data Figures 1,4,5, 

Supplementary Figures 8–11, and Supplementary Tables 13–16.

Heterogeneous T cells subpopulations in autoimmune disease

We investigated the heterogeneity across TMS FACS T cells in association with autoimmune 

diseases (Figure 3). We jointly analyzed all TMS FACS T cells (3,769 cells, spanning 

15 tissues). Since the original study clustered cells from different tissues separately17, we 

reclustered these T cells, resulting in 11 clusters (Figure 4a; Methods); we verified that 

batch effects were not observed for tissue, age, or sex (Supplementary Figure 12). We 

considered 10 autoimmune diseases: inflammatory bowel disease (IBD), Crohn’s disease 

(CD), ulcerative colitis (UC), rheumatoid arthritis (RA), MS, autoimmune traits (AIT; a 

general term for autoimmune diseases), hypothyroidism (HT), eczema, asthma (ASM), and 

respiratory and ear-nose-throat diseases (RR-ENT) (Supplementary Table 1); we considered 

height as a negative control trait.

We focused on individual cells associated with IBD, a representative autoimmune disease 

(Figure 4b). The 387 IBD-associated cells (FDR<0.1) formed subpopulations of 4 of the 

11 T cell clusters. The subpopulation of 123 IBD-associated cells in cluster 3 (labeled as 

“Treg”) had high expression of regulatory T cell (Treg) marker genes (FOXP3+, CTLA4+, 

LAG3+; Supplementary Figure 17a), and their specifically expressed genes significantly 

overlapped with Treg signatures (P=6.0×10−8 for MSigDB signatures and P=4.0×10−68 for 

an effector-like Treg program34, two-sided Fisher’s exact test; Supplementary Figure 17c,d), 

suggesting these cells had Treg immunosuppressive functions. Interestingly, these 123 IBD-

associated cells were non-randomly distributed in cluster 3 on the UMAP plot (P<0.001, 

MC test; Methods). Genes specifically expressed in these IBD-associated cells were 

preferentially enriched (compared to the 506 non-IBD-associated cells in the same cluster) 

in pathways defined by NF-κB signaling, T helper cell differentiation, and tumor necrosis 

factor-mediated signaling (Supplementary Figure 17e); these pathways are closely related 
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to inflammation, a distinguishing feature of IBD35. In addition, the subpopulations of IBD-

associated cells in clusters 4,5,9 were labeled as “Th2/Treg-like”, “Th17-like”, and “CD8+ 

effector-like”, respectively, consistent with previous studies associating subpopulations of 

effector T cells to IBD, particularly Tregs and Th17 cells35. Results for other autoimmune 

diseases, details for annotating disease-associated T cell subpopulations, and replication 

analyses on 2 human scRNA-seq data sets36,37 are reported in Figure 4c, Methods, 

Supplementary Note, Supplementary Figures 13–17, and Supplementary Tables 17,18.

We further compared the individual T cell associations of IBD to HT, another representative 

autoimmune disease (Figure 4c,d). The top 4 HT-associated subpopulations included 3 

IBD-associated subpopulations (cells in clusters 3,4,9; Figure 4c), but also a unique 

subpopulation of cells in cluster 10 (labeled as “Proliferative”). Despite the stronger 

associations to HT overall (possibly due to higher GWAS power), IBD was more strongly 

associated with cells in cluster 4 (labeled as “Th2/Treg-like”; Figure 4d). Additional results 

are reported in the Supplementary Note, Extended Data Figure 6, Supplementary Figure 18, 

and Supplementary Table 19.

Motivated by the effector-like T cell subpopulations associated to IBD, we investigated 

whether the heterogeneity of T cells in association with autoimmune diseases was correlated 

with T cell effectorness gradient, a continuous classification from naive to effector T cells. 

We separately computed the effectorness gradients for CD4+ T cells (1,686 cells) and CD8+ 

T cells (2,197 cells) using pseudotime analysis36,38, and assessed whether the CD4 (resp., 

CD8) effectorness gradient was correlated with scDRS disease scores for the 10 autoimmune 

diseases, across CD4+ T cells (resp., CD8+ T cells). Results are reported in Figure 

4e and Supplementary Table 20. The CD4 effectorness gradient had strong associations 

with IBD, CD, UC, AIT, and HT (P<0.005, MC test), weak associations with Eczema 

and ASM (P<0.05), but non-significant associations with RA, MS, or RR-ENT, implying 

these autoimmune diseases are associated with more effector-like CD4+ T cells. The CD8 

effectorness gradient had weaker associations (P<0.05 for IBD,CD,AIT, non-significant 

for others), suggesting that CD4+ effector T cells may be more important than CD8+ 

effector T cells for these diseases. The association of T cell effectorness gradients with 

autoimmune diseases has not been formally evaluated previously, but is consistent with 

previous studies linking T cell effector functions to autoimmune disease39 or characterizing 

similarities among effector T cell subtypes36,40. Additional results on T cell effectorness 

gradient and comparison to cluster-level LDSC-SEG are reported in the Supplementary 

Note, Supplementary Figures 19,20, and Supplementary Tables 17,20.

Finally, we prioritized disease-relevant genes by computing the correlation (across all 

TMS FACS cells) between the expression of a given gene and the scDRS score for a 

given disease; this approach identifies genes co-expressed with genes implicated by disease 

GWAS. We compared the top 1,000 genes prioritized using this approach with putative drug 

targets41 (for 8 autoimmune diseases except RR-ENT and HT) or genes known to cause a 

Mendelian form of the disease42 (for RR-ENT and HT whose drug targets are not available; 

Supplementary Table 21). Results are reported in Figure 4f and Supplementary Table 22. We 

determined that scDRS attained a more accurate prioritization of disease-relevant genes 

compared to the top 1,000 MAGMA genes (2.07 for median ratio of (excess overlap 

Zhang et al. Page 7

Nat Genet. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



− 1); Methods), likely by capturing disease-relevant genes with weak GWAS signal43. 

For example, scDRS prioritized ITGB7 for IBD (rank 11; drug target for IBD using 

vedolizumab44) and JAK1 for RA (rank 358; drug target for RA using baricitinib45), both 

missed by MAGMA (ranks 10565,5228, P=0.54,0.26, respectively). Additional results are 

reported in the Supplementary Note, Extended Data Figure 7, and Supplementary Table 21.

Heterogeneous neuron subpopulations in brain traits

We investigated the heterogeneity across neurons in association with brain-related diseases/

traits (Figure 3). We considered 7 brain-related diseases/traits: schizophrenia (SCZ), major 

depressive disorder (MDD), bipolar disorder (BP), neuroticism (NRT), college education 

(ECOL), body mass index (BMI), Smoking (Supplementary Table 1); we considered 

height as a negative control trait. Since the TMS FACS data has limited coverage of 

neuronal subtypes, we focused on a separate mouse brain scRNA-seq data (Zeisel & Muñoz-

Manchado et al.46; 3,005 cells), which has better coverage of neuronal subtypes and has 

been analyzed at cell type level in previous genetic studies6,22. Results for TMS FACS 

neurons are reported in the Supplementary Note, Extended Data Figure 6, Supplementary 

Figures 21,22, and Supplementary Table 19.

scDRS associated several neuronal subtypes (CA1 pyramidal neurons, SS pyramidal 

neurons, and interneurons) with the 7 brain-related diseases/traits (Supplementary Figure 

23a, Supplementary Table 23), consistent with previous genetic studies6,22,47. We focused 

on CA1 pyramidal neurons from the hippocampus (827 cells), which exhibited the 

strongest within-cell type heterogeneity (FDR<0.005 for all 7 brain-related traits, MC test; 

Supplementary Table 23). Individual cell-trait associations for SCZ are reported in Figure 

5a (results for all 7 brain-related traits in Supplementary Figure 23b). We observed a 

continuous gradient of CA1 pyramidal neuron associations to the 7 brain-related traits.

Motivated by known location-specific functions of hippocampal neurons15, we investigated 

whether the heterogeneity observed in Figure 5a was correlated with spatial location. 

We considered the natural CA1 spatial axes48 (dorsal-ventral long axis, proximal-distal 

transverse axis, and superficial-deep radial axis) and inferred spatial coordinates for 

each cell in terms of 6 continuous individual cell-level scores for these spatial regions 

(Supplementary Figures 23c,24, Supplementary Table 24; Methods). The inferred spatial 

scores for the dorsal-ventral and proximal-distal axes varied along the top two UMAP 

axes, providing visual evidence of stronger neuron-SCZ associations in dorsal and proximal 

regions (Figure 5a, Supplementary Figure 23).

We used the results of scDRS for individual cells to assess whether the inferred spatial 

scores for each of the 6 spatial regions (dorsal/ventral/proximal/distal/superficial/deep) were 

correlated to the scDRS disease scores for each of the 7 brain-related traits across CA1 

pyramidal neurons (Methods). Results are reported in Figure 5b (for the proximal region, 

which had the strongest associations), Extended Data Figure 8, and Supplementary Table 

25. The proximal score was strongly associated with all 7 brain-related traits (all P<0.002, 

MC test), suggesting proximal CA1 pyramidal neurons may be more relevant to these 

brain-related traits (instead of distal CA1 pyramidal neurons). The association between the 

proximal region and brain-related traits is consistent with the fact that the proximal region of 
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the hippocampus receives synaptic inputs in the perforant pathway, which is the main input 

source of the hippocampus49. Validations of the spatial scores using independent data and 

results on other spatial scores and 6 additional mouse and human data sets50–55 are reported 

in the Supplementary Note and Extended Data Figure 8.

Heterogeneous hepatocyte subpopulations in metabolic traits

We investigated the heterogeneity across TMS FACS hepatocytes (in the liver) in 

their association with metabolic traits (Figure 3). We considered 9 metabolic traits: 

triglyceride levels (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), 

total cholesterol (TC), testosterone (TST), alanine aminotransferase (ALT), alkaline 

phosphatase (ALP), sex hormone-binding globulin (SHBG), and total bilirubin (TBIL) 

(Supplementary Table 1); we considered height as a negative control trait.

We focused on individual cells associated with TG, a representative metabolic trait (Figure 

5c; results for other traits in Supplementary Figure 25). The 530 TG-associated cells 

(FDR<0.1) formed subpopulations of 5 of the 6 hepatocyte clusters; we characterized 

these subpopulations based on ploidy level (number of sets of chromosomes in a cell) 

and zonation (pericentral/mid-lobule/periportal spatial location in the liver lobule), which 

have been extensively investigated in previous studies of hepatocyte heterogeneity56,57. 

We inferred the ploidy level and zonation for each individual cell in terms of continuous 

individual cell-level polyploidy, pericentral, and periportal scores (Supplementary Figure 26; 

Methods). The inferred ploidy level and zonation varied across clusters, providing visual 

evidence of stronger cell-TG associations in high-ploidy clusters (clusters 1,2), particularly 

the periportal high-ploidy cluster (cluster 2; Figure 5c).

We used the results of scDRS for individual cells to assess whether the inferred polyploidy, 

pericenteral and periportal scores were correlated to the scDRS disease score for each of the 

9 metabolic traits across hepatocytes; we jointly regressed the scDRS disease score for each 

trait on the polyploidy score, pericentral score, and periportal score (because the polyploidy 

score was positively correlated with the other 2 scores; Methods). Results are reported 

in Figure 5d (for the polyploidy score which had the strongest associations), Extended 

Data Figure 9, and Supplementary Table 26. The polyploidy score was strongly associated 

with all 9 metabolic traits (all P<0.007, MC test), suggesting that high-ploidy hepatocytes 

may be more relevant to these metabolic traits. The association between ploidy level 

and metabolic traits is consistent with previous findings that ploidy levels are associated 

with changes in the expression level of genes for metabolic processes such as de novo 

lipid biosynthesis and glycolysis57,58, and supports the hypothesis that liver functions are 

enhanced in polyploid hepatocytes57. In addition, the periportal score was associated with 

the 9 metabolic traits (all P<0.005 except P=0.04,0.02,0.24 for HDL,SHBG,TBIL, MC 

test). While the pericentral score was not significantly associated with these traits in TMS 

FACS, we detected significant associations across multiple other data sets (Supplementary 

Note). These results suggest that these metabolic traits are impacted by complex processes 

involving both pericentral and periportal hepatocytes. Validations of the polyploidy and 

zonation scores using independent data and results on 5 additional mouse and human data 

sets17,59–61 (the unpublished Taychameekiatchai et al. data was provided by co-authors A. 
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Taychameekiatchai, P. Rao, and B. Wang) are reported in the Supplementary Note, Extended 

Data Figure 9, Supplementary Figure 27, and Supplementary Tables 24,27.

Discussion

We have introduced scDRS, a method that leverages polygenic GWAS signals to associate 

individual cells in scRNA-seq data with diseases and complex traits; we showed via 

extensive simulations that scDRS is well-calibrated and powerful in realistic scenarios. 

We applied scDRS to 74 diseases/traits in conjunction with 16 scRNA-seq data sets and 

detected extensive heterogeneity in disease associations of individual cells within classical 

cell types. These findings may prove useful for targeting the relevant cell populations for in 

vitro experiments to elucidate the molecular mechanisms through which GWAS risk variants 

impact disease.

We have demonstrated the value in associating individual cells to disease; assessing the 

heterogeneity across individual cells within predefined cell types in their association to 

disease; identifying cell-level variables partially characterizing the individual cells that are 

associated to disease; and broadly associating predefined cell types to disease. Analyses of 

larger scRNA-seq/snRNA-seq and GWAS data sets using approaches such as scDRS will 

continue to further these goals.

We note several limitations and future directions of our work. First, identifying a statistical 

correlation between individual cells (or cell types) and disease does not imply causality, 

but may instead reflect indirect tagging of causal cells/cell types, analogous to previous 

works4,5,10,18. However, even in such cases, the implicated cells/cell types are likely to be 

closely biologically related to the causal cells/cell types, based on their similar expression 

patterns. Second, the fact that scDRS assesses the statistical significance of an individual 

cell’s association to disease by implicitly comparing it to other cells via matched control 

genes may reduce power if most cells in the data are truly causal. For example, association 

with IBD in a data set containing only Tregs (one of the causal cell types for IBD) will 

likely yield largely non-significant results. This limitation did not impact our main analyses, 

because the TMS data includes a broad set of cell types; in more specialized data sets 

(which may be preferred in some settings due to the more comprehensive profiling of the 

focal cell population), this limitation can potentially be addressed by selecting matched 

control genes based on a broad cell atlas (e.g., the TMS or TS data). Third, while we have 

primarily focused on the associations involving a single disease/trait, further investigation 

of differences between diseases/traits within the same category is an important future 

direction. Additional limitations are discussed in the Supplementary Note. Despite all these 

limitations, scDRS is a powerful method for distinguishing disease associations of individual 

cells in single-cell RNA-seq data.

Methods

Ethical statement

This study analyzed publicly available data sets and hence did not require ethical approval.
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scDRS method

We consider an scRNA-seq data set with ncell cells (not cell types) and ngene genes. We 

denote the cell-gene matrix as X ∈ ℝncell × ngene, where Xcg represents the expression level 

of cell c and gene g. We assume that X is size-factor-normalized (e.g., 10,000 counts per 

cell) and log-transformed (log(x + 1)) from the original raw count matrix19. We regress the 

covariates out from the normalized data19 (with a constant term in the regressors to center 

the data), before adding the original log mean expression of each gene back to the residual 

data. Such a procedure preserves the mean-variance relationship in the covariate-corrected 

data, necessary for estimating the gene-specific technical noise levels (Supplementary Note). 

Gene-level statistics for the scRNA-seq data are reported in Supplementary Figure 4 and 

Supplementary Tables 3,4; estimated technical noise levels are moderately correlated across 

genes between the 16 data sets (avg. cor. 0.34) and are highly correlated between data sets 

with similar cell type compositions (e.g., 0.74 between TMS FACS and TS FACS).

The scDRS algorithm is described below. Given a disease GWAS and an scRNA-seq data 

set, scDRS computes a p-value for each individual cell for association with the disease. 

scDRS also outputs cell-level normalized disease scores and B sets of normalized control 

scores (default B= 1,000) that can be used for data visualization and Monte Carlo-based 

statistical inference (see below). scDRS consists of three steps. First, scDRS constructs a 

set of putative disease genes from the GWAS summary statistics. Second, scDRS computes 

a raw disease score and B MC samples of raw control scores for each cell. Third, after 

gene set-wise and cell-wise normalization, scDRS computes an association p-value for each 

cell by comparing its normalized disease score to the empirical distribution of the pooled 

normalized control scores across all control gene sets and all cells.

We discuss guidelines for using scDRS. First, scDRS relies on assumptions which require 

the disease gene set to have a moderate size (e.g., >50 genes and <20% of all genes). 

Second, to ensure a reasonable number of scDRS discoveries, we recommend using GWAS 

data with a heritability z-score greater than 5 or a sample size greater than 100K. We 

also recommend using single-cell RNA-seq data with a diverse set of cells potentially 

relevant to disease, although a smaller number of cells should not affect the scDRS power. 

However, scDRS will not produce false positives for less ideal GWAS or single-cell data 

sets. Third, scDRS is computationally efficient and scales linearly with the number of cells 

and number of control gene sets for both computation and memory use; it takes around 3 

hours and 60GB for a single-cell data set with a million cells). Fourth, scDRS can be used 

in conjunction with any gene sets (instead of the MAGMA GWAS gene sets) to evaluate the 

enrichment of aggregate expression for cells in a single-cell data set. Fifth, we provide an 

option to adjust for cell-type proportions (or any cell group annotations), recommended only 

for extremely unbalanced data sets. Further details and evaluations of alternative versions of 

scDRS are provided in the Supplementary Note.

Algorithm description

We describe the scDRS algorithm.
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Input: Disease GWAS summary statistics (or putative disease gene set G with GWAS gene 

weights {wg}g∈G), scRNA-seq data X ∈ ℝncell × ngene.

Parameter: Number of MC samples of control gene sets B (default 1,000).

1. Construct putative disease gene set

a. Construct putative disease gene set G ⊂ {1, 2, … , ngene} with GWAS 

gene weights {wg}g∈G from GWAS summary statistics using MAGMA.

2. Compute disease scores and control scores

a. Sample B sets of control genes G1
ctrl, … ,  GB

ctrl matching mean 

expression and expression variance of disease genes.

b. Estimate gene-specific technical noise level σtech, g
2 ,  ∀g ∈ 1, … , ngene .

c. Compute raw disease score and B raw control scores for each cell c = 1, 

… ,ncell, c = 1, …, ncell,

raw disease score:  sc =
∑g ∈ Gwgσtech, g

−1 Xcg
∑g ∈ Gwgσtech, g

−1 ,     B raw control scores:  scb
ctrl

=
∑g ∈ Gb

ctrlwgσtech, g
−1 Xcg

∑g ∈ Gb
ctrlwgσtech, g

−1 ,  ∀b ∈ 1,  … , B
(1)

3. Compute disease association p-values

a. First gene set alignment by mean and variance. Let σg2 be the expression 

variance of gene g. For each cell c,

sc sc − 1
ncell

∑
c′ = 1

ncell
sc′, scb

ctrl scb
ctrl − 1

ncell
∑

c′ = 1

ncell
sc′b

ctrl

∑g ∈ Gb
ctrlwgσtech, g

−1

∑g ∈ Gwgσtech , g
−1

∑g ∈ Gwg2σtech, g
−2 σg2

∑g ∈ Gb
ctrlwg2σtech, g

−2 σg2
,  ∀b ∈ 1,  … , B

(2)

b. Cell-wise standardization for each cell c by the mean μc
ctrl and SD σc

ctrl

of control scores sc1
ctrl, … , scB

ctrl of that cell,

sc (sc − μc
ctrl)/σc

ctrl,    scb
ctrl scb

ctrl − μc
ctrl /σc

ctrl,  ∀b ∈ 1,  … , B (3)

c. Second gene set alignment by mean. For each cell c,

sc sc − 1
ncell

∑
c′ = 1

ncell
sc′,    scb

ctrl scb
ctrl − 1

ncell
∑

c′ = 1

ncell
sc′b

ctrl,  ∀b ∈ 1, … , B (4)
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d. Compute cell-level p-values based on the empirical distribution of the 

pooled normalized control scores for each cell c,

pc =
1 + ∑c′ = 1

ncell ∑b = 1
B I sc ≤ sc′b

ctrl

1 + ncellB
(5)

Output: cell-level p-values pc, normalized disease scores sc, and normalized control scores 

sc1
ctrl, … ,  scB

ctrl.

Downstream applications and MC test

We use a unified MC test for the scDRS downstream analyses based on the (normalized) 

disease and control scores. Specifically, let t be a test statistic computed from the disease 

score of the given set of cells (different downstream analyses differ by the test statistics) and 

let t1ctrl, … ,  tBctrl be the same test statistics computed from the B sets of control scores of the 

same set of cells. The MC p-value can be written as

pMC =
1 + ∑b = 1

B I t ≤ tbctrl

1 + B
(6)

The MC test avoids the assumption that the cells are independent—a strong assumption in 

scRNA-seq analyses, e.g., when analyzing cells in the same cluster that are dependent due 

to the clustering process. However, the MC p-value pMC cannot be smaller than 1/(1 + B) 

by Equation (6), limiting its ability in distinguishing highly-significant associations. We can 

also compute an MC z-score as zMC = t − Mean tbctrl
b = 1
B /SD tbctrl

b = 1
B

; this MC z-score 

is not restricted by the MC limit of 1/(1 + B) but relies the assumption that the control 

test statistics tbctrl
b = 1
B

 approximately follow a normal distribution. We recommend using 

MC p-values to determine statistical significance and using MC z-scores to further prioritize 

associations whose MC p-values have reached the MC limit. Below, we describe the test 

statistics used by the 3 analyses listed above. Besides the 3 analyses below, the MC test can 

in principle be extended to any analysis that computes a test statistic from the disease scores 

of a set of cells.

Associating cell type to disease.—We use the top 5% quantile of the disease scores 

of cells from the given cell type as the test statistic. This test statistic is robust to annotation 

outliers, e.g., a few misannotated but highly significant cells. One can also use other test 

statistics such as the top 1% quantile or the maximum.

Assessing within-cell type heterogeneity in association with disease.—We use 

Geary’s C14,65 as the test statistic. Geary’s C measures the spatial autocorrelation of the 

disease score across a set of cells (e.g., cells from the same cell type or cell cluster) with 

respect to a cell-cell similarity matrix. Given a set of n cells, the corresponding disease 

scores s1, … ,sn, and the cell-cell similarity matrix W ∈ ℝn × n, Geary’s C is calculated as
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C = n − 1 ∑i, jW ij si − sj
2

2 ∑i, jW ij ∑i si − s 2 , (7)

where s = 1
n ∑i = 1

n si. A value significantly lower than 1 suggests a high level of disease-

association heterogeneity across the given set of cells. Details are provided in the 

Supplementary Note.

Correlating a cell-level variable to disease across a given set of cells.—For 

associating a single cell-level variable with disease, we use the Pearson’s correlation 

between the cell-level variable and the disease score across the given set of cells as the 

test statistic. For jointly associating multiple cell-level variables with disease, we use the 

regression t-statistic as the test statistic, obtained from jointly regressing the disease score 

against the cell-level variables.

Simulations

We considered 3 comparison methods: Seurat13 (“score_genes” as implemented in Scanpy66 

v1.6.0), Vision14 (implemented in scDRS v1.0.1), and VAM16 (v0.5.1). To our knowledge, 

VAM is the only published cell-scoring method that provides cell-level association p-values. 

We chose to include Seurat due to its wide use. We standardized its output cell-level 

scores (mean 0 and SD 1) before computing the cell-level p-values based on the standard 

normal distribution. We chose to include Vision because its outputs are nominal cell-level 

z-scores that can be easily converted to p-values; we again added the standardization step 

because otherwise the Vision results were highly unstable. We did not include other methods 

like PAGODA11 or AUCell12 because it is not straightforward to convert their outputs 

to cell-level association p-values and also because the z-scoring methods (e.g., Vision) 

outperformed other methods in a recent evaluation16.

We performed simulations on a data set with 10,000 cells subsampled from the TMS 

FACS data. In null simulations, we randomly selected putative disease genes from a set of 

non-informative genes. We considered four numbers of putative disease genes (100, 500, 

1,000, or 2,000) and four types of genes to sample from: (1) the set of all genes, (2) 

the set of top 25% genes with high mean expression, (3) the set of top 25% genes with 

high expression variance, (4) the set of top 25% overdispersed genes, where the level of 

overdispersion is calculated as the difference between the actual variance and the estimated 

technical variance in the log scale data. For the default version of scDRS, we simulated 

GWAS gene weights by first randomly selecting a disease (out of the 74 diseases/traits) and 

then randomly permuting the top MAGMA z-scores from the selected disease. We did not 

simulate gene-specific technical noise-based single-cell weights because these weights were 

inherent to the single-cell data. For the MC test for cell type-disease association, we used the 

top 5% quantile as the test statistic (see above).

In causal simulations, we randomly selected 1,000 causal disease genes, randomly selected 

500 of the 10,000 cells as causal cells and artificially perturbed their expression levels to be 

higher (at various effect sizes) across the 1,000 causal disease genes, and randomly selected 
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1,000 putative disease genes (provided as input to scDRS and other methods) with various 

levels of overlap with the 1,000 causal disease genes. Here, the effect size corresponds 

to the fold change of expression of the causal genes in the causal cells (multiplicative in 

the original count space and additive in the log space). We performed three sets of causal 

simulations: (1) varying effect size from 5% to 50% while fixing 25% overlap, (2) varying 

level of overlap from 5% to 50% while fixing 25% effect size, (3) assigning the 528 B cells 

in the subsampled data to be causal (instead of the 500 randomly selected cells; varying 

effect size while fixing 25% overlap). The FDR and power are based on applying the B-H 

procedure67 to all cells at nominal FDR=0.1.

GWAS and single-cell data sets

We analyzed GWAS summary statistics of 74 diseases and complex traits from the UK 

Biobank68 (47 of the 74 diseases/traits with average N=415K) and other publicly available 

sources (27 of the 74 diseases/traits with average N=225K); average N=346K for all 74 

diseases/traits; Supplementary Table 1). All diseases/traits were well-powered (heritability 

z-score>5), except celiac disease (Celiac), systemic lupus erythematosus (SLE), multiple 

sclerosis (MS), subject well being (SWB), and type 1 diabetes (T1D), which were included 

due to their clinical importance. The major histocompatibility complex (MHC) region was 

removed from all analyses because of its unusual LD and genetic architecture69.

We analyzed 16 scRNA-seq or snRNA-seq data sets. The 3 atlas-level data sets (TMS FACS, 

TMS droplet, and TS FACS) allow us to broadly associate diverse cell types/populations to 

disease and to compare results between species (mouse/human) and between technologies 

(FACS/droplet). The other 13 data sets focus on a single tissue and contain finer-grained 

annotations of cell types/states and/or experimentally determined annotations, which allow 

for better validation (Supplementary Table 2).

Analysis of T cells and autoimmune diseases

We collectively analyzed all TMS FACS T cells (4,125 cells labeled as “CD4+ α-β T 

cell”, “CD8+ α-β T cell”, “regulatory T cell”, “mature NK T cell”, “mature α-β T cell”, 

or “T cell” in the TMS data; Supplementary Table 5); the more general terms like “T 

cell” and “mature α-β T cell” were used for cells whose more specific identities were not 

clear. We processed the T cells following the same procedure as described in the original 

paper17,66. First, we performed size factor normalization (10,000 counts per cell) and log 

transformation. Second, we selected highly variable genes and computed the batch-corrected 

PCA embedding using Harmony70, treating each mouse as a batch. Finally, we constructed 

KNN graphs and clustered the cells using the Leiden algorithm71 (resolution=0.7), followed 

by computing the UMAP embedding. We removed 376 cells either from small clusters (less 

than 100 cells) or whose identities are ambiguous, resulting in 3,769 cells. We annotated 

the clusters based on the major TMS cell types in the cluster; the label “mature α-β T 

cell” was omitted because a more specific TMS cell type label (e.g., “CD8+ α-β T”) was 

available in the corresponding cluster. We further characterized disease-associated T cell 

subpopulations based on marker gene expression, automatic T cell subtype annotation72, and 

overlap of specifically expressed genes in each subpopulation with T cell signature gene sets 

(Supplementary Figures 14–17; Supplementary Note). We considered cells from clusters 
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1–4 as clear CD4+ T cells (1,686 cells) and cells from clusters 1,2,7–9 as clear CD8+ T cells 

(2,197 cells; the shared clusters 1 and 2 contain a mix of naive CD4+ and CD8+ T cells). 

We used diffusion pseudotime (DPT)38 to assign effectorness gradient for CD4+ and CD8+ 

T cells separately, where we used the leftmost cell in cluster 2 on the UMAP as the root cell 

(clearly naive T cell).

We used MSigDB73 (v7.1) to curate T cell signature gene sets, including naive CD4, 

memory CD4, effector CD4, naive CD8, memory CD8, effector CD8, Treg, Th1 (T helper 

1), Th2 (T helper 2), and Th17 (T helper 17) signatures. For each T cell signature gene set, 

we identified a set of relevant MSigDB gene sets (22–34 gene sets, Supplementary Table 

17), followed by selecting the top 100 most frequent genes in these MSigDB gene sets as 

the T cell signature genes; a gene was required to appear at least twice and genes appearing 

the same number of times were all included, resulting in 62 to 513 genes for the 10 T 

cell signature gene sets (Supplementary Table 24). For gold-standard gene sets used in the 

analysis of disease gene prioritization, we curated 27 putative drug target gene sets from 

Open Targets41 (mapped to 27 of the 74 diseases/traits); for a given disease, we selected all 

genes with drug score >0 (clinical trial phase 1 and above) and only considered diseases 

with at least 10 putative drug target genes. We curated 16 Mendelian diseases gene sets 

from Freund et al.42 (mapped to 45 of the 74 diseases/traits) (Supplementary Table 21). For 

comparison of two gene sets, the p-value is based on two-sided Fisher’s exact test and excess 

overlap is defined as the ratio between the observed overlap of the two gene sets and the 

expected overlap (by chance). Of note, for a given query gene set with a fixed size and a 

fixed level of excess overlap with the reference gene set, the −log10 p-value increases with 

the size of the reference gene set; we report both excess overlap and −log10 p-value while 

using the former as our primary metric, which is more interpretable.

Analysis of neurons and brain-related diseases/traits

For the TMS FACS data, we focused on the 484 neurons (TMS label “neuron”, excluding 

cells with TMS label “medium spiny neuron” or “interneuron”). For the Zeisel & Muñoz-

Manchado et al. data, we applied scDRS to all 3,005 cells and then focused on the 827 CA1 

pyramidal neurons (“level1class” label “pyramidal CA1”). For inferring spatial coordinates, 

we curated differentially expressed genes for each of the 6 spatial regions (dorsal vs. 

ventral, ventral vs. dorsal, proximal vs. distal, distal vs. proximal, deep vs. superficial, 

and superficial vs. deep) using the gene expression data from Cembrowski et al.48 (GEO 

GSE67403; gene sets in Supplementary Table 24). For each differential gene expression 

analysis, we selected genes based on FPKM>10 for the average expression in the enriched 

region (e.g., dorsal for the dorsal vs. ventral comparison), q-value<0.05, and log2(fold 

change) >2. We used scDRS and these signature gene sets to assign 6 spatial scores for each 

cell. For the regression analysis, we separately regressed the scDRS disease scores for each 

of the 7 brain-related traits (and height, a negative control trait) on each of the 6 spatial 

scores. We performed marginal regression instead of joint regression for these spatial scores 

because the inferred spatial scores for opposite regions on the same axis (e.g., dorsal vs. 

ventral) were highly collinear (strongly negatively correlated), and the inferred spatial scores 

for dorsal, proximal, and deep regions (which had strong marginal associations to diseases) 
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had very low pairwise correlations (average |r|=0.10; Supplementary Figure 23d), suggesting 

these associations were independent.

Analysis of hepatocytes and metabolic traits

We considered all hepatocytes in the TMS FACS data (1,162 cells). Since the original study 

clustered all cells from the liver together17 (limiting the resolution for distinguishing cell 

states within hepatocytes), we reprocessed and reclustered these cells following the same 

procedure as we did for the T cells. We further filtered out low-quality cells (proportion of 

mitochondrial gene counts ≥0.3; likely apoptotic or lysing), resulting in 1,102 hepatocytes. 

We computed the polyploidy, pericentral, and periportal scores by applying scDRS to 

published polyploidy/zonation signature gene sets (instead of MAGMA putative disease 

gene sets). We curated signature gene sets for ploidy level, zonation (pericentral/periportal), 

and putative zonated pathways. We curated 4 sets of polyploidy signatures, including 

differentially expressed genes (DEGs) for partial hepatectomy (PH) vs. pre-PH58 (used 

for the polyploidy score), Cdk1 knockout (case) vs. control58, 4n vs. 2n hepatocytes60, 

large vs. small hepatocytes58. We curated 3 sets of diploidy signatures, including DEGs 

for pre-PH vs. PH58, control vs. Cdk1 knockout58, and 2n vs. 4n hepatocytes60. We 

curated signature gene sets for pericentral (CV) and periportal (PN) hepatocytes from 

Halpern et al.59. We curated gene sets for putative zonated pathways from MSigDB73 

(v7.1), including glycolysis (pericentral), bile acid production (pericentral), lipogenesis 

(pericentral), xenobiotic metabolism (pericentral), beta-oxidation (periportal), cholesterol 

biosynthesis (periportal), protein secretion (periportal), and gluconeogenesis (periportal) 

(Supplementary Table 24). For the joint regression analysis of scDRS disease score on 

ploidy and zonation scores, we regressed the polyploidy score out of both the pericentral 

and periportal score before the joint regression because the ploidy level confounded both 

zonation scores. We performed joint regression instead of marginal regression here (unlike 

the regression analysis in the neuron section) because the polyploidy score was positively 

correlated with the pericentral and periportal scores (unlike the analysis in the neuron 

section where the 3 sets of scores had low correlations).

Statistics & Reproducibility

We analyzed only existing data sets. No statistical method was used to predetermine sample 

size. No data were excluded from the analyses. We did not use any study design that 

required randomization or blinding. We replicated our results by performing the same 

analyses on additional independent data sets; all attempts at replication were successful.
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Extended Data

Extended Data Fig. 1. Additional null simulations.
We performed null simulations for various numbers of putative disease genes (100, 500, 

1,000, and 2,000 for the four columns respectively) and various types of genes to randomly 

sample from: all genes (first row), and top 25% genes with high expression (second row), 

top 25% genes with high expression variance (third row), top 25% overdispersed genes 

(fourth row). We considered two additional versions of scDRS: scDRS-bin-gs (binary gene 

sets instead of MAGMA z-score gene weights) and scDRS-adj-ctp (adjusting for cell type 

proportion). For scDRS-adj-ctp, we simulated random biased gene sets (high-mean/high-

variance/overdispersed) based on the balanced data (inversely weighting cells by cell type 

proportion) to better match the model assumption, namely testing for excess expression 

relative to cells in the balanced data. In each panel, the x-axis denotes theoretical −log10 

p-value quantiles and the y-axis denotes actual −log10 p-value quantiles for different 

methods. The 3 versions of scDRS produced well-calibrated p-values in most settings and 

suffered slightly inflated type I error in panels o,p, possibly because it is hard to match a 

Zhang et al. Page 18

Nat Genet. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



large number of overdispersed putative disease genes using the remaining set of genes. In 

comparison, all other methods are less well-calibrated and are particularly problematic when 

the numbers of putative disease genes are small. Error bars denote 95% confidence intervals 

around the mean of 100 simulation replicates.

Extended Data Fig. 2. Additional causal simulations.
We performed three sets of causal simulations: (1) varying effect size from 5% to 50% 

while fixing 25% overlap (first column), (2) varying level of overlap from 5% to 50% while 

fixing 25% effect size (second column), (3) assigning the 528 B cells in the subsampled 

data to be causal (instead of the 500 randomly selected cells; varying effect size while 

fixing 25% overlap; third column). We report the power (first row), FDR (second row), and 

AUC for classifying causal from non-causal cells based on the p-values (third row). scDRS 

outperformed other methods under all metrics. Error bars denote 95% confidence intervals 

around the mean of 100 simulation replicates.
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Extended Data Fig. 3. Complete results for cell type-level disease associations for 74 diseases/
traits and TMS FACS 120 cell types.
Each row represents a disease/trait and each column represents a cell type (number of 

cells in parentheses). Heatmap colors denote the proportion of significantly associated cells 

(FDR<0.1 across all cells for a given disease). Squares denote significant cell type-disease 

associations (FDR<0.05 across all pairs of the 120 cell types and 74 diseases/traits; 597 

significant pairs; MC test; Methods). Cross symbols denote significant heterogeneity in 

association with disease across individual cells within a given cell type (FDR<0.05 across 

all pairs; 273 significant pairs; MC test; Methods). Heatmap colors and cross symbols are 

omitted for cell type-disease pairs with non-significant cell type-disease associations. Within 

the blood/immune block (40 cell types and 21 diseases/traits), 136 of 264 cell type-disease 

pairs with significant association also had significant heterogeneity. Within the brain block 

(11 cell types and 21 diseases/traits), 64 of 133 cell type-disease pairs with significant 

association also had significant heterogeneity. Within the other block (69 cell types and 

32 diseases/traits), 54 of 146 cell type-disease pairs with significant association also had 

significant heterogeneity. We discuss the results for FEV1/FVC. We identified 20 cell types 

associated with FEV1/FVC (FDR<0.05), including 5 lung cell types and 15 cell types from 

other tissues. They can be categorized into 5 sets of associations: (1) type II pneumocyte (2) 

skin-related cells (3) smooth muscle cells (4) fibroblast-and-MSC-like cells (5) pericyte-like 

cells. The first 4 sets of associations are consistent with a previous work63. The 5th set 

of pericyte associations is also plausible because pericytes are known to regulate lung 

morphogenesis64. We note that the cell type associations from the lung are more likely to be 
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causal and those from the other tissues are more likely tagging the causal cell types due to 

shared expression. Numerical results are reported in Supplementary Table 12.

Extended Data Fig. 4. Comparison of cell type-level disease association results between TMS 
FACS and TMS droplet (different technologies), TS FACS (different species).
(a-c) Results for disease association at the cell type-level for TMS FACS, TMS droplet, 

and TS FACS for diseases and cell types in the blood/immune block (upper left) and 

the other cell types/diseases block (lower right) in Figure 3 (TMS droplet and TS 

FACS do not contain brain data; Supplementary Tables 6,7). The plotting style is the 

same as Figure 3. Heatmap colors for each cell type-disease pair denote the proportion 

of significantly associated cells (FDR<0.1); squares denote significant cell type-disease 

associations (FDR<0.05); and cross symbols denote significant heterogeneity in association 

with disease across individual cells within a given cell type (FDR<0.05). Heatmap colors 

(>10% of cells associated) and cross symbols are omitted for cell type-disease pairs with 

non-significant cell type-disease associations via MC test. We matched each TMS FACS 

cell type using the closest cell type in the TMS droplet and TS FACS data; unmatched cell 

types were colored in grey. (d) Overlap of significant cell type-disease associations between 

TMS FACS and TMS droplet (P=2.8×10−24, two-sided Fisher’s exact test). (e) Pearson’s 

correlation of −log10 p-values for cell type-disease associations between TMS FACS and 

TMS droplet. (f) Overlap of significant cell type-disease associations between TMS FACS 

and TS FACS (P=1.3×10−7, two-sided Fisher’s exact test). (g) Pearson’s correlation of 

−log10 p-values for cell type-disease associations between TMS FACS and TS FACS. We 

determined that the results are highly consistent between TMS FACS and TMS droplet, and 
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are reasonably consistent between TMS FACS and TS FACS. Our method is underpowered 

in the TS FACS data, possibly due to the smaller sample size (27K cells in TS FACS vs. 

110K cells in TMS FACS). The current TS FACS data corresponds to the initial data release 

and there will likely be more cells in future releases20.

Extended Data Fig. 5. Optimizing parameters of scDRS based on expected and unexpected 
control cell types across 20 traits.
We considered different versions of scDRS by varying methods for selecting (1) putative 

disease genes (2) weights for the disease genes (3) MAGMA window size. We considered 

6 methods for selecting putative disease genes, 4 methods for selecting gene weights, and 3 

MAGMA gene window sizes (Supplementary Note). We applied each version of scDRS to 

the subsampled TMS FACS data (20 repetitions with 10K cells each) and a curated set of 

20 traits with expected and unexpected disease-critical cell types (Supplementary Table 15). 

For a given scDRS version and a given trait, we computed the t-statistic between cells from 

the expected and unexpected cell types, and divided it by the average t-statistics of results of 

the given trait from all data sets and all scDRS versions to correct for trait-specific baseline. 

We evaluated each version by first computing the mean and SE of the normalized t-statistics 

for a given trait across the 20 repetitions and then combining the estimates across the 20 

traits via random-effect meta-analysis. We compared the performance of a pair of scDRS 

versions by applying the same procedure to the difference of the normalized t-statistics 

between the two versions. (a) Varying gene selection methods while fixing other parameters 

as the default. (b) Varying gene weighting methods while fixing other parameters as the 

default. (c) Varying MAGMA gene window size while fixing other parameters as the default. 

The default version was denoted in dark blue. Error bars denote 95% confidence intervals 
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around the mean based on meta-analysis across 20 sub-sampled data sets and 20 traits, using 

procedures as described above. * denotes P<0.05 and ** denotes P<0.001 for significant 

differences relative to the default configuration; one-sided tests based on the estimated mean 

and CIs. Numerical results are reported in Supplementary Table 16.

Extended Data Fig. 6. Numbers of overlapping genes (upper triangle) and correlations of the 
scDRS disease scores across all TMS FACS cells (lower triangle) between the 26 autoimmune, 
brain, and metabolic traits analyzed in the main paper.
Traits are ordered via hierarchical clustering of the scDRS score correlation and the 

clustering dendrogram was provided. The level of gene set overlap is moderate. scDRS 

disease score correlations distinguish diseases/traits from the 3 categories as well as 

subgroups of diseases/traits in the same category.
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Extended Data Fig. 7. Additional results on disease gene prioritization.
(a-j) Comparison to alternative disease gene prioritization methods for the 10 autoimmune 

diseases. The first row shows levels of excess overlap between the prioritized disease 

genes and the gold standard gene sets while the second row shows the corresponding 

−log10 p-values for excess overlap. Each dot corresponds to a disease, the y-axis shows 

results for the proposed prioritization method (correlating gene expression levels with 

the scDRS disease score across all TMS FACS cells), and the x-axis shows results from 

comparison methods, including (from left to right) top 1,000 MAGMA genes, top 1,000 

genes specifically expressed in T cells (vs. the rest of cells in TMS FACS), prioritization 

based on correlation across T cells (instead of all TMS FACS cells), prioritization based on 

correlation across CD4+ T cells (instead of all TMS FACS cells), and prioritization based on 

correlation across CD8+ T cells (instead of all TMS FACS cells). (k-l) Overlap with drug 

target genes for 27 diseases. (m-n) Overlap with Mendelian disease genes for 45 diseases. 

The median ratio of −log10 p-values and (excess overlap − 1) between the y- and x-values 

(median of ratios) was provided in the figure title. P-values are based on two-sided Fisher’s 

exact tests.
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Extended Data Fig. 8. Complete results of correlations between scDRS disease scores and 
inferred spatial coordinates across CA1 pyramidal neurons in 7 single-cell data sets (extending 
results in Figure 5b).
(a) Results for regressing the scDRS disease scores against the inferred spatial coordinates 

for each disease/trait and each inferred spatial coordinate. Color represents the t-statistics 

and stars represent significant associations (* denotes P<0.05 and ** denotes P<0.005, 

one-sided MC test; Methods). For clarification, Zeisel & Muñoz-Manchado et al. refers to 

the data from Zeisel & Muñoz-Manchado et al. 2015 Science46 and Zeisel et al. refers to 

the data from Zeisel et al. 2018 Cell51. (b) Summary of results in panel a. Heatmap color 

represent the average t-statistics across the 7 brain-related diseases/traits (excluding height) 

for each data set and stars represent significant associations by combining p-values across 

datasets using Fisher’s combined probability test. (c) Summary of the association between 

brain-related diseases and the inferred spatial coordinates for the mouse and human data sets 

in panel b.
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Extended Data Fig. 9. Complete results of joint regression analysis for GWAS metabolic traits 
and putative zonated metablic processes across the 6 data sets (extending results in Figure 5d).
(a-b) Results for the 9 metabolic traits and height, a negative control trait. The polyploidy 

score (panel a) and both the pericentral and periportal score (panel b) were consistently 

associated with the 9 metabolic traits across the data sets. The strong association (P<0.005) 

between the pericentral score and height in the Aizarani et al. data may be because 

that we inferred the pericentral score using mouse gene signatures, which are less 

conserved in human (as also mentioned in the original paper61). (c-d) Results for the 8 

metabolic pathways. Overall, as shown in panel d, the pericentral score was associated with 

pericentral-specific pathways (first 4 rows) while the periportal score was associated with 

periportal-specific pathways (last 4 rows). * denotes P<0.05 and ** denotes P<0.005 based 

on one-sided MC tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

We release our data at https://figshare.com/projects/Single-

cell_Disease_Relevance_Score_scDRS_/11890274 (instructions at https://github.com/

martinjzhang/scDRS), including GWAS summary statistics of the 74 diseases/traits, 

TMS FACS scRNA-seq data, reprocessed TMS FACS data (for T cells and 

hepatocytes), MAGMA and gold standard gene sets, and scDRS results for TMS 

FACS (disease scores and control scores for the 74 diseases/traits). The 16 scRNA-

seq data sets were obtained as follows (15 out of 16 publicly available). The 

TMS FACS data and TMS droplet data17 was downloaded from the official 

release https://figshare.com/articles/dataset/Processed_files_to_use_with_scanpy_/8273102. 

The TS FACS data20 was downloaded from the official release https://figshare.com/

articles/dataset/Tabula_Sapiens_release_1_0/14267219. The Cano-Gamez & Soskic et 

al. data36 was downloaded from https://www.opentargets.org/projects/effectorness. The 

Nathan et al. data37 was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE158769. The Zeisel & Muñoz-Manchado et al. data46 was downloaded 

from http://linnarssonlab.org/cortex/. The Zeisel et al. data51 was downloaded from 

http://mousebrain.org/adolescent/downloads.html. The Habib & Li et al. data50 and 

Habib, Avraham-Davidi, & Basu et al. data53 were downloaded from https://

singlecell.broadinstitute.org/single_cell. The Ayhan et al. data55 was downloaded from 

https://cells.ucsc.edu/human-hippo-axis/. The Yao et al. data52 was downloaded from https://

assets.nemoarchive.org/dat-jb2f34y. The Zhong et al. data54 was downloaded from https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119212. The Aizarani et al. data61 was 

downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124395. The 

Halpern & Shenhav et al. data59 was downloaded from https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE84498. The Richter & Deligiannis et al. data60 (annotated count 

matrix) was obtained via communication with the authors (raw data publicly available via 

links in the paper). The Taychameekiatchai et al. data is not publicly available and was 

provided by co-authors A. Taychameekiatchai, P. Rao, and B. Wang. The MSigDB73 (v7.1) 

was downloaded from the official website http://www.gsea-msigdb.org/gsea/index.jsp. The 

Open Targets41 data was downloaded from the official website https://www.opentargets.org/.
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Figure 1. Overview of scDRS method.
scDRS takes a disease GWAS and an scRNA-seq data set as input and outputs individual 

cell-level p-values for association with the disease. (1) scDRS constructs a set of putative 

disease genes from GWAS summary statistics by selecting the top 1,000 MAGMA genes; 

these putative disease genes are expected to have higher expression levels in the relevant 

cell population. (2) scDRS computes a raw disease score for each cell, quantifying the 

aggregate expression of the putative disease genes in that cell; to maximize power, each 

putative disease gene is weighted by its GWAS MAGMA z-score and inversely weighted by 

its gene-specific technical noise level in scRNA-seq. scDRS also computes a set of 1,000 

Monte Carlo raw control scores for each cell, in each case using a random set of control 

genes matching the gene set size, mean expression, and expression variance of the putative 

disease genes. (3) scDRS normalizes the raw disease score and raw control scores across 

gene sets and across cells, and then computes a p-value for each cell based on the empirical 

distribution of the pooled normalized control scores across all control gene sets and all cells. 

The choice of 1,000 for the number of putative disease genes and the choice of 1,000 for the 

number of control scores are independent.
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Figure 2. Results for null and causal simulations.
(a) Q-Q plot for null simulations using 1,000 randomly selected genes as the putative 

disease genes. Random GWAS gene weights were used for scDRS matching the MAGMA 

z-score distributions in real traits while binary gene sets were used for the other 3 methods. 

X-axis denotes theoretical −log10 p-value quantiles and y-axis denotes actual −log10 p-value 

quantiles for different methods. Error bars denote 95% confidence intervals around the mean 

of 100 simulation replicates (with 10,000 cells per simulation replicate); all error bars are 

<0.05 from the point estimate. Numerical results are reported in Supplementary Table 8 and 

additional results are reported in Extended Data Figure 1 and Supplementary Figure 5. (b) 

Power for casual simulations with perturbed expression of causal genes in causal cells. We 

report the power at FDR=0.1 for different methods and different effect sizes. Error bars 

denote 95% confidence intervals around the mean of 100 simulation replicates (with 10,000 

cells per simulation replicate); all error bars are <0.02 from the point estimate. Numerical 

results are reported in Supplementary Table 9 and additional results are reported in Extended 

Data Figure 2.
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Figure 3. Disease associations at the cell type-level.
We report scDRS results for individual cells aggregated at the cell type-level for a subset 

of 19 cell types and 22 diseases/traits in the TMS FACS data. Each row represents a 

disease/trait and each column represents a cell type (with number of cells indicated in 

parentheses). Heatmap colors for each cell type-disease pair denote the proportion of 

significantly associated cells (FDR<0.1 across all cells for a given disease). Squares denote 

significant cell type-disease associations (FDR<0.05 across all pairs of the 120 cell types 

and 74 diseases/traits; p-values via MC test; Methods). Cross symbols denote significant 

heterogeneity in association with disease across individual cells within a given cell type 

(FDR<0.05 across all pairs; p-values via MC test; Methods). Heatmap colors (>10% of cells 

associated) and cross symbols are omitted for cell type-disease pairs with non-significant 
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cell type-disease associations via MC test (heatmap colors omitted for 1 pair (Dendritic-

ASM) and cross symbols omitted for 6 pairs (CD4+ α-β T-MONO, CD8+ α-β T-MONO, 

bladder cell-RA, bladder cell-ASM, oligodendrocyte-BP, and dendritic-BMD-HT)). Auto 

Immune Traits (AIT) represents a collection of diseases in the UK Biobank that characterize 

autoimmune physiopathogenic etiology62(Supplementary Table 1). Abbreviated cell type 

names include red blood cell (RBC), granulocyte monocyte progenitor (GMP), medium 

spiny neuron (MSN), and oligodendrocyte precursor cell (OPC). Neuron refers to neuronal 

cells with undetermined subtypes (whereas MSN and interneuron (non-overlapping with 

neuron) refer to neuronal cells with those inferred subtypes). Complete results for 120 cell 

types and 74 diseases/traits are reported in Extended Data Figure 3 and Supplementary Table 

12.
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Figure 4. Associations of T cells with autoimmune diseases.
(a) UMAP visualization of T cells in TMS FACS. Cluster labels are based on annotated 

TMS cell types in the cluster. (b-c) Subpopulations of T cells associated with IBD and HT, 

respectively. Significantly associated cells (FDR<0.1) are denoted in red, with shades of red 

denoting scDRS disease scores; other cells are denoted in grey. Cluster boundaries indicate 

the corresponding T cell clusters from panel a. Clusters are annotated based on the putative 

identities of associated cells in the cluster, for the top 4 clusters (out of 11) with the strongest 

level of association (highest average disease score for associated cells in the cluster); number 

of disease-associated cells and number of all cells in the cluster are provided in parentheses. 

(d) Differences in individual cell-level associations between IBD and HT. Differentially 

associated cells (absolute scDRS disease score difference>2) are denoted in red and blue, 

with shades of colors denoting scDRS disease score differences; other cells are denoted in 

grey. Cluster boundaries indicate the corresponding T cell clusters from panel a. Clusters are 

annotated the same as in panels b,c; number of IBD-enriched cells, HT-enriched cells, and 

all cells in the cluster are provided in parentheses. For panels b-d, results for the other 8 
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autoimmune diseases are reported in Supplementary Figures 13,18. (e) Association between 

scDRS disease score and CD4 effectorness gradient across CD4+ T cells for 5 representative 

autoimmune diseases and height, a negative control trait. X-axis denotes CD4 effectorness 

gradient quintile bins and y-axis denotes the average scDRS disease score in each bin for 

each disease. * denotes P<0.05 and ** denotes P<0.005 (one-sided MC test). Numerical 

results for all 10 autoimmune diseases are reported in Supplementary Table 20. (f) Excess 

overlap with gold standard gene sets. X-axis denotes excess overlap of genes prioritized by 

MAGMA and y-axis denotes excess overlap of genes prioritized by scDRS, for each of the 

10 autoimmune diseases. Median ratio of (excess overlap − 1) for scDRS vs. MAGMA was 

2.07. Numerical results are reported in Supplementary Table 22.
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Figure 5. Associations of neurons with brain-related disease/traits and hepatocytes with 
metabolic traits.
(a) Subpopulations of CA1 pyramidal neurons associated with SCZ in the Zeisel & Muñoz-

Manchado et al. data. Colors of cells denote scDRS disease scores (negative disease scores 

are denoted in grey). We include a visualization of putative dorsal-ventral and proximal-

distal axes (see text). Results for all 7 brain-related diseases/traits and height are reported 

in Supplementary Figure 23b. (b) Association between scDRS disease score and proximal 

score across CA1 pyramidal neurons for 5 representative brain-related disease/traits and 

height, a negative control trait. The x-axis denotes proximal score quintile bins and the 

y-axis denotes average scDRS disease score in each bin for each disease. * denotes P<0.05 

and ** denotes P<0.005 (one-sided MC test). Results for all 6 spatial scores and all 

7 brain traits (and height) are reported in Extended Data Figure 8 and Supplementary 

Table 25. (c) Subpopulations of hepatocytes associated with TG in the TMS FACS data. 

Significantly associated cells (FDR<0.1) are denoted in red, with shades of red denoting 

scDRS disease scores; non-significant cells are denoted in grey. Cluster boundaries indicate 

the corresponding hepatocyte clusters. In the legend, numbers in parentheses denote the 

number of TG-associated cells vs. the total number of cells. Cluster labels are based on the 

putative identity of cells in the cluster. Results for the other 8 metabolic traits and height 
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are reported in Supplementary Figure 25. (d) Association between scDRS disease score and 

polyploidy score for 4 representative metabolic traits and height, a negative control trait. The 

x-axis denotes polyploidy score quintile bins and the y-axis denotes average scDRS disease 

score in each bin for each disease. * denotes P<0.05 and ** denotes P<0.005 (one-sided MC 

test). Results for all 3 scores (polyploidy score, pericentral score, periportal score) and all 

9 metabolic traits (and height) are reported in Extended Data Figure 9 and Supplementary 

Table 26.
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